INDICES OF FUNCTION SPACES AND THEIR
RELATIONSHIP TO INTERPOLATION

DAVID W. BOYD

A special case of the theorem of Marcinkiewicz states that if 7 is a linear
operator which satisfies the weak-type conditions (p, ) and (g, ¢), then T
maps L” continuously into itself for any r withp < » < ¢. In arecent paper (5),
as part of a more general theorem, Calderén has characterized the spaces X
which can replace L" in the conclusion of this theorem, independent of the
operator 7. The conditions which X must satisfy are phrased in terms of an
operator S(¢) which acts on the rearrangements of the functions in X.

One of Calderén’s results implies that if X is a function space in the sense of
Luxemburg (9), then X must be a rearrangement-invariant space. In this
paper, starting with the assumption that X is rearrangement invariant, we
reduce the conditions which X must satisfy to conditions on a pair of numbers
(o, B) called the indices of X. The result is that X may replace L” in the
theorem of Marcinkiewicz if and only if p < a=!and 8! < gq.

A rearrangement-invariant space is given completely by a function norm p
and a measure space Q. In case p is the L™ norm, it is immediate that
a = (3 = r~L In general, though, a and B depend both on p and on Q. This
may be illustrated by calculating @ and 8 when p is an Orlicz norm. To avoid
unduly lengthening this paper we shall report on this elsewhere; see (4).

1. Function spaces. Let (2, .9, u) be a totally o-finite measure space
which satisfies one of the following restrictions:

(1) Q is non-atomic with infinite measure;
(2) Q is non-atomic with finite measure;
3) Q is purely atomic with atoms having equal measure 1.

Let A#(Q) and £?(Q) denote the class of measurable and non-negative
measurable functions on , respectively. According to Luxemburg (9, p. 3)
a function norm p: P (Q) — [0, ] is a mapping which satisfies the following
conditions for all f, g, {f,} in Z(Q), for all E €  with u(E) < o0 and
characteristic function xg, and for all constants ¢ = 0:

4) p(f) =0ef=0ae, f=gae =p(f)=r(e),
p(f+ 2) = o(f) + p(g), p(af) = ap(f);

(5) p(xe) < 0;

(6) there exists 4z < o such thathfdy < App(f);

(7) foTfae =p(f,) To(f) (Fatou property).
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The space L*(Q) consists of all f € #(Q) such that p(|f]) < o, with
norm [|f]| = p([f]). L*(Q) is a Banach space when functions which differ at
most on a null set are identified.

Two functions f, g € #(Q) are said to be equimeasurable if, for all y > 0,

plas [f@)] > v} = plx: g(®)] > 3},

In this case we write f ~ g.

We say that Lr is rearrangement-invariant if f~ g and f € L° implies
g € Lr, and that p is a rearrangement-invariant norm if f ~ g implies
o(|fl) = p(lg]). By an equivalent renorming we may assume that a rearrange-
ment-invariant space has such a norm; see (10).

The non-increasing rearrangement of f € .#(2) onto Rt = [0, 00) is the
non-increasing, left-continuous function f* € & (R+) for which, if m denotes
Lebesgue measure,

mi{t € Rt: f*(t) > y} = pfx € Q: [f(x)] >y}, ally > 0.

For the existence of f* and more details, see (5).
One way of generating rearrangement-invariant norms for .#(Q) is the
following: let p be a rearrangement-invariant norm for .# (R*) and define

) pa(f) = p(f*) forall f € £(Q).

In (1) this was used as a definition. In (10) it is shown that for Q satisfying
(1), (2) or (3), all rearrangement-invariant norms arise in this way. We shall
write L#(Q) for the space determined in.# (2) by po.

If Q satisfies (2) with u(2) = «, then supp f* C [0, ¢], hence we sometimes
regard f* as being defined only on [0, ¢] and will write @* = [0, a]. If Q satisfies
(3), then f* is a step function constanton (z — 1, n],forn € Z+ = {1, 2, 3,...}
thus we shall sometimes regard f* as the sequence {f*(z)}, and write Q* = Z+
There will never be any confusion about using the notation /* both for the
function on R+ and for its restriction to Q*. I{Q satisfies (1), we define @* = R+,

The associate space of a function space L?(Q) plays an important role in the
following discussion. Given a function norm p, the associate norm p’ is defined

on Z(Q) by
©) V(g = sup{ INTGE 1}.

