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The wake flow past a streamwise rotating sphere is a canonical model of numerous
applications, such as particle-driven flows, sport aerodynamics and freely rising or falling
bodies, where the changes in particles’ paths are related to the destabilization of complex
flow regimes and associated force distributions. Herein, we examine the spatio-temporal
pattern formation, previously investigated by Lorite-Díez & Jiménez-González (J. Fluid
Mech., vol. 896, 2020, A18) and Pier (J. Fluids Struct., vol. 41, 2013, pp. 43–50), from
a dynamical system perspective. A systematic study of the mode competition between
rotating waves, which arise from the linearly unstable modes of the steady-state, exhibits
their connection to previously observed helical patterns present within the wake. The
organizing centre of the dynamics turns out to be a triple Hopf bifurcation associated
with three non-axisymmetric, oscillating modes with respective azimuthal wavenumbers
m = −1,−1 and −2. The unfolding of the normal form unveils the nonlinear interaction
between the rotating waves to engender more complex states. It reveals that for low values of
the rotation rate, the flow field exhibits a similar transition to the flow past the static sphere,
but accompanied by a rapid variation of the frequencies of the flow with respect to the
rotation. The transition from the single helix pattern to the double helix structure within the
wake displays several regions with hysteric behaviour. Eventually, the interaction between
single and double helix structures within the wake lead towards temporal chaos, which here
is attributed to the Ruelle–Takens–Newhouse route. The onset of chaos is detected by the
identification of an invariant state of the normal form constituted by three incommensurate
frequencies. The evolution of the chaotic attractor is determined using of time-stepping
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simulations, which were also performed to confirm the existence of bi-stability and to assess
the fidelity of the computations performed with the normal form.

Key words: shear-flow instability, wakes

1. Introduction

The flow around a rotating sphere has drawn the attention of many researchers in recent
years as it represents a canonical problem with many engineering and physics applications.
For instance, such configuration may be found in multiple practical and natural phenomena
like particle-driven flows (Shi & Rzehak 2019), fluidized bed combustion (Liu &
Prosperetti 2010; Feng & Musong 2014), sports aerodynamics (Passmore et al. 2008;
Robinson & Robinson 2013), seeds’ flight (Barois et al. 2019; Rabault, Fauli & Carlson
2019) or free-falling/rising bodies (Ern et al. 2012; Auguste & Magnaudet 2018; Mathai
et al. 2018), among others. In such applications, the instability of paths of the spherical
bodies is shown to depend on the forces distributions acting on their surface and, therefore,
on the flow regimes that are destabilized for different values of the Reynolds number and
rotation rates. Consequently, a profound understanding of the physics of the flow around
a rotating sphere and its instability features is required to predict the dynamics of rotating
particles and evaluate possibilities of flow and path control.

The unstable flow regimes at the wake past a fixed sphere have been extensively
characterized, as it represents a classical example of open flow leading to rich pattern
formation and dynamical complexity. As reported by different numerical and stability
analyses available in the literature, the flow experiences a complex sequence of laminar
bifurcations as the Reynolds number Re increases (see, e.g. Sakamoto & Haniu 1990;
Johnson & Patel 1999; Fabre, Auguste & Magnaudet 2008; Fabre et al. 2017). For a static
(non-rotating) sphere, the flow first experiences a steady bifurcation around Rec1 � 212,
leading to a steady, reflection-symmetric bifid wake (steady-state mode, Fabre et al. 2008),
followed by a Hopf bifurcation at Rec2 � 272 (Citro et al. 2017), leading to a periodic,
vortex-shedding mode which preserves the axial reflection symmetry plane (RSP mode,
Fabre et al. 2008). This reflection symmetry in the shedding process is lost around
Rec3 � 375, from which the wake starts to oscillate transversely (Chrust, Goujon-Durand
& Wesfreid 2013).

When rotation is applied, the bifurcation scenario of the sphere wake is modified,
generating even richer dynamics. In particular, as shown by Poon et al. (2010), the topology
and frequency of the unstable flow regimes depend on the rotation rate Ω and the axis of
rotation.

In general, the flow past streamwise rotating spheres has received considerably less
attention than transversely rotating spheres (see, e.g. Citro et al. 2016), and their dynamics
and controllability features are not yet fully understood. However, some numerical and
experimental studies have focused on the flow topology and stability modifications
produced in the sphere wake as the streamwise rotation speed increases (Kim & Choi
2002; Niazmand & Renksizbulut 2005; Skarysz et al. 2018) at low values of Reynolds
number. The problem can be also studied under linear stability analysis perspective as in
Pier (2013) and Jiménez-González, Manglano-Villamarín & Coenen (2019). Moreover, the
influence of streamwise rotation is not only restricted to the sphere, and it has been also
studied in wakes behind other axisymmetric geometries which follow a similar series of
bifurcations, as in Jiménez-González et al. (2013) and Jiménez-González et al. (2014) for
blunt-based bodies.
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Triple-Hopf bifurcation in the flow past a rotating sphere

The introduction of streamwise rotation introduces unsteadiness and asymmetry in
the sphere wake. The steady state is substituted by a frozen rotation with azimuthal
wavenumber m = −1 symmetry (Kim & Choi 2002; Jiménez-González et al. 2019), the
negative sign indicating that vortical structures wind in the direction opposite to the swirl
motion. When either Re or Ω increase, the periodic behaviour of this low-frequency
frozen state diverges to quasiperiodic or even chaotic states. The quasiperiodicity can
be caused by the appearance of a medium-frequency component, related to the RSP
mode of the non-rotating situation, or to the appearance of a component with m = −2
symmetry in the flow, for Re < 500 and moderate Ω values (Skarysz et al. 2018;
Lorite-Díez & Jiménez-González 2020). Moreover, in a more recent study, Lorite-Díez
& Jiménez-González (2020) also identified very complex patterns close to chaotic
behaviours, by performing direct numerical simulations (DNS). More precisely, with the
help of dynamic mode decomposition tools, the nonlinear regimes are reported to be
characterized by three fundamental frequency components (related to unstable structures
displaying m = −1, m = −1 and m = −2 symmetries, respectively) and their interactions.
However, the time-stepping simulations do not provide a clear insight about the origin of
instability of these complex regimes and the fundamental nature of the incommensurate
or derived frequency components, so that the use of adjoint stability tools seem
advisable to isolate fundamental modes and identify mechanisms of receptivity to forcing
or control.

Additionally, the time-stepping simulations of such complex dynamical systems are
generally demanding in terms of computational cost, especially close to bifurcations
thresholds, where long convergence times are usually required to obtain statistically
relevant solutions. As a matter of fact, alternative weakly nonlinear approaches, as those
based on bifurcation theory (Golubitsky & Langford 1988), may be more efficient to
elucidate the pattern of transitions and major features of flow regimes with increasing
values of the problem parameters (i.e. Re,Ω), by taking advantage of the symmetry of the
base flow and proximity between successive instability thresholds. That said, the transition
scenarios of complex systems with underlying symmetries usually lead to a large variety
of pattern formations.

Close to the onset of stability, these patterns may be caused by a single instability, or
alternatively, the system can display instabilities where several modes are concomitantly
accountable for the destabilization of the trivial state. Besides, flow configurations
controlled by a diversity of parameters may lose stability in diverse manners. A large
diversity of patterns may emerge in the entire parameter space, and, in particular, one
can find specific regions displaying mode competition. The combination of symmetry
with a parameter space whose dimension is higher than one is a classical scenario where
mode interaction occurs. The organizing centre of such cases is denoted as a bifurcation
of codimension n, with n ∈ N. Codimension is herein loosely defined as the number of
interacting modes, and also corresponds to the dimension of the low-order dynamical
system model called the normal form capturing the essence of the dynamics. The interested
reader can find more about pattern formation in symmetric systems in Golubitsky, Stewart
& Schaeffer (2012), while the study of the normal form of bifurcations with codimension
higher than one may be found in the books of Guckenheimer (2010) or Kuznetsov (2013).
The passage from a high-dimensional system to a reduced one with a slow manifold
takes advantage of the theoretical framework provided by the singular perturbation theory.
For example, the geometric singular perturbation theory, reviewed by Verhulst (2007), is
a powerful technique within the singular perturbation theory. In the bifurcation theory
of autonomous systems, it is customary to employ centre manifold or normal form
reduction. This procedure has been employed for the study of bifurcations from steady
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states (Haragus & Iooss 2010), maps (respectively Poincaré maps associated with a
limit-cycle solution) (Kuznetsov & Meijer 2005), homoclinic and heteroclinic connections
(Homburg & Sandstede 2010). The most commonly used computational procedures to
determine the centre manifold are weakly nonlinear analysis, multiple scales expansion
or the homological equation. In the past, these approaches have been exploited to study
mode interaction in thermally driven convective motions, e.g. the Rayleigh–Bénard (Varé
et al. 2020) and Langmuir circulation (Allen & Moroz 1997), in the fluid flow between
counter-rotating cylinders, e.g. the Taylor–Couette flow (Golubitsky & Langford 1988)
and its variants (Renardy et al. 1996), in magnetoconvection (Rucklidge et al. 2000), in
the flow past a rotating cylinder (Sierra et al. 2020b) and in swirling jets (Meliga, Gallaire
& Chomaz 2012).

In light of the aforementioned studies, for the parameters considered herein, one can
expect that a linear stability analysis (LSA) discriminates at least three unsteady unstable
fundamental modes: two with azimuthal wavenumber m = −1 and a third one with
m = −2; meaning that the organizing centre is a triple-Hopf bifurcation with SO(2)
symmetry. Despite the likely existence of three unstable modes, because the dimension
of the parameter space is two, the triple-Hopf bifurcation is not expected to occur.
Therefore, the approach followed herein for the study of the triple-Hopf bifurcation is
based on the extension of the normal form obtained at codimension-two points to the
codimension-three manifold. In practical terms, we determine a fifth-order truncation in
terms of the expansion parameter of the normal form at codimension-two points, followed
by a linear (respectively quadratic for linear coefficients) extension of normal form
coefficients to a specific point in the parameter space. Such an approach is detailed in § 4
and it is similar to the centre-unstable manifold reduction, cf. Armbruster, Guckenheimer
& Holmes (1989), Podvigina (2006a), Podvigina (2006b) and Meliga, Chomaz & Sipp
(2009a). In any case, once the normal form is determined, one can analyse the bifurcation
scenario, which displays a rich variety of patterns, among which one can expect: rotating
waves, quasiperiodic mixed modes or chaotic solutions displaying multiple frequency
components, along with bi-stable states stemming from the coexistence of two stable
rotating waves, mixed modes and rotating waves, diverse mixed modes or mixed modes
and chaotic attractor.

Some of these transition features and bi-stable dynamics had been confirmed via
time-stepping numerical simulations undertaken by Lorite-Díez & Jiménez-González
(2020) and Pier (2013) who reported a rich variety of spatio-temporal patterns. However,
they did not perform an exhaustive analysis of the nature of the bifurcations between
the distinct regimes. Therefore, the objective of the present research is twofold. The first
objective is to undertake a global stability analysis to determine the connection between
the observed patterns by Lorite-Díez & Jiménez-González (2020) and the linear stability
of helical modes. The identification of these fundamental modes allows an identification
of the underlying physical mechanisms responsible for the instabilities and the receptivity
of the flow to forcing or control possibilities. Secondly, the analysis of the normal form
associated with the organizing centre serves to provide a complete phase portrait of the
flow attractors before the emergence of temporal chaos and to unravel the transition
towards chaotic spatio-temporal dynamics observed by Lorite-Díez & Jiménez-González
(2020) and Pier (2013).

The outline of the manuscript is as follows. First, the flow configuration and the
numerical approach are presented in § 2. Second, we undergo a LSA in § 3, which identifies
the most unstable global modes, their underlying physical mechanisms and sensitivity
to forcing. Third, we introduce the methodology for the normal form reduction and we
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Figure 1. Sketch of the problem and geometric configuration.

illustrate it with a bifurcation diagram at constant rotation rate in § 4. Then, in § 5 we
pursue the study by comparing the normal form predictions with DNS results and we
provide a complete phase diagram of the stable attractors of the flow in the range Re ≤ 300
and Ω < 4. Finally, in § 6 we summarise the main findings and we argue of some future
applications of the study.

2. Methodology

2.1. Flow configuration – governing equations
The flow past an axisymmetric rotating body is controlled by two parameters: the Reynolds
number (Re) and the rotation rate (Ω) which is defined as the ratio of the tangential
velocity Ω∗D∗/2 on the sphere surface to the inflow velocity W∗∞. The fluid motion
inside the domain is governed by the incompressible Navier–Stokes equations written in
cylindrical coordinates (r, θ, z),

∂U
∂t

+ U · ∇U = −∇P + ∇ · τ(U), ∇ · U = 0, (2.1a)

with τ(U) = 1
Re
(∇U + ∇UT), Re = W∗∞D∗

ν∗ , Ω = Ω∗D∗

2W∗∞
, (2.1b)

x = x∗ 1
D∗ , t = t∗

W∗∞
D∗ , U = U∗ 1

W∗∞
P = P∗

(
1

W∗∞

)2

. (2.1c)

Dimensional quantities are identified with the upperscript symbol ∗. Reference scales
are specified in (2.1c). The dimensionless velocity vector U = (U,V,W) is composed of
the radial, azimuthal and axial components, P is the dimensionless reduced pressure and
the viscous stress tensor, τ(U). For representation purposes, it is sometimes necessary
to use the Cartesian coordinates (x, y, z), here z denotes the streamwise direction, y the
vertical crosswise direction and x the direction that forms a direct trihedral with z and y.
The incompressible Navier–Stokes equations (2.1) are complemented with the following
boundary conditions:

U = (0,Ω, 0) on Σb U = (0, 0, 1) on Σi. (2.2)

No-slip boundary condition is set on the rotating sphere and a uniform boundary
condition is set in the inlet, as shown in figure 1.
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In the sequel, Navier–Stokes equations (2.1) and the associated boundary conditions will
be written symbolically under the form

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q,Q)+ G(Q, η), (2.3)

where B is the projection matrix onto the velocity field with the flow state vector
Q = [U,P]T, and the parameter vector η = [Re−1,Ω]T. Such a form of the governing
equations takes into account a linear dependency on the state variable Q through L and a
quadratic dependency on parameters and the state variable through operators N(·, ·) and
G(·, ·), which are detailed in Appendix A.

2.2. Nomenclature
Let us introduce some general concepts that will be employed throughout the study. Steady
states, i.e. Q such that F (Q, η) = 0, periodic orbits, i.e. Q(t) = Q(t + T) for every t ≥ 0,
are the simplest invariants of (2.3). In general, an invariant set V of the phase space of
(2.3) is a set that is preserved under dynamics, i.e. for every initial solution Q(t0) ∈ V , we
have Q(t) ∈ V for every t ≥ 0. A Tn-quasiperiodic state, n > 1, n ∈ N∗, is an invariant of
the system (2.3) that can be decomposed as a finite sum of n incommensurate frequencies
ωn, i.e.

Q = Q0 +
n∑
	=1

(
Q̂	e

iω	t + c.c.
)
. (2.4)

Incommensurate frequencies are those that are linearly independent, i.e. for k	 ∈ Z, we
have

∑n
	=1 k	ω	 = 0 if and only if every k	 = 0. Here, we determine the incommensurate

frequencies as those corresponding to the fundamental modes (least stable eigenmodes)
identified by LSA.

A second important property is the attractiveness of an invariant set. We denote as basin
of attraction the set of initial conditions leading to long-time behaviour that approaches
the attractor. The celebrated manuscript of Newhouse, Ruelle & Takens (1978) states
that Tn-quasiperiodic states, with n ≥ 3, are unusual attractors, in the sense that every
Tn-quasiperiodic state can be perturbed by an arbitrarily small amount to a new vector
field with a chaotic attractor. In other words, for any Tn-quasiperiodic state of (2.3), one
may observe a chaotic Axiom A attractor by experimental or numerical means. Here, Axiom
A attractor denotes a class of dynamical systems where the non-wandering set is hyperbolic
and the attractor has a dense set of periodic orbits, more details about hyperbolicity may
be found, for instance, in the recent article by Ni (2019).

2.3. Direct numerical simulation details
The flow governed by (2.1) is solved by means of DNS, following a time-stepping approach
using the finite-volume library OpenFOAM�. The domain shown in figure 1 consists of
an upstream hemisphere of radius r∞ = 15D and a downstream tube extending z2 = 50D
downstream of the body.

Regarding boundary conditions at the outlet, Σo, we impose an outflow condition
that implements a Neumann condition for the velocity, n · ∇U = 0, where n is the
outward normal, and a Dirichlet condition for the pressure, P = 0. The latter may be
considered equivalent to setting a stress-free condition at the outlet for small values of
the viscosity (as highlighted by Tomboulides & Orszag 2000). Finally, at the outer radial
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boundary, Σw, we set a slip boundary condition, n · U = 0. Note that such domain size
and boundary conditions have been selected according to previous numerical works on
rotating axisymmetric bodies (see, e.g. Jiménez-González et al. 2013; Lorite-Díez &
Jiménez-González 2020). Additionally, second-order schemes have been employed for
spatial and time integration. Nevertheless, for the sake of conciseness, the reader is referred
to Appendix A in Lorite-Díez & Jiménez-González (2020) for detailed information about
the employed numerical schemes, convergence and validation studies. In the present
simulations ∼2.6 millions of elements mesh, denoted #2 in table 1 (Appendix A) therein,
is used.

The three-dimensional time-stepping simulations were computed in parallel. In
particular, the DNS are carried out, once converged, for T ∼ 500 convective units
for periodic regimes, and until T ∼ 1000 convective units for quasiperiodic and most
complex regimes. The employed time step is 
t = 0.003 for all simulations. In terms
of computational cost, running on 16 Intel Xeon E5-2665 processors, a simulation lasting
T = 1000 convective time units corresponds to approximately 10 days.

3. Linear stability analysis

3.1. Methodology
As a first step of the reduction procedure, we identify the base flow solution, which
is defined as the steady solution Qb of the (axisymmetric) Navier–Stokes equations,
namely the solution of F (Qb) = 0. We then characterize the dynamics of small-amplitude
perturbations around this base flow by expanding them over the basis of linear eigenmodes

Q = Qb + ε
∑
	

q(ε)(t, τ ) = Qb + ε
∑
	

(
z	(τ )q̂(z	)(r, z)ei(m	θ+ω	t) + c.c.

)
, ε 
 1.

(3.1)
The eigenpairs [iω	, q̂(z	)] are then determined as the solutions of the eigenvalue problem

J (ω	,m	)q̂(z	) =
(

iω	B − ∂F
∂q

∣∣∣∣
q=Qb,
η=0

)
q̂(z	), (3.2)

where (∂F/∂q|q=Qb,
η=0)q̂(z	)=Lm	 q̂(z	)+Nm	(Qb, q̂(z	))+Nm	(q̂(z	),Qb)+G(Qb, ηc),
with ηc = [Re−1

c ,Ωc]T. The subscript m	 indicates the azimuthal wavenumber used for
the evaluation of the linearized Navier–Stokes operator J (ω	,m	). Please note that here, the
term 
η = [Re−1

c − Re−1,Ωc −Ω]T denotes the departure from the critical condition
attained at [Re−1

c ,Ωc]T. In the following, we consider that eigenmodes q̂(z	)(r, z) have
been normalised in such a way that 〈q̂(z	), q̂(z	)〉B = 〈û(z	), û(z	)〉 = ∫

Ω
u(x)Tu(x) dx = 1.

3.1.1. Numerical methodology for stability tools
Results presented herein follow the same numerical approach adopted by Fabre et al.
(2018), Sierra, Fabre & Citro (2020a) and Sierra et al. (2020b). The calculation of
the base flow, the eigenvalue problem and the normal form expansion are implemented
in the open-source software FreeFem++. Parametric studies and generation of figures
are collected by StabFem drivers, an open-source project available at https://gitlab.com/
stabfem/StabFem. Results shown in §§ 3–5 have been computed with a numerical domain
(see figure 1) of size z2 = 50D, z1 = 20D and r∞ = 20D, in the streamwise and crosswise
directions, respectively. For steady-state, stability and normal form computations, we set
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Figure 2. Cross-section view at z = 3.5 of the three unstable modes. The streamwise component of the
vorticity vector �z is visualized by colours. Results are shown for (a) RW1 at point (ReA,ΩA) = (77, 2.24);
(b) RW2 at point (ReB,ΩB) = (188, 1.01); (c) RW3 at point (ReA,ΩA).

the stress-free boundary condition at the outlet, which is the natural boundary condition in
the variational formulation. Numerical convergence issues are discussed in Appendix D.
The resolution of the steady nonlinear Navier–Stokes equations is tackled by means of the
Newton method. While the generalized eigenvalue problem (3.2) is solved following the
Arnoldi method with spectral transformations. The normal form reduction procedure of § 4
only requires us to solve a set of linear systems, which is also carried out within StabFem.
On a standard laptop, every computation considered below can be attained within a few
hours.