The space L*' is called the associate space of L*. If pg is a rearrangement-
invariant norm on .4 () defined as in (8), then (pg)’ = (p')o; see (1).
Furthermore, we have

) ('@ = 56 = sl [ s e 4@, 007 51}

Having defined p’, we can define p’’ = (p’)’. A result due independently to
Lorentz (unpublished) and Luxemburg (9, p. 9) states that p’’ = p for norms
having the Fatou property (7).
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We shall often use the notation (f, g) = fg fg du, depending on context to
indicate which @ is meant.

2. Operators satisfying weak-type conditions. The notion of an
operator of weak type (p,q) was introduced by Marcinkiewicz (see, e.g.,
12, p. 111, Chapter 12, § 4), and modified by Stein and Weiss (11). Calderé6n
showed that the Stein and Weiss definition was equivalent to the operator
being a continuous mapping between a pair of Lorentz spaces, except in one
extreme case. In our situation, only the original Lorentz spaces, A, and M,
introduced in (8) are involved. These are rearrangement-invariant spaces
defined by the norms

ay  N@ = [ rOd v =5 15 <o,

t
12w =swp i [ P@ds,  v=p7, 15p <o,
>0 0

respectively. The space A, is by definition the closure in L® of the space of
bounded functions with support in a set of finite measure, and M, is defined
to be L. A, is equivalent to the space L,,; and M, is equivalent to L,,, as
defined in (5, Theorem 6).

On the space of measurable functions .# () we introduce the topology of
convergence in measure on sets of finite measure. A continuous mapping of
A,(Q) into . (Q) is said to be quasilinear if there is a constant 4 such that,
for all f, g € A,(Q), and X € C,

(13) T+ 9| = A(Tf + [Tg]) ae. and [TOV)| = A |Tf] a.e.

The mapping 7' is said to be of weak type (p1, p2) if T maps A,, continuously
into .# (2) and there is a constant ¢ such that, for all f € A, and almost
all t > 0,

(14) (TH*(E) < a2, (f).

In case p» > 1, this is equivalent to requiring that, for some constant c;,
possibly different from ¢,

(15) w2, (TF) = 1Ny ()-

We shall be concerned entirely with the case p; = ps.
The space A, + A, is defined to be the function space consisting of all
functions of the form f 4+ g, with f € A,, g € A,, and the norm

(16) If + all = inf{M(1) + N(g1): f1 € By, 21 € Ay and fi + g1 = f + g.
If 1 = p,q < 0, it can be shown that f € A, + A, if and only if

17) ; fmmin(t””, MY dE < 0.
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We define the class of operators W(p, q; 2) to consist of those linear
operators 7" mapping A, + A, continuously into .# (Q) which are of weak
types (p, p) and (¢, ¢) simultaneously.

If X and Y are Banach spaces, [X, Y] will denote the space of bounded
linear operators from X into ¥, and [X] will denote [X, X]. With this notation,
our problem is to characterize those function norms p for which

[L#(@)] D W(p, ¢; Q).
We first reduce the problem to the rearrangement-invariant case.

LemMMA 1. If 1 £ p < q £ 00, and if p is a function norm on M (Q), such
that [LP()] D W(p, q; @), then Lr(Q) is rearrangement-invariant.

Proof. The class W(p, q; 2) contains all operators in [L1(2), L*(?)], so that
(Lo (@)] D W(p, ¢; Q) D [L1(Q), L7 (@)].

However, according to (5, Theorem 3(i)), this implies that L* must satisfy
the following condition:

t t
(18) f€ L’ and forall ¢ > 0,f g¥(s)ds = f f¥(s)ds= g€ L".
0 0

Thus, in particular, f € L? and g ~ f implies g € L? so that L* is rearrange-
ment-invariant.

By earlier remarks and Lemma 1, we may assume without loss of generality
that p = pg is a rearrangement-invariant norm and even that it is of the
form (8).

To state our next lemma, we need the following special operators which act
on functions in .# (R*). Let v = p~!, then

(19) Pf(t) =t fot s (s) ds,

(20) 040 = £ |97 (s

The domains of the operators consist of all f € .# (Rt) for which the
respective integrals are finite a.e. By restriction, P, and @, are defined for
f € M%), In case Q* = [0, a], formulas (19) and (20) are still valid for
0 =t = a. In case Q¥ = Z+, the operators take the form

(21) P() = 57 L a8
(22) Qfn) = 17" 3 cuf @),

where ¢y = [§-1 571 ds.