3.2. Neutral curves of stability
In the presence of supercritical self-sustained instabilities, rotating waves are predominant.
These patterns prevail in axisymmetric flows, where the reflection symmetry regarding
the azimuthal angle is broken. Here, the reflection symmetry is broken because of the
rotation of the sphere, which induces a preferential direction of rotation. Consequently,
bifurcations that lead to standing waves or to a symmetry breaking steady state do not
occur generically. The existence of standing waves or a steady-state mode requires the
matching between the phase speed of the helical pattern and the rotation of the body,
which is another condition to be met. The global stability analysis of the flow past the
sphere confirms that only rotating waves are linearly unstable for the range of Reynolds
numbers Re < 300 and Ω < 4. The parametric linear stability study of the flow past the
rotating sphere shows the existence of three neutral curves, which are associated to the
three least stable modes identified by global stability analysis. These correspond to rotating
waves, named RW1, RW2 and RW3, which are depicted in figure 2. Linear stability results
(figure 3a) reveal that the axisymmetric steady state, referred in the following as a trivial
state, is stable in the white shaded region and unstable in the grey shaded region. The
neutral curve of stability displays two regions in the parameter space (Re,Ω) for which
the first primary bifurcations are rotating waves of low frequency where the wake past
the sphere displays a single helix (RW1), depicted in figure 2(a). In the second region, the
flow pattern of the wake displays a double helix (RW3) with a high frequency, depicted in
figure 2(c). The onset of instability of the third branch (RW2) displaying a flow pattern of
the wake with a single helix with a medium frequency, depicted in figure 2(b), turns out to
be linearly unstable forΩ ≤ 4. Each pair of neutral curves intersects once, leading to three
codimension-two points (A, B, C), identified in table 1. Another aspect of importance is the
evolution of frequencies of the instability. Frequencies at critical parameters are reported
in figure 3(b) as a function of Ω . The frequency evolution is divided into two regions, a
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Figure 3. Linear stability properties of the rotating sphere configuration. (a) Neutral curve of stability: the
onset of the primary instability is portrayed with a solid black line (—), whereas the continuation of the neutral
curves is depicted with dashed black lines (- - -). (b) Frequency evolution with respect to Ω of linear modes at
the critical Reynolds number (Rec(Ω)).

Name Re Ω Mode inter. θN γ

Static 212 0 RW1 4◦ 0.76
A 77 2.24 (RW1,RW3) (4.6◦, 8.0◦) (0.89, 0.98)
B 188 1.01 (RW2,RW3) (0.7◦, 2.3◦) (0.82, 0.80)
C 73 3.95 (RW1,RW2) (3.8◦, 9.9◦) (0.80, 0.68)

Table 1. Location in the parameter space (Re,Ω) and the pair of modes involved at the codimension-two
points. It also lists the main properties of the primary bifurcation of the flow past the static sphere. The last two
columns are related to non-normality effects and are defined in § 3.3.

first of rapid evolution for low rotation rates Ω < 1 and a second where the frequency of
the three modes hardly depends on the rotation rate.

The neutral curve of stability reveals that the static configuration (Ω = 0) exhibits
the largest critical Reynolds number. Then, the critical value of the Reynolds number
is hardly modified by weak rotating speeds, in the range Ω < 0.3. However, there is
a clear threshold around Ω ≈ 0.4 where the critical Reynolds number passes from
around Rec ≈ 200 to Rec ≈ 100 in a narrow intervalΩ ∈ [0.4, 1.2]. The critical Reynolds
number remains approximately constant up to the point A, the point which divides the
boundary of stability. Below the point A, that is, forΩ < ΩA, the steady-state flow transits
supercritically to a single helix rotating wave RW1; above the point A, i.e. Ω > ΩA, the
steady-state flow transits supercritically to the double helix rotating wave, RW3. Such a
point corresponds to a double-Hopf bifurcation between modes 1 and 3, and its analysis
is left to §§ 4 and 5. Other two double-Hopf bifurcation points exist, denoted B and C,
which characterize the interaction between modes 2 and 3, and 1 and 2, respectively. Yet,
at points B and C the trivial state is already unstable, thus, instabilities associated with
these points are not directly observed in experiments or numerical simulations. Instead,
these organizing centres play a role in the pattern formation of secondary instabilities,
which is left to §§ 4 and 5, where we interpret the subtle implications of these points in
dynamics. In addition, authors have looked for the presence of a primary bifurcation that
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leads to the RW2 state. For the studied configuration, there does not exist such a region in
the range 0 < Ω < 6.

3.3. Properties of the axisymmetric steady state
The analysis presented in this section studies the linear stability of the axisymmetric
steady-state solution in the range Re ≤ 250 andΩ ≤ 4. Typical axisymmetric steady-state
solutions (TS) at codimension-two points are portrayed in figure 4, which shows the
neutrally stable trivial state state at (ReA,ΩA) = (77, 2.24) and the two other unstable
trivial states at (ReB,ΩB) = (188, 1.01) and (ReC,ΩC) = (73, 3.95), respectively. The
flow visualization illustrates the recirculation region behind the sphere, delimited by the
separatrix, which divides the recirculation bubble and the unperturbed flow field. Such a
line, depicted with a thick solid line in figure 4 connects the separation point on the sphere
surface and the stagnation point on the r = 0 axis. The development of the recirculation
bubble can be measured using the maximum extent of the region

Lr = max
{

z − D
2

| W(r = 0, z) ≤ 0
}
, (3.3)

where D is the diameter of the sphere. Figure 5(a) displays the evolution of the length
of the recirculation bubble by varying Ω and Re. The length of the bubble increases
monotonically with the angular velocity Ω of the sphere as well as the largest negative
values of the streamwise velocity behind the sphere, from around 40 % for Ω = 0 to
around 60 % for the largest values ofΩ explored. A similar trend was identified by Kim &
Choi (2002) at Re=100; however, we should consider that the trends observed in figure 5(a)
are only valid before bifurcation. After that, Lr does not have to increase withΩ , as seen by
Lorite-Díez & Jiménez-González (2020) and Kim & Choi (2002). The results at the onset
of stability of the steady state are synthesized in figure 5(b), with a domain of existence of
a stable steady state (white shaded) and another of an unstable steady state (grey shaded).
In § 3.4 we identify the core of the RW1 and RW3 instabilities, which are found within the
recirculation region. In particular, a passive control that shortens the recirculation region is
an efficient technique to stabilize the flow. Therefore, it is not surprising that the neutrally
stable flow is characterized by a shorter recirculation region with respect to the unstable
steady state.

Finally, we briefly discuss the influence of non-normality mechanisms, lift-up and
convective non-normality as they are partly related to recirculation region length. The main
results are included in table 1, where we can see a lower influence of non-normality effects
through the obtained values for γ and θN , with respect to the static sphere configuration.
The estimator θN measures the importance of non-normality, the lower θN the more
important non-normal effects are. On the other hand, the estimator γ characterizes the
relative contribution between the lift-up and the convective non-normality mechanisms
to the total non-normality effects. A γ value close to 0 indicates the dominance of the
lift-up effect. The largest non-normal effects have been measured at point B (lowest values
of θN), which corresponds to the point with the largest critical Reynolds number among
the codimension-two points. The values of θN obtained at point B are associated with a
larger non-normality than the stationary mode (the case of RW1 with O(2) symmetry) and
RW2 at the threshold for (Ω = 0,Re = 281), which was found by Meliga, Chomaz & Sipp
(2009b) to be 1◦. Thus, one may conclude that the rotation of the sphere increases the effect
of non-normality, however, it induces an earlier transition with regard to the Reynolds
number, which turns out to globally reduce the effect of non-normality. This previous
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Figure 4. Spatial distribution of the streamwise velocity (contours) at the steady state along with flow
streamlines (solid lines) and recirculation region separatrix (thick solid lines). Results are shown for (a)
(Re = 212,Ω = 0) in the upper half and (ReA,ΩA) in the lower half; (b) (ReB,ΩB) in the upper half and
(ReC,ΩC) in the bottom half. Points A, B and C are defined in table 1.
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Figure 5. Evolution of the recirculating length Lr in the plane (Re,Ω). The unstable region is the grey-shaded
area, delimited by a thick line. (a) The recirculating length of the stable solution is painted with solid lines,
dashed lines are employed for the unstable steady state. (b) Length of the recirculating region at the onset of
stability (Rec(Ω)).

statement can be also indirectly verified from the satisfactory comparison between normal
form estimations and DNS results in § 5.1. Furthermore, the analysis of the direct global
mode shows a dominant effect of the convective non-normality, which is responsible at
most of around 90 % (mode RW1) and 98 % (mode RW3) at point A and around 80 % for the
remainder modes at points B and C. In comparison, the stationary and oscillating modes
of static configuration (Ω = 0) displayed γ = 0.76 and γ = 0.94. More details about the
non-normality study such as the definition of θN and γ can be found in Appendix B.