The next lemma shows that we can restrict our study entirely to the
operators P, and Q,. In it, if f € L*(Q), we regard f* as being a function in
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Le(Q*), and P,f*, Q,f* are to be interpreted as in the remarks following
equation (20).

LEMMA 2. Let p be a rearrangement-invariant norm on M (RY), let
1 =p<q= o0, and let @ satisfy (1), (2) or (3). Then [L*(Q)] D W(p, q; 2)
if and only if there are constants A, B such that for all f € Lr(Q),

(23) par (Ppf*) < Apos(f*)
and
(24) pa(Qof*) = Bpas(f*).

Proof. By (5, Theorem 8), interpreted in our notation, if ' € W(p, ¢; 2),
there is a constant ¢ = ¢(p, ¢; T') such that, for all f € A, + A,

(25) (T)* = c(p™'Pp + ¢7'QIS™.

If (23) and (24) hold for all f € L#(Q), then Lr(Q) C A, + A, follows by
using (10). Thus (23), (24), and (25) together imply that if f € L*(Q), then

(26) pa(Tf) = par((Tf)*) = Cpar(f*) = Cpa(f),

so that T € [L*(Q)], with ||T]] £ C = ¢c(p~'4 + ¢ 'B).
Conversely, assume that [L*(Q)] D W(p, ¢; ). We observe that

PP E W(P! g;ﬂ*) and Q(I E W(P! q, Q*)7

directly from the definitions involved. Certainly then, if @ is one of the spaces
[0, a], RT or Z* so that @ = Q*, then

Py, Qu € W(p, ¢; 2*) C [LP(Q9)],

which proves (23) and (24).

If @ = Q% we use the fact that there is an almost one-to-one measure-
preserving transformation r: 4 —J *, where J and J * are the rings of
measurable subsets of @ and Q*, respectively. (See Halmos (6, pp. 173-174)
for the non-atomic case; the atomic case is trivial.) This isomorphism is used
to construct operators P,, §, € W(p, ¢; Q) such that P,, Q, € [L*(2)] if and
only if P,, Q, € [Lr(Q*)].

For example, let @* = R*, and define

(27) St = 7'_1([09 t])r Al = T_l{t}' 0 ‘é i< .
Then define
) ifxea,
(28) g) = {o, if x ¢ A, for any ¢.
Then g € 4 (2) and g*(¢) = 1. Now define
‘ _ 1t s fedn, ifx€ A,
(29) Pyf(x) = { if x ¢ A, for any ¢.
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One readily shows that if f € L*(Q), then there is an f € L¢(Q) with f ~f
and such that (P,f)* = P,f*. Then, we have P, ¢ W(p, q; Q) C [L*(Q)],
thus P, € [L°(9*)] and (16) holds.

The other cases are treated similarly.

3. Indices of rearrangement-invariant spaces. In this section we
reduce the question of whether (23) and (24) hold for a given function norm p
to a consideration of the indices of L?(2).

We begin by introducing certain semigroups of operators acting on functions
in the classes A (Q*). If O* = [0, a] or R*, we define

(30) (ES)@®) = f(st) for0 < s <o0o, 1€Q¥

where, for @* = [0, a] and t > a, we set f(¢) = 0.
If Q* = Z*, we define

(31) (Enf)(n) = f(mn), m,n € L+,

To keep the notation uniform, let S(2) = (0, ) if @* = [0, a] or Rt, and
S@Q) = Z+if Qf = Z+.
If p is a rearrangement-invariant norm, then

(32) h(s, Lo(@)) = suplp(Ef*): f € Lo@), p(f) < 1}, for s € S(@).

In case @ is non-atomic, it can be seen that i (s; L?(Q)) is the norm of E; as
a member of [L?(Q*)]. However, in case Q* = Z*, the norm of E, in [L*(Z+)]
is 1 for all m, since if f (n) = O for all # % 0 (mod m), then (E,f)* = f*. By
restricting consideration to non-increasing functions in (32), we shall have
h(m; Lr(Z*)) < 1 for some norms p.