3.4. Identification of the physical mechanisms from a control perspective
In this section we analyse the physical mechanisms leading to the RW1 and RW3 states at
the point A. However, we do not discuss the RW2 state as it will be seen in § 5, this state is
not expected to be observed. First, we consider what is the effect of a steady axisymmetric
forcing term, which represents the presence of a small obstacle, wall suction/blowing (as
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the control applied in Niazmand & Renksizbulut 2005), etc. In this case the governing
equations of the resulting flow are the same as (2.3) with the addition of a forcing term
H0 ≡ Ĥ0,

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q,Q)+ G(Q, η)+ Ĥ0. (3.4)

This case has been treated in the past by Marquet, Sipp & Jacquin (2008) in the case of
the flow past a circular cylinder and by Sipp (2012) in the case of the open cavity flow. The
introduction of the forcing induces a modification of the eigenvalue iω	 �→ iω	 +
iω0

	 ,
where 
iω0

	 = 〈∇H0 iω	, Ĥ〉. Therefore, the control that induces the largest deviation of
the growth rate (respectively frequency) of the mode 	 is in the direction of ∇H0 iω	, which
is defined as

∇H0 iω	 = BTJ (0,0)B∇Ub iω	 for 	 = 1, 2, 3. (3.5)

Here ∇Ub iω	 is the sensitivity of the eigenvalue of the mode 	 (	 = 1, 2, 3) with respect
to variations in the axisymmetric steady state, cf. (Marquet et al. 2008). The sensitivity
of the 	th eigenvalue ∇H0λ	 to the introduction of a steady axisymmetric forcing is
represented in figure 6 for the two modes present in the codimension point A. The
low-frequency mode (RW1) is most sensitive to a steady axisymmetric forcing at the
leftmost end of the recirculation region (see figure 6a,b). This forcing corresponds to one
that accelerates the streamwise motion at the end of the recirculation region, thus reducing
the counterclockwise motion of the recirculation zone, which would induce an effective
decrease of the growth rate (respectively frequency). This is in accordance with the fact
that the recirculation motion will be weaker, and the convective motion will be slower (note
this is also the case for the sensitivity of the frequency RW3 to steady forcing figure 6d).
On the other hand, the high-frequency mode is most sensitive in a near wake region behind
the sphere, close to the recirculation bubble (see figure 6c,d). In this case, a forcing that
decelerates the clockwise motion within the recirculation region would cause the largest
stabilization effect.

Second, let us consider the receptivity of the flow to the presence of localized feedbacks,
as in Giannetti & Luchini (2007). The harmonic forcing H ≡ H (z	) exp(i(ω	t + m	θ)) is
defined as

H (z	) = δ(x − x0)C(z	) · û(z	), 	 = 1, 2, 3, (3.6)

where C(z	) is a generic feedback matrix and δ(x − x0) is the Dirac distribution centred at
the point x0 = (z0, r0, θ0). Thus, the variation of the eigenvalue due to the introduction of
the localized feedback is


uiω	 = 〈q̂†
(z	)
, δH (z	)〉 = C(z	) : S(	)s (x0), 	 ∈ I (3.7)

The rank two tensor of (3.7) is commonly designated as the structural sensitivity tensor,
here denoted as S(	)s ,

S(	)s ≡ û†
(z	)

⊗ ¯̂u(z	), 	 = 1, 2, 3. (3.8)

The spectral norm of the structural sensitivity tensor for low- and high-frequency modes
is depicted in figure 7. Similar to the receptivity to axisymmetric steady forcing, the
recirculation bubble (RW3) and the leftmost end of the recirculation region (RW1) are
the most sensitive regions of the flow.
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Figure 6. Steady forcing at codimension point A. Sensitivity of amplification rate to the steady axisymmetric
forcing ∇H0λ	 for (a) the low-frequency mode, also known as RW1, and (c) the high-frequency mode,
also known as RW3. Sensitivity of the frequency to the steady axisymmetric forcing ∇H0λ	 for (b) the
low-frequency mode, RW1, and (d) the high-frequency mode, RW3. The magnitude of the growth rate and
frequency sensitivities is pictured by colours and their orientation by arrows.

4. Normal form reduction

In this study bifurcations involving a steady-state mode uniquely exist for the static
configuration (Ω = 0). For such a reason, we will focus our attention on the
codimension-two double-Hopf (Chossat, Golubitsky & Lee Keyfitz 1986) and the
codimension-three triple-Hopf bifurcations, and we will characterize solutions based on
the patterns allowed by these bifurcations. In our problem, the competition between two or
more of the several rotating waves occurs in the neighbourhood of the primary bifurcation.
For such a reason, the three double-Hopf points (depicted in figure 3a) are of special
interest.

These points act as organizing centres of dynamics, and they provide some partial
answers about the transition scenario. For instance, around the point A there are regions
of bi-stability where either RW1 and RW3 coexist. Nevertheless, these codimension-two
points do not account for a third interaction. In each of the double-Hopf interactions,
the competition with one of the leading modes is omitted. The full instability scenario
is accounted by considering the unfolding of the triple-Hopf bifurcation. Yet, such an
instability does not show up generally with only two parameters. And the search for a
third parameter where such a bifurcation generically occurs is not a trivial task. Not to
mention that even in the case one finds such a parameter, the flow configuration may be
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Figure 7. Spectral norm of the structural sensitivity tensor. (a) Low-frequency mode, (b) high-frequency
mode.

considerably distinct from the one initially conceived. Therefore, in the current research,
we adopt a similar strategy as the one conducted by Meliga et al. (2009a) on the wake flow
past a disk. However, rather than performing a variation of the centre-unstable manifold
reduction, which is an invariant procedure but without the attractiveness property of
the centre manifold (Podvigina 2006a,b), we prefer to adopt a higher-order (up to fifth
order) multiple scales expansion at each codimension-two point, and then we extend the
coefficients to other locations in the parameter space. The chosen approach differentiates
from other previous techniques because it allows an exact identification of the polynomial
coefficients of the normal form at codimension-two points, where one can employ the
Fredholm alternative to determine the normal form coefficients and remove the secular
terms of the expansion. Other centre-unstable techniques determine the coefficients of
the normal form at non-resonant conditions, which invalidates the use of the Fredholm
alternative if one is far from the onset of instability. On the other hand, our technique
does not provide an a priori knowledge of the error committed in the extension procedure
from a codimension-two point to another point in the parameter space. Thus, as with other
perturbative techniques, one needs to perform a cross-comparison with DNS in the region
of interest of the parameter space, which is performed in § 5.1.

In the following, we briefly outline the main constituents in the study of pattern
formation, a comprehensive explanation is left to Appendix A. Pattern formation is studied
herein in the framework of bifurcation theory. Near the onset of the bifurcation, dynamics
can be reduced to the centre manifold, whose algebraic expression is simplified via a series
of topologically equivalent transformations into the normal form. The reduction to the
normal form is carried out via a multiple scales expansion of the solution Q of (2.3).
The expansion considers a two-scale development of the original time t �→ t + ε2τ , here
ε is the order of magnitude of the flow disturbances, assumed small ε 
 1. In this study
we carry out a normal form reduction via a weakly nonlinear expansion, where the small
parameters are

ε2
Ω = (Ωc −Ω) ∼ ε2 and ε2

ν = (νc − ν) =
(

Re−1
c − Re−1

)
∼ ε2. (4.1a,b)

The technique decomposes time into a fast time scale t of the phase associated to the
self-sustained instabilities and a slow time scale related to the evolution of the amplitudes
zi(τ ), introduced in (4.3), for i = 1, 2, 3. The ansatz of the expansion is

Q(t, τ ) = Qb + εq(ε)(t, τ )+ ε2q(ε2)(t, τ )+ ε3q(ε3)(t, τ )+ ε4q(ε4)(t, τ )+ O(ε5). (4.2)
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In the following, we shall consider the normal form equation resulting from the interaction
of three rotating wave modes identified by LSA, that is,

q(ε)(t, τ ) = (z1(τ )q̂(z1)
(r, z) exp(i(m1θ + ω1t))+ c.c.

)
+ (z2(τ )q̂(z2)

(r, z) exp(i(m2θ + ω2t))+ c.c.
)

+ (z3(τ )q̂(z3)
(r, z) exp(i(m3θ + ω3t))+ c.c.

)
. (4.3)

Note that the expansion of the left-hand side of (2.3) up to fifth order is

εB
∂q(ε)
∂t

+ ε2B
∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+ B

∂q(ε)
∂τ

]
+ ε4B

∂q(ε4)

∂t
+ ε5

[
B
∂q(ε3)

∂τ

]
+ O(ε5),

(4.4)

and the right-hand side respectively is

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3) + ε4F (ε4) + ε5F (ε5) + O(ε6). (4.5)

Then, the problem truncated at order three is reduced to a low-dimensional system
governing the complex amplitudes zj(t),

ż1 = z1

[
λ1 + ν11|z1|2 + ν12|z2|2 + ν13|z3|2

]
,

ż2 = z2

[
λ2 + ν21|z1|2 + ν22|z2|2 + ν23|z3|2

]
,

ż3 = z3

[
λ3 + ν31|z1|2 + ν32|z2|2 + ν33|z3|2

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.6)

where νk	, λk ∈ C for k, 	 = 1, 2, 3. The real part of the linear terms, named λk,
correspond to the growth rate of the kth mode. Respectively, the imaginary part of λk is
associated to the frequency variation of the kth mode with respect to the frequency of the
neutral mode, i.e. with respect to the frequency ωk determined from LSA. The terms νk	
are the third-order self (k = 	) and cross-interaction (k /= 	) coefficients. The coefficients
of the normal form are estimated as

λ	 = ε2
νλ
(ε2
ν )

	 + ε2
Ωλ

(ε2
Ω)

	 + ε4
νλ
(ε4
ν )

	 + ε4
Ωλ

(ε4
Ω)

	 + ε2
Ωε

2
νλ
(ε2
νε

2
Ω)

	 ,

νk	 = ν
(0)
k	 + ε2

νν
(ε2
ν )

k	 + ε2
Ων

(ε2
Ω)

k	 ,

⎫⎬
⎭ (4.7)

where ν(0)k	 , ν
(ε2
ν )

k	 , ν
(ε2
Ω)

k	 , and the corresponding linear coefficients, are evaluated at the
intersection point between the Hopf curves associated to mode k and 	. For instance,
the coefficient ν(0)13 is evaluated at point A. The distinct coefficients of (4.7) used for the
evaluation of the coefficients of the normal form are listed in tables 4 and 5 (Appendix A).

4.1. Classification of solutions
In the following, the right-hand side of (4.6) is designated f (z) where z = (z1, z2, z3). The
reduced vector f is equivariant under the action of the group Γ ≡ SO(2)× T3, with the
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Name Representative Isotropy group (complex) Frequencies

TS (Trivial state) (0, 0, 0) SO(2)× T3 0
RW (Rotating wave) (ra, 0, 0) S(1, r, 0, 0)× T2 1
MM (Mixed mode) (ra, rb, 0) S(1, r, l, 0)× S1 2
IMM (Interacting mixed mode) (ra, rb, rc) 1 3

Table 2. Nomenclature and symmetry group of fixed-point solutions of the system (4.9).

following action representation:

θ · z ≡ (z1eilθ , z2eirθ , z3eisθ ),

(ψ1, ψ2, ψ3) · z ≡ (z1eiψ1, z2eiψ2, z3eiψ3).