LeEmmA 3. Let h(s) = h(s; LP(Q)). Then

(a) h is non-increasing;

(b) For s, t € S(Q), h(st) < h(s)h(t);

(c) If 6(s) = —logh(s)/logs, and if S(Q) = (0,0) then the following
limits exist,

(33) a = lim 6(s) = inf 6(s),
$504 0<s<1
(34) B = lim 6(s) = sup 6(s).
$-300 s>1
(d) If S(@) = Z*, and 0 is as above, then
35) B8 = lim 8(n) = sup 4(n).
nN-3c0 n€Z+

Proof. (a) is obvious, since f*(sit) < f*(sqof) for sy > so, for all f* € Le(Q*).
(b) In case @* = R* or Z*, we have E,E, = E,, for all 5, ¢t € S(®), thus
h(st) = h(s)h(¢) is clear.
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For @* = [0, a], we have E;E, = E, unless s > 1 and ¢ < 1, in which case
we have EE f = xo,s-1Eqf. This is enough to show that (b) holds.

(c) This is a consequence of (b) which is easily derived from (7, p. 244)
by writing f(x) = log h(¢®).

(d) The proof depends on both (a) and (b) and can be found in
(3, Lemma 2).

Definition. Let p be a rearrangement-invariant norm, and Q a measure space
satisfying (1), (2) or (3). The number 8 = 8(p, ?) defined by (34) and (35)
above is called the lower index of L*(Q). If @ is non-atomic, the number a(p, Q)
defined by (33) is called the upper index of L*(Q). For Q@ atomic, we define
a(P, Q) =1- ﬁ(p,y Q)°

The next lemma gives an alternative definition of o in case © is atomic.
We introduce two new operators on sequences:

(36) Fnf(n) = f([(n — 1)/m] + 1)
and
37) Gnf (n) = FuEnf(n) = f (ml(n — 1)/m] + m).

Here [x] denotes the integer part of x.

LeEMMA 4. Let p be a rearrangement-invariant function norm, and let F,, be
as 1n (36). Define

(38) k(m, L*(Z*)) = sup{p(Fuf*): f € L*(Z"), p(f) < 1}.
Then
(39) mh(m;Lﬂ'(Z+)) = k(M;L"(Z"‘))
and
o g+
(40) alp, Q) = 3} log k(ﬁgl;n(z ))

Proof. Let f € L#(Z*), g € L' (Z*). Then it is easy to see that
(41) (Fuf*, Gug*) = m(f*, EnGng*)
< p(f*)mh(m; L*'(Z+)) o' (Gng*).

Now G, (L (Z*)), consists of all sequences which are constant in blocks of
length m. Furthermore, F,f* is such a sequence, thus by the levelling property
of rearrangement-invariant norms (see 10, p. 99), we have

“2) sup T8l Co) o p, ),
g*<0 P (G
Thus, by (41) and (42) we have
(43) p(Fuf*) = p(f*)mh(m; L¢'(Z*)) for all f € L#(Z7),
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which shows that

(44) k(m; Le(Z*)) < mh(m; L' (Z+)).

To prove the reverse inequality is even easier since

(45) m(f*, Eng*) = (Fuf* g*), forfe Le, g€ L.
Finally, (40) is an immediate consequence of (39).

LEMMA 5. Let a, B denote the indices of L?(Q) and o', B’ the indices of L*' (Q).
Thena=1—-p8,8=1—dand0 = =a =1.

Proof. For @* = Z*,a = 1 — ' and &’ = 1 — 8 by definition.

If @* = [0,a]and if f € Lr, g € L*', and s < 1, one has

W) Efe) = [ o a

= [T s di = G B,
Thus, taking supremums over f and g with p(f) = 1, p(g) = 1, we have
47) h(s, L*) = s—th(s71, L"),

which clearly shows thate = 1 — 8’ and dually 3 =1 — o'.

A similar calculation works in case @* = R+,

The fact that 8 = 0 follows immediately from the fact that % is non-
increasing. Then o = 1 follows from a =1 — ',

To prove that 8 = «, we deal first with @ non-atomic. Then Lemma 3(b)
applies to show that A(s)k(s™!) = (1) = 1. Thus, for s < 1, 6(s) = 0(s71),
which proves that a = 8.

For the case Q* = Z+, we use Lemma 4. Note that if F, is defined by (36),
then E,F,f = f for all f € L°(Z"). Thus, if we write k(m) = k(m; L*(Z%)),
as defined by (38), then

(48) p(EnFnf*) = h(m)k(m)p(f*), forf € Lr,

so that h(m)k(m) = 1.
But then log k(m)/log m = 6(m), proving that ¢ = 8 upon using (40).
Our main theorem may now be proved. It will be convenient in the proof
to use the notation P, € [2*], Q, € [2*] to mean that there are constants
A and B so that (23) and (24) hold, respectively. (The & refers to the fact
that only non-increasing functions are considered in equations (23) and (24).)

THEOREM 1. Let p be a rearrangement-invariant function norm and let Q be a
measure space satisfying (1), (2) or (3). Then [L?(Q)] D W(p, ¢; Q) if and
only if

(49) a(p, Q) < p~t and B(p, 2) > gL
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Proof. By Lemma 2, we need only show that

(50) ap <1 P, ¢ [D]
and
(51) Bg>1e0, €D

In fact, only one of the implications (50) or (51) need be proved, since if
f € Le, g € L*, then

(52) (Paf*, %) = (f*, Owd®),

where p’ = p(p — 1)~L From this, it follows immediately that
(53) P, € [2°] & Qp € [D7].

However, by Lemma 4, we have

(54) ap < 1epp > 1.

Combining (53) with (54) proves our assertion.
In case € is non-atomic, we choose to prove (50). In fact,

P, € [Z°] & Py € [L(@%)]

in this case. This is a consequence of (P,f)* < P,f* which is a special case of
the following well-known inequality of Hardy, Littlewood, and Pélya (see,
e.g., 1, p. 601, formula (1)):

65) Jvlans [ e ane
Bv (2, Theorem 1), P, € [L*(R*)] if and only if
21
(56) j s (s, L°(RY)) ds < o0,
0

which is the case if and only if ap < 1.

For @* = [0, a], the proof that P, € [L*(Q*)] is not substantially different
from that for @* = R+ just referred to.

In the remaining case, @* = Z*, we shall prove (51). We begin by intro-
ducing an operator T'; which is easier to handle than Q,.

If f € L°(2), then
(67) Tof*(n) = mzc:l Com+1f* (mn),

where ¢,,; is defined by f’,ﬁ_l w~'du, v = ¢-'. Now, note that
© k
B9  Qfm) = 3 @) f W du
= 72 Zf*(”’m +J)f u'"” 1du<2f’"(mn)n "'Z W du
mn+j— m=

=1 j=1 j=1 mn+J—1

-5 (" "‘)f*(mn) = Tif*(n).
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Similarly, using the estimate f* (mn 4 j) = f*((m + 1)n), and the fact that
{cs) 1s a non-increasing sequence, we obtain

(59) Quf*(n) 2 Tf*(n) — coof*(1).

Thus, Q, € [Z7] if and only if T, € [D7].

The operator T, is of the type discussed in (3), and it is shown there that
T, € [2°] if and only if B > oo, where oy is the abscissa of convergence of
the Dirichlet series

(60) £, ) = 3 amern™,

which in this case is 09 = ¢~1. Thus, 7', € [Z*] if and only if 8¢ > 1, proving
(51) and hence (50).

4. Indices for special spaces. In (1), we showed how to compute
h(s; L/(R*)) in case L* is an Orlicz space L? or a Lorentz space A(¢, p).
From the expressions given there, the indices @ and 8 can be computed using
(33) and (34). The situation @* = R+ is somewhat simpler than either of the
cases @* = [0, a] or @* = Z+. This is apparently due to the fact that (0, )
is a group under multiplication.

In (4), we compute the indices « and 8 for L2([0, a]) and L®(Z+) = [®.

REFERENCES

1. D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Can. J. Math. 19
(1967), 599-616.

2 The spectral radius of averaging operators, Pacific J. Math. 24 (1968), 19-28.

3. ——— Monotone semigroups of operators on cones, Can. Math. Bull. 12 (1969), 299-310.

4

5

Indices and exponents for Orlicz spaces (unpublished manuscript).
. A. P. Calderén, Spaces between L' and L* and the theorem of Marcinkiewicz, Studia Math.
26 (1966), 273-299.
6. P. Halmos, Measure theory (Van Nostrand, New York, 1950).
7. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Collog.
Publ., Vol. 31, rev. ed. (Amer. Math. Soc., Providence, R.1., 1957).
8. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 561 (1950), 37-55.
9. W. A. J. Luxemburg, Banach function spaces, Thesis, Delft Technical University, 1955.
10. Rearrangement-invariant Banach function spaces, Queen's papers in Pure and
Applied Mathematics 10 (1967), 83-144, Queen’s University, Canada.
11. E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its
applications, J. Math. Mech. 8 (1959), 263-284.
12. A. Zygmund, Trigonometric series, Vol. I1 (Cambridge, at the University Press, 1959).

California Institute of Technology,
Pasadena, California

https://doi.org/10.4153/CJM-1969-137-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-137-x