}
(4.8)

Here l, r, s ∈ Z, θ ∈ [0, 2π) and ψi ∈ [0, 2π) for i = 1, 2, 3; (ψ1, ψ2, ψ3) and θ are the
representations in C3 of the actions of the group Γ , which correspond to the time shift
and rotational invariance, respectively. The substitution of the polar decomposition of z =
reiΦ , with r = (r1, r2, r3) and Φ = (φ1, φ2, φ3), into (4.6) yields the following decoupled
phase-amplitude system:

ṙ	 = r	
[
ΛR
	 + VR

	kr2
k

]
, k, 	 = 1, 2, 3,

φ̇	 = ΛI
	 + V I

	kr2
k , k, 	 = 1, 2, 3.

⎫⎬
⎭ (4.9)

Here Λ = ΛR +ΛI ≡ (λ1, λ2, λ3)
T and the matrix V = VR + iV I is

V ≡
⎛
⎝ν11 ν12 ν13
ν21 ν22 ν23
ν31 ν32 ν33

⎞
⎠ . (4.10)

To ease the presentation of the fixed-point solutions of (4.9), let us introduce the inverse
of the linear operator V , which can be written as

V−1 = 1
detV

⎛
⎝detV11 detV21 detV31

detV12 detV22 detV32
detV13 detV23 detV33

⎞
⎠ , (4.11)

where detVk	 denotes the minor of the matrix V , obtained by eliminating the line k and
the column 	.

In the following, the notation ṙ = f R(r) will be adopted to denote the amplitude
equation of the nonlinear system (4.9). The remainder of this subsection will be devoted
to the study of the three fixed-point solutions of (4.9).

The classification of the solutions of the generic triple-Hopf bifurcation interaction with
SO(2) symmetry is based on maximal isotropy subgroups of the group Γ . This technique
predicts the existence up to tertiary bifurcations of fixed points of the complex normal form
(4.6). These isotropy subgroups correspond to the symmetries of the solutions within the
fixed-point subspace of each isotropy group (cf. table 2).
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TS

RW2RW1 RW3

M M13M M12 M M23

IM M123

Figure 8. Isotropy lattice of the triple-Hopf bifurcation.

In our discussion, we identify the subgroups of SO(2)× T3. Each element in the group
has the form

(θ, ψ1, ψ2, ψ3) ∈ SO(2)× T
3. (4.12)

Using this notation, the subgroup S(k, l, r, s) of SO(2)× T3 is defined as

S(k, l, r, s) = {(kθ, lθ, rθ, sθ)|θ ∈ S1}. (4.13)

The conjugacy classes of isotropy subgroups of SO(2)× T3 are documented with the
representative of the fixed-point subspace in polar coordinates and the number of
incommensurate frequencies in table 2. Additionally, a graphical representation of the
isotropy lattice is displayed in figure 8 in terms of the class representative of the fixed-point
subspace.

Rotating waves correspond to the simplest non-trivial fixed point of (4.9), which in the
original set of equations is a periodic solution. They arise as the result of a supercritical
Hopf bifurcation of the steady state (named trivial state in table 2) and they may eventually
bifurcate into mixed modes; the eigenvalues of rotating waves may be found in the
first row of table 3. Mixed modes, defined in table 3, are the result of the interaction
between two rotating waves. A mixed mode has a representative in the normal form with
two non-zero amplitude terms, thus, they correspond to a T2-quasiperiodic state in the
original system of equations. These states may experience two kinds of bifurcations. They
may lose stability in the transversal direction or within their own subspace, these two
conditions are listed in table 3. Eventually, a bifurcation in the transversal direction of
a mixed mode may be associated with the appearance of an interacting mixed mode
(IMM123) attractor. An interacting mixed mode corresponds to a T3-quasiperiodic state
in the original system of equations, and it is represented by three non-zero amplitude
terms. However, T3-quasiperiodic states are hardly observed in numerical simulations of
dissipative systems, as it is the case of Navier–Stokes equations (2.1), instead a chaotic
attractor is usually detected. A more exhaustive analysis of the unfolding of the triple-Hopf
bifurcation is left to Appendix C.

4.2. Illustration of the procedure
Let us detail the procedure followed to compute the bifurcation scenario, a procedure that
is also followed in § 5 for the determination of the parametric portrait. For the sake of
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Name of solutions Definition Eigenvalues

RWi (for i = 1, 2, 3) r(RW)
i =

√
−λ

R
i

νR
ii

−λR
i , λR

j − νR
ji
λR

i

νR
ii
, for j /= i

MMij, (i, j = 1, 2, 3) r
(MMij)

i =
√
λR

j ν
R
ij − λR

i ν
R
jj

det(Vkk)

νR
ii r2

i + νR
jj r2

j

2
±
√
(νR

ii r2
i − νR

jj r2
j )

2/4 + νR
ij ν

R
ji r2

i r2
j

(j /= i, k /= i, k /= j) r
(MMij)

j =
√
λR

i ν
R
ji − λR

j ν
R
ii

det(Vkk)

1
det(VR

kk)
[λR

k det(VR
kk)+ λR

i det(VR
ik)+ λR

j det(VR
jk)]

IMM123 (r2
1, r2

2, r2
3)

T = −(VR)−1ΛR Eigs of D f R

Table 3. Defining equations and eigenvalues of the solutions of the polar third-order normal form (4.9).

simplicity, we first discuss the bifurcation diagram for a constant rotation rate Ω = 1.75
in terms of the amplitudes (r1, r2, r3). We would like to remind the reader that the
amplitudes (r1, r2, r3) are representative of the kinetic energy of the velocity fluctuations,
based on the normalization choice of § 3.1. First, we need to determine the coefficients
of the normal form, listed in tables 4 and 5, following the procedure of Appendix A.
Then, one may evaluate the linear and cubic coefficients of the normal form at Ω = 1.75
for a variable Reynolds number from the evaluation of (4.7). Please note that, for the
evaluation of cross-diagonal cubic coefficients, the expansion parameter ε2

Ω = Ωc −Ω

depends on the location of the critical rotation rate Ωc, that is, to evaluate ν13 one
evaluates ε2

Ω,A = ΩA −Ω whereas to evaluate ν23 one evaluates ε2
Ω,B = ΩB −Ω . The

diagonal cubic coefficients may be evaluated directly at the bifurcation point for every
rotation rate Ω as a function of ε2

ν or by considering the cubic coefficient of the nearest
codimension-two point. In our procedure, we found good agreement with time-stepping
simulations in the range 1 ≤ Ω ≤ 3 if we consider ν11 = νA

11, ν22 = νB
22 and ν33 = νB

33; the
consideration of νA

33 induces a small deviation in the transition from MM23 to IMM123 of
few units of the Reynolds number. The corresponding coefficients for Ω = 1.75 are listed
in table 6 (Appendix A). Please note that the procedure illustrated herein corresponds to
a method to determine the coefficients of the normal form; nonetheless, these coefficients
can be estimated from numerical simulations as in Fabre et al. (2008) or following
a data-driven approach, cf. Callaham, Brunton & Loiseau (2022), Loiseau & Brunton
(2018) and Loiseau, Noack & Brunton (2018). Bifurcation events are designated by their
corresponding value of the Reynolds number Restateb

statea , where statea stands for the simplest
state that exists before the bifurcation and stateb stands for the resulting state after the
bifurcation. In addition, the notation Reσk,s

statea indicates a bifurcation of the statea where
the eigenvalue σk (k = 1, 2, 3) has changed sign, s indicates stabilization and u indicates
the change from stable to unstable of the referring eigenvalue/eigenmode pair. In the
following, there is only a bifurcation of this kind, the one associated to the mixed mode
MM12 that is stabilized/destabilized because of a change of sign of the eigenvalue in the
transversal direction (r3). Thus, we simplify the notation to Res

statea
or Reu

statea
.

Figure 9 displays the bifurcation diagram, with Reynolds number as the control
parameter for Ω = 1.75. There exist three primary bifurcations, i.e. bifurcations from the
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Figure 9. (a) Transition scenario at Ω = 1.75. Attractors are depicted with solid lines, whereas unstable
invariant states are represented with dashed lines.(b) Schematic representation of phase portraits. (i) Two
stable rotating waves separated by a mixed-mode solution. (ii) Two stable mixed modes. (iii) An interacting
mixed-mode attractor, the chaotic attractor that shadows the IMM123 is sketched in a lighter blue colour.

axisymmetric steady state, located at ReRW1
TS , ReRW2

TS and ReRW3
TS , respectively. However, the

RW2 branch remains unstable all along the analysed interval. The first transition to occur
is a supercritical Hopf bifurcation leading to the RW1 solution, which is then followed by
another supercritical Hopf bifurcation leading to RW3. For the range of Reynolds numbers
ReRW1 < Re < ReMM13

RW3
, there exists a single stable attractor, which corresponds to the

limit cycle associated with the solution RW1. At ReMM13
RW3

the RW3 branch experiences a
Neimark–Sacker bifurcation that results in the appearance of the mixed-mode solution
MM13. In the interval ReMM13

RW3
< Re < ReMM13

RW1
both primary solutions (RW1 and RW3) are

stable under any arbitrary perturbation and in addition they are connected by the unstable
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mixed mode MM13, which is located on the separatrix of the basin of attraction of the
two primary solutions, the phase portrait of this scenario is sketched in figure 9(b i).
Eventually, the solution branch MM13 terminates at Re = ReMM13

RW1
, which makes RW3 the

single attractor of the system for the interval ReMM13
RW1

< Re < ReMM23
RW3

. The RW3 branch
eventually bifurcates into the mixed-mode branch MM23, which is a stable attractor
within the interval ReMM23

RW3
< Re < ReIMM123

MM23
. The other primary branch, the unstable RW1,

undergoes another Neimark–Sacker bifurcation at ReMM12
RW1

which results in the existence
of the MM12 branch, yet unstable for perturbations in the transversal direction of the
mixed mode (in the r3 direction). The MM12 mixed-mode branch appears to be stable
only within a small interval Res

MM12
< Re < Reu

MM12
, where two bifurcations, which are

associated to an instability in the transversal direction r3, occur at the two limit values.
We have employed s and u to denote the stable or unstable nature of the MM12 regime.
Thus, for Res

MM12
< Re < Reu

MM12
, there is a second region with multiple stable attractors,

which is schematically displayed in figure 9(b ii). The last bifurcation accounted by the
normal form is the destabilization of the MM23 branch at Re = ReIMM123

MM23
that leads to

the appearance of the IMM123 branch, whose phase portrait is sketched in figure 9(b iii).
Please note that despite the fact that IMM123 is a fixed-point solution of the normal form,
the Newhouse–Takens–Ruelle theorem indicates that the original system of equations may
exhibit a chaotic attractors shadowing the IMM123 solution.

5. Bifurcation scenario

5.1. Comparison with DNS
In this section we assess the validity of the normal form to characterize the bifurcation
scenario, as well as its capability to predict accurately the frequencies and force
coefficients of the flow. The estimations of the normal form are compared with DNS
results, which are performed at constant rotation rate Ω = 1.75, the scenario analysed
in § 4.2. As a first guess, we show the accurate prediction of the fundamental frequencies
of each of the invariant states from normal form analysis in figure 10(a) in comparison
with DNS results (markers), which will be discussed below.

Direct numerical simulations have been carried out to confirm the existence of the
bi-stability of full governing equations (2.1) at Re = 110. In particular, two families of
time-stepping simulations have been performed with two distinct initial conditions, in such
a way that, after a transient period, each of them converged towards different time-periodic
solutions. On the one hand, we have used a static, axisymmetric base flow initially obtained
at Re = 70,Ω = 0 which is able to develop the RW1 state (family I, grey markers). On the
other hand, we have used the solution obtained by Lorite-Díez & Jiménez-González (2020)
at Re = 250,Ω = 2.2 as initial seed to find the RW3 state (family II, blue markers), which
in turn confirms the existence of multiple stable attractors at Re = 110.

To determine the observed regimes, we have computed the frequency components
corresponding to StRW1 and StRW3 , displayed in figure 10(b,c), using fast Fourier transform
(FFT) spectra of pointwise streamwise and radial velocities in the near wake. The spectra
are calculated using the oscillatory part of the velocity-time evolution, i.e. U′ = U − Ū
for the radial velocity component, where ·̄ stands for the temporal averaging operator. The
three-dimensional topology of the two rotating wave patterns are displayed by means of
iso-surfaces of Q quantity in figure 11, where single and double helices topologies are
shown.
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Figure 10. Frequency characterization of the flow at Ω = 1.75. (a) Frequency evolution estimated from the
normal form (continuous lines), where attractors are represented with continuous lines, whereas unstable
invariant solutions are depicted with dashed lines. The markers of figure (a) denote the resulting pattern
obtained from a time-stepping simulation; axisymmetric steady state ◦, RW1 �, RW3 �, MM12 �, MM23 ♦,
IMM123 �, the family of initial conditions is visualized by colours (family I: grey, family II: blue). Figures (b–g)
display the FFT fluctuating velocity spectra for the different regimes obtained by means of DNS. Two velocity
components: W ′ (red solid line), U′ (black solid line) and locations (0, 0, 3.5) and (0, 0.5, 3.5), respectively, are
selected to characterize all the frequencies in the wake. Unstable mode frequencies are included: low frequency
(light red solid line), medium frequency (light green dashed line) and high frequency (light blue dotted line).
Results are shown for (b) Re = 110, (c) Re = 110, (d) Re = 150, (e) Re = 150, ( f ) Re = 181, (g) Re = 210.

x z

y 0

0 0 5 10 15 20

2

2

–2

–2
x z

0

0 0 5 10 15 20

2

2

–2

–2

(a) (b)

Figure 11. Three-dimensional structures of RW1 (a) and RW3 (b) at Re = 110 and Ω = 1.75. We have used
isosurfaces of Q-criterion, Q = 0.001, coloured by streamwise vorticity, �z ∈ [−1, 1] (blue to red) to depict
the flow structure.
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Figure 12. Three-dimensional structure of MM12 (a), MM23 (b) and IMM123 (c) at Re = 150 (a,b) and Re =
210 (c) and Ω = 1.75. We have used isosurfaces of Q-criterion, Q = 0.001, coloured by streamwise vorticity,
�z ∈ [−1, 1] (blue to red) to depict the flow structure.

Similarly, the existence of two stable mixed-mode attractors (MM12 and MM23) is
confirmed at Re = 150. Two time-stepping simulations of the full governing equations
at Re = 150 were performed, using RW1 and RW3 solutions as initial seeds, the resulting
frequency spectra of these patterns are displayed in figure 10(d,e), where the different
frequencies associated with MM12 and MM23 are identified. In particular, we can see that
the appearance of the medium-frequency component originates quasiperiodic regimes.
The mixed mode MM12 has been detected only in a small interval of Reynolds numbers,
which is faithfully captured by the normal form; however, the value of Res

MM12
≈ 154

slightly differs from the results of the DNS, which show a stable MM12 for Re = 150. The
corresponding patterns are displayed in figure 12(a,b).

The T3-quasiperiodic state IMM123 has been detected with DNS for Reynolds numbers
Re ≈ 181. Such a state seems to be the single stable attractor in the analysed range 181 <
Re < 210. A series of DNS were carried out with two families of initial conditions: the
mixed modes MM12 and MM23, both obtained at lower Reynolds numbers. Eventually,
every DNS converged to the IMM123 state, which seems to confirm the claim that it is the
single stable attractor. Their associated spectra is depicted in figure 10( f,g) and its complex
topology can be seen in figure 12(c). The identification of the three main frequencies
(low, medium and high) in the spectra, figure 10( f ), along with the multiple nonlinear
interactions between them is possible for Reynolds number values near the bifurcation
value ReIMM123

MM23
� 181. However, it rapidly departs from the T3-quasiperiodic state towards

a more irregular state (Re = 210) with a nearly continuous velocity spectrum, depicted in
figure 10(g).

Globally, the good agreement between normal form analysis and DNS frequencies
shows the predictive capability of the normal form within the range of Reynolds numbers
studied (see figure 10a).

A further investigation of the dynamics of this attractor has been carried out by means
of the 0 − 1 test. Such a test was introduced by Gottwald & Melbourne (2004, 2009)
to distinguish between regular and chaotic dynamics. More precisely, it corresponds to a
dichotomy test where an estimate K, associated to an asymptotic growth of the dynamics,
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Figure 13. Nonlinear patterns identified through HODMD analysis. The patterns are depicted using
streamwise vorticity contours, �z. Results are shown for (a) MM12, (b) MM23 and (c) IMM123 regimes. Tags
values inside the contours refer to the corresponding frequency of each mode, Sti.

takes discrete values [0, 1] which are associated with non-chaotic (0) and chaotic (1).
Further details are given in Appendix F. The results corresponding to the application
of the test to the local radial velocity U′(0, 0.5, 3.5), obtained for the two families of
computations, indicate a rapid departure towards chaotic dynamics, displayed in the
Appendix (figure 16). These results confirm that the transition scenario is eventually ended
by the Newhouse–Takens–Ruelle route to chaos.

Furthermore, DNS results can be used to illustrate the spatial pattern associated with
each fundamental frequency (low, medium, high). To that aim, a high-order dynamic
mode decomposition (HODMD) technique (see Vega & Le Clainche 2020, and references
therein) has been applied to instantaneous fields of streamwise vorticity �z located at
z = 2.5 to isolate the spatial distributions of the main frequency components. More
details about the HODMD technique and its application to present data can be found
in Appendix E. In particular, the application of the technique to flow patterns MM12,
MM23 and IMM123 allowed the spatial characterization of the fundamental frequencies
and their interactions. Apart from these frequencies, the methodology also provides
the approximate contribution of each fundamental mode in the nonlinear state. The
spatial patterns identified by HODMD are depicted using contours of spanwise vorticity
without normalization. Thus, for the MM12 state, the HODMD decomposition identifies
four energetic modal contributions, corresponding to frequencies St = 0, 0.103, 0.174 and
0.072, which are depicted in figure 13(a). The use of instantaneous snapshots of�z allows
identifying mean flow (St = 0) given by the constant streamwise rotation. Likewise, the
low-frequency component (St = 0.103) displays a dipole m = −1 topology. Similarly, the
medium-frequency component (St = 0.174), also features a m = −1 structure, although
their topology resembles the Yin-Yang mode (Auguste, Fabre & Magnaudet 2010).
Finally, an axisymmetric m = 0 topology is identified at St = 0.072, as the product of
the interaction between low-frequency (LF) and medium-frequency (MF) modes, Stm0 �
StMF − StLF. Such a mode is specially energetic close to the longitudinal axis and even
dominant in some locations. In Lorite-Díez & Jiménez-González (2020) the authors
identified such a mode as a fundamental frequency of the flow, named fb therein. However,
given the results from linear stability and normal form analysis, we have now identified
this mode as a subproduct.

The same analysis for the MM23 regime allows the identification of three main frequency
components, depicted in figure 13(b). Apart from the mean flow (St = 0), the flow
decomposition pinpoints a mode with high frequency (HF) StHF = 0.304, that displays
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Figure 14. Evolution of the time-averaged forces with respect to Reynolds number for a constant rotation rate
Ω = 1.75. The force coefficients determined from the normal form analysis are represented by continuous
lines. The force coefficients determined from DNS are depicted with markers. Same legend as in figure 10.

a m = −2 structure. In addition, the Yin-Yang mode is also retrieved but now with a
frequency, StMF = 0.238. Note that, the amplitude associated with this medium-frequency
component is very small. The weak energy associated with such a medium-frequency
mode in the MM23 regime is also observable in the corresponding spectra in figure 10(e).

Furthermore, the HODMD analysis of the complex regime IMM123, present at Re = 210
and Ω = 1.75, is depicted in figure 13(c). The decomposition identifies the axisymmetric
mean flow, the three fundamental frequencies and many interactions between them,
although only five energetic components have been selected for depiction. For instance, the
low-frequency and medium-frequency modes display m = −1 symmetries and respective
frequencies StLF = 0.095 and StMF = 0.231, which are similar to those corresponding
to the MM12 and MM23 regimes. Similarly, the frequency value of the high-frequency
mode (m = −2) remains nearly constant with respect to previous regimes, StHF = 0.299,
indicating that the dependence of frequencies with Re is small (as in figure 3b). Among
the main subproducts, the axisymmetric pattern (m = 0) produced by the interaction
of fundamental frequencies Stm0 � StLF + StHF − StMF = 0.163 stands out. It should
be noted that there is a small mismatch between the identified peaks in FFT and the
frequencies obtained by HODMD that is produced by the different sampling period and
the corresponding recording frequency during the simulation.

To complement the previous analysis, we next focus on the effect of the different flow
states, shown in figure 11 and figure 12, on the sphere’s aerodynamic forces. Thus, we
present in figure 14(a) the evolution with respect to Reynolds number at Ω = 1.75 of the
time-averaged drag coefficient, CD = Cz, and on figure 14(b) the total transverse force

coefficient CL =
√

C2
x + C2

y for normal form analysis and DNS.
The comparison between force coefficients obtained by means of normal form and DNS

approaches is indeed fairly satisfactory. The method captures the main trends in the forces
and, for most of the states, the prediction is reasonably similar, as it was with the different
fundamental frequencies. More precisely, for simpler regimes, such as rotating waves, the
normal form analysis and DNS provide the same results. At Re = 150, for mixed modes,
both methods display a small discrepancy (below five percent). This seems to be related
to a small nonlinear contribution of the medium-frequency mode identified by the DNS,
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Triple-Hopf bifurcation in the flow past a rotating sphere

as it can be seen in the corresponding FFT spectra (see figure 10d,e). That said, the
general trend of the mean drag CD displays a general reduction with Re, which may be
partly due to a smaller viscous drag contribution. Besides, the pressure drag component
is likely to decrease as well, since Lr is shown to increase with Re (see figure 5b) for a
given rotation rate, Ω . In particular, as discussed by Roshko (1993) for three-dimensional
bluff body wakes, an increase of the recirculating length leads to a decrease in the drag
values on account of a pressure recovery associated to changes in the curvature of the
separatrix line. Additionally, major changes in the trends are reported between different
flow regimes, as expected from strong modifications in the near wake topology and flow
separation (Lorite-Díez & Jiménez-González 2020).

Similarly, the agreement is also good for the mean total transverse coefficient, CL,
although it displays small deviations for states RW1 and MM23 (see figure 14b). The
value of CL is strongly affected by the wake regime and the corresponding azimuthal
symmetry. Therefore, the two families of simulations display quite a different evolution.
Moreover, it should be noted that the high-frequency mode does not create a net component
of transverse force due their symmetric wake topology, as it is seen for RW3 and MM23
regimes, where this mode is dominant, causing CL � 0. In those cases, the wake structures
net eccentricity is small, inducing a negligible transverse force. In view of such results,
such regimes should be favoured in case of control if a stabilization of the trajectory is
wished, e.g. for freely rising or falling rotating spheres, as the transverse displacement of
the body might be limited. Conversely, RW1, MM12 and IMM123 are likely to cause lateral
shift and destabilization of the trajectory for freely moving bodies due to their greater
mean lateral force and their corresponding eccentric wake structures.

5.2. Parametric exploration
Let us discuss the influence of the rotation rate in the dynamics of the flow past the rotating
sphere. For that purpose, we determine the stable attractors of the normal form in the range
Re < 300 and Ω < 4. The cubic normal form coefficients are determined following the
same procedure as in § 4.2. However, for low rotation rates (Ω < 0.8), we found that the
linear coefficients of the normal form were not correctly estimated. So, for these values of
the rotation rate, the linear coefficients are determined exactly at the threshold of instability
of each codimension-one bifurcation.

The flow past the static sphere (Ω = 0), analysed by Fabre et al. (2008), experiences
a symmetry breaking bifurcation that leads to the reflection-symmetric bifid wake
(steady-state mode) and eventually a Hopf bifurcation that leads to the RSP. The phase
diagram depicted in figure 15 shows that both the rotating wave RW1 and the mixed mode
MM12 are the continuation in the parameter space of the steady-state and RSP mode,
respectively. Thus, dynamics for low values of the rotation rate (Ω < 1) are qualitatively
similar to the flow past the static sphere. However, for rotation rate values slightly larger
than ΩB, one starts detecting a wake with a double helix. This fact has been evidenced by
the numerical simulations of Lorite-Díez & Jiménez-González (2020), Pier (2013) and the
experimental work of Skarysz et al. (2018) who reported that at around Ω ≈ 1.5 for large
Reynolds numbers (Re > 250) the quasiperiodic motion of the wake changes from a single
to double helix pattern, which is consistent with the phase diagram in figure 15. However,
if we look in detail at how the flow transits from a single helix to the double helix wake in
terms of the rotation of the sphere, one can observe three bi-stable regions, between RW1
and RW3, between RW3 and MM12, and between MM12 and MM23. These bi-stable sections
connect two regions of the parameter space with distinct attractors, the rotating waves RW1
and RW3 and the mixed modes MM12 and MM23. It is of interest that the formation of
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Figure 15. Phase diagram of the nonlinear patterns in the range Ω < 4 and Re < 300, as predicted by the
normal form (4.9). The axisymmetric state (TS) persists in the white region. Shaded regions indicate the
existence of a stable pattern (respectively, stable patterns). Dashed lines illustrate unstable rotating waves
neutral curves obtained by LSA.

these new states occurs near the codimension-two point B, which exhibits the importance
of this bifurcation as an organizing centre, even though it occurs as a bifurcation for an
already unstable trivial state. Furthermore, the importance of the codimension point A
is clearly evidenced by figure 15, which also acts as an organizing centre of dynamics.
Around point A, one finds four distinct regions with inequivalent dynamics. If we move
counterclockwise from point A, we have the left region where the trivial axisymmetric
state is stable, the lower region where the RW1 state is the single attractor, a region with
two stable attractors (RW1 and RW3) and the upper region where the RW3 is the single
stable state. Finally, the significance of the other codimension-two bifurcation, the point
C, is rather more subtle. This point is located in the only region where one can observe the
mixed mode MM13, which is only observed for very large rotation rates, and it connects
the RW3 state and the T3-quasiperiodic state IMM123.

Therefore, one may conclude that the rotation of the sphere has a mild effect on the
bifurcation scenario for low rotation rates (Ω < 1). Rotation rates between 1 < Ω < 2
favourise the appearance of a double helix wake and hysteresic behaviour, whereas large
rotation rates (Ω > 2) have a destabilizing effect which rapidly triggers the emergence of
chaotic dynamics via a Ruelle–Takens–Newhouse route.

6. Conclusion

The present study conducts a complete study of the transition scenario of the flow past
a rotating sphere, which is a canonical model of many industrial and natural phenomena
like particle-driven flows, sport aerodynamics, bubble motion, plant seeds, etc. In such
applications the changes in the paths of the particles are related to the destabilization of
complex flow regimes and associated force distributions. To gain a deeper understanding
of the underlying physics and evaluate possibilities of flow and path control, we have
studied the mode competition involved in the formation of patterns in the flow past a
rotating sphere, associated sensitivity to forcing and the effect of flow regimes on the force
coefficients. This research aimed to structurally study the pattern formation previously
examined by Lorite-Díez & Jiménez-González (2020), Pier (2013) and to determine from
a dynamical perspective the fundamental building blocks of dynamics before and up to
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Figure 16. Asymptotic growth K associated with the local radial velocity U′(0, 0.5, 3.5) (same as in
figure 10). Results are shown for the different initial seeds: RW1 (grey triangles) and RW3 (blue circles).

temporal chaos. In order to do that, we have employed LSA, normal form analysis and
DNS.

Rotation of the sphere breaks the reflectional symmetry, thus inducing a preferential
direction. This turns out to favourise the presence of rotating wave instabilities, instead
of a steady symmetry breaking bifurcation, as it is the case for the flow past the static
sphere. These instabilities exhibit a localized wavemaker within the recirculation zone,
which is evidenced by the sensitivity maps. In addition, non-normality effects are weaker
than in the flow past the static sphere, mainly because the primary bifurcation occurs at
lower Reynolds number values. This might be an indication of a weaker transient growth
of asymptotically stable perturbations for the rotating sphere wake flow (Chomaz 2005).

The bifurcation scenario is qualitatively distinct and it greatly varies with the rotation
rate, as it has been discussed in § 5.2. The flow field displays a large variety of attractors
from rotating waves, quasiperiodic mixed modes to T3-quasiperiodic structures. In
addition, one may find multiple attractors, which is associated to hysteresis, and it seems to
be a common feature of many supercritical and subcritical flows, cf. (Subramanian, Sujith
& Wahi 2013; Guo et al. 2018; Ren et al. 2021; Huang et al. 2018; Suckale et al. 2018).
Eventually, for sufficiently large Reynolds numbers, Lorite-Díez & Jiménez-González
(2020) and Pier (2013) identified irregular regimes for most rotation rates, which are
associated to a T3-quasiperiodic attractor. Nonetheless, such a state is just observed by
means of DNS near its onset of existence. For larger Reynolds number values, the attractor
is no longer quasiperiodic, but it is characterized by a continuous frequency spectra, that
turns out to be chaotic. Indeed, such a chaotic attractor shadows the three frequency
quasiperiodic state predicted by the normal form, which is evidenced by physical global
features of the flow, e.g. the force acting on the surface of the sphere.

The analysis performed in this paper is able to accurately predict the fundamental
modes of the wake flow, the bifurcation scenario and the forces acting on the sphere
without the need of performing a fully nonlinear DNS. The results are compared against
DNS computations at Ω = 1.75 with an excellent agreement in regime zones, mode
frequencies and force coefficients. Then, our procedure has been validated without
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including non-normal and resonance effects in our analysis. In any case, their impact has
been proven to be very reduced in this problem.

In the classification of the observed regimes, one may question which is the path or
bifurcation scenario and how are they constituted, i.e. if it is possible to reconstitute the
strange attractor with a sparse approximation. The identification of a T3-quasiperiodic
state, complemented with DNS results, allows the justification that the route to chaos is
indeed the Ruelle–Takens–Newhouse. This has several consequences for further studies
of this or similar flows. First, we have been able to identify the route to chaos and the
fundamental building blocks, which are the three rotating waves. One could attempt to
obtain further insight into the chaotic attractor and to investigate physically interesting
properties such as mixing or the forces on the sphere from the information extracted from
the three unstable periodic orbits associated with the fundamental rotating waves. In this
case, it seems reasonable to construct a symbolic alphabet with the main fundamental
modes being the rotating waves. Then, one may approximate average quantities or the
eigenvalues of the Perron–Frobenius operator by cycle expansions, cf. (Cvitanovic et al.
2005), as it has been recently done by Yalnız & Budanur (2020); Yalnız, Hof & Budanur
(2021) using algebraic topology techniques.

In addition, if ones attempt to design a control procedure to the quasiperiodic state
or to prevent the presence of chaotic dynamics, the use of harmonic forcing, as in Sipp
(2012), seems a promising option, and the implementation is straightforward from the
information provided in §§ 4 and 5. Additionally, the sensitivity to base flow modifications
and structural sensitivity have been presented for the low-frequency and high-frequency
modes in § 3.4 to analyse harmonic and steady control possibilities. It has been shown
that the low-frequency mode displays a strong sensitivity inside the recirculating region,
suggesting a higher receptivity to control through surface rear blowing, in line with the
results presented in Niazmand & Renksizbulut (2005). In principle, the attenuation of
the amplitude of such a mode would imply a decrease in the mean drag and total lift
coefficients (see figure 14), which could presumably prevent the path’s instability in
the case of freely rising bodies, as those analysed by Mathai et al. (2018). Therein, the
tuning of rotational inertia is proposed to modify the wake and path’s instabilities. The
effect of changes in the moment of inertia may imply variations of the rotation rate,
and consequently, changes in the regimes and associated forces. At that point, the force
diagrams presented in figure 14 could be useful to guide such a tuning procedure and
selectively set the regime of interest.
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Triple-Hopf bifurcation in the flow past a rotating sphere

Coef. λ(ε
2
ν )

	 λ
(ε2
Ω)

	 λ
(ε4
ν )

	 λ
(ε2
Ωε

2
ν )

	 λ
(ε4
Ω)

	

λA
1 15 − 0.60i (−1.8 + 8.2i)× 10−2 (−1.5 − 2.9i)× 102 9.6 − 1.5i (−38 − 2.9i)× 10−3

λA
3 43 − 5.5i (−22 + 5.8i)× 10−2 (−2.3 − 10i)102 11 − 0.18i (−1.6 − 1.6i)10−1

λB
2 (11 − 3.2i)× 101 (−2.6 + 1.64i)× 10−1 (−1.1 + 6.9i)× 102 5.4 + 5.2i (−3.4 − 18i)× 10−2

λB
3 54 − 50i 0.36 − 0.58i (4.2 − 6.9i)× 103 64 − 22i (−1.9 − 4.4i)× 10−1

λC
1 9.1 − 3.7i (1.1 + 11i)× 10−2 (−1.1 − 7.4i)× 102 −0.80 + 3.8i (18 − 4.4i)× 10−2

λC
2 46 − 18i (−1.2 + 1.7)× 10−2 (−2.7 − 18i)× 102 16 + 10i (−4.4 − 3.6i)× 10−2

Table 4. Linear coefficients of the normal form (4.9) evaluated at codimension-two points.

Appendix A. Normal form reduction procedure for the triple-Hopf interaction

Before we detail the procedure for the reduction of the governing equations to the normal
form (4.6), let us detail the terms that composed the compact notation of the governing
equations (2.3), which is reminded here for the sake of conciseness,

B
∂Q
∂t

= F (Q, η) ≡ LQ + N(Q,Q)+ G(Q, η). (A1)

The operator G(Q, η) = G(Q, [η1, 0]T)+ G(Q, [0, η2]T), where G(Q, [η1, 0]T) =
η1∇ · (∇U + ∇UT) and G(Q, [0, η2]T) expresses the imposition of the boundary
condition U = (0, η2, 0) on Σb. The nonlinear operator N(Q1,Q2) = U1 · ∇U2, and the
linear operator accounts for the remaining terms that are linear on the state variable Q,
i.e. LQ = [∇P,∇ · U]T. In addition, we consider the following splitting of the parameters
η = ηc +
η, where ηc denotes the critical parameters ηc ≡ [Re−1

c ,Ωc]T attained when
the spectra of the Jacobian operator of the steady state posses at least an eigenvalue whose
real part is zero, and 
η = [Re−1

c − Re−1,Ωc −Ω]T the departure from the critical
condition.

The procedure followed in this manuscript consists of the determination of a fifth-order
Taylor expansion of the centre manifold, also known as the normal form, of the three
codimension-two-Hopf points (A, B, C), which enables a linear approximation of the cubic
coefficients νk	 and a quadratic approximation of the linear coefficients λ	. The ultimate
goal of this approach is the determination of the coefficients listed in tables 4–6. That is,
to determine the cubic coefficient νk	 values as

νk	 = ν
(0)
k	 + ε2

νν
(ε2
ν )

k	 + ε2
Ων

(ε2
Ω)

k	 , (A2)

where ν(0)k	 , ν
(ε2
ν )

k	 and ν
(ε2
Ω)

k	 are determined at the two-Hopf point between mode k and 	.
Similarly, the estimation of the linear coefficient is

λ	 = ε2
νλ
(ε2
ν )

	 + ε2
Ωλ

(ε2
Ω)

	 + ε4
νλ
(ε4
ν )

	 + ε4
Ωλ

(ε4
Ω)

	 + ε2
Ωε

2
νλ
(ε2
νε

2
Ω)

	 . (A3)

The reduction to the normal form is carried out via a multiple scales expansion of the
solution Q of (2.3). The expansion considers a two-scale expansion of the original time, a
fast time scale t of the self-sustained instability and a slow time scale of the evolution of
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Coef. ν
(0)
k	 ν

(ε2
ν )

k	 ν
(ε2
Ω)

k	

νA
11 −0.46 + 0.16i 6.3 + 10.1i (4.4 − 1.1i)× 10−2

νA
13 −3.0 + 0.73i (4.6 − 2.3i)× 102 −3.6 − 5.2i
νA

31 −0.73 + 1.07i (2.2 − 8.6i)× 101 (2.2 − 2.4i)× 10−1

νA
33 −1.5 + 2.1i (−1.1 − 11i)× 101 −0.56 − 0.30i
νB

22 −1.8 + 0.22i (2.2 − 34i)× 101 0.46 − 1.0i
νB

23 −1.9 − 0.2i (2.9 − 1.4i)× 102 2.6 + 2.4i
νB

32 (−34 − 3.1i)× 10−2 (3.0 − 10i)× 102 −0.22 + 2.2i
νB

33 −1.7 + 0.9i (1.0 − 11i)× 102 0.30 − 1.54i
νC

11 −0.25 + 0.15i 34 − 2.1i (5.2 − 10i)× 10−2

νC
12 0.58 − 0.58i (−2.4 + 3.0i)× 102 0.74 − 0.28i
νC

21 (4.6 − 26i)× 10−2 2.3 − 71i (2.4 − 30i)× 10−2

νC
22 −1.9 + 3.1i (4.7 − 10i)× 102 −2.4 + 5.2

Table 5. Cubic coefficients of the normal form (4.9) evaluated at codimension-two points.

Coef. Value

λ1 (−0.019 + 0.038i) + (20.2 − 1.60i)ε2
ν + (−1.5 − 2.9i)× 102ε4

ν

λ2 (0.1805 + 0.1107i) + (11 − 2.8i)× 101ε2
ν + (−1.1 + 6.9i)× 102ε4

ν

λ3 (−0.13 + 0.003i) + (49 − 6.3i)ε2
ν + (−2.3 − 10i)102ε4

ν

ν11 (−0.44 + 0.15i) + (6.3 − 10i)ε2
ν

ν12 (2.2 − 1.2i) + (−2.4 + 3.0i)× 102ε2
ν

ν13 (−4.7 + 1.9i) + (4.6 − 2.3i)× 102ε2
ν

ν21 (0.10 + 0.43i) + (2.3 − 71i)ε2
ν

ν22 (−2.2 + 0.94i) + (2.2 − 34i)× 101ε2
ν

ν23 (−0.08 − 1.6i) + (2.9 − 1.4i)× 102ε2
ν

ν31 (−0.63 + 0.95i) + (2.2 − 8.6i)× 101ε2
ν

ν32 (−0.19 − 0.06i) + (3.0 − 10i)× 102ε2
ν

ν33 (−1.9 + 2.0i) + (1.0 − 11i)× 101ε2
ν

Table 6. Cubic coefficients of the normal form (4.9) evaluated at Ω = 1.75.

the amplitudes
t �→ t + ε2τ, ε 
 1, (A4)

here ε is the order of magnitude of the flow disturbances. The small parameters are

ε2
Ω = (Ωc −Ω) ∼ ε2 and ε2

ν = (νc − ν) =
(

Re−1
c − Re−1

)
∼ ε2. (A5a,b)

The ansatz of the expansion is

Q(t, τ ) = Qb + εq(ε)(t, τ )+ ε2q(ε2)(t, τ )+ ε3q(ε3)(t, τ )+ ε4q(ε4)(t, τ )+ O(ε5). (A6)

Note that the expansion of the left-hand side of (2.3) up to fifth order is

εB
∂q(ε)
∂t

+ ε2B
∂q(ε2)

∂t
+ ε3

[
B
∂q(ε3)

∂t
+ B

∂q(ε)
∂τ

]

+ ε4
[

B
∂q(ε4)

∂t
+ B

∂q(ε2)

∂τ

]
+ ε5

[
B
∂q(ε5)

∂t
+ B

∂q(ε3)

∂τ

]
, (A7)
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respectively the right-hand side is

F (q, η) = F (0) + εF (ε) + ε2F (ε2) + ε3F (ε3) + ε4F (ε4) + ε5F (ε5). (A8)

Then we are left with the determination of the forcing terms of (A8).
The reduction detailed in this appendix considers the interaction between two rotating

wave solutions at a codimension-two point. In the following, we adopt the notation for the
solutions z1 and z2, which correspond to point C. In order to proceed for the other two
points, replace z1 by z3 or z2 by z3.

A.1. Notation
Since the number of terms grows quickly with the order, in order to enhance readability,
we define the set of vectors of linear, quadratic, cubic and fourth-order interactions as

Z ≡ {z1, z2}, Z = {z̄1, z̄2},
Z2 ≡ Z ⊗ Z ⊕ Z ⊗ Z = {z2

1, z1z2, z2
2, |z1|2, z1z̄2, |z2|2},

Z3 ≡ Z ⊗ Z2 ⊕ Z2 ⊗ Z

= {z3
1, z2

1z2, z1z2
2, z3

2, z1|z1|2, z2|z1|2, z2
2z̄1, z̄2z2

1, z1|z2|2, z2|z2|2},
Z4 ≡ Z2 ⊗ Z2 ⊕ Z ⊗ Z

3

= {z4
1, z3

1z2, z2
1z2

2, z1z3
2, z4

2, z2
1|z1|2, z1z2|z1|2, z2

2|z1|2, z2
1|z2|2,

z1z2|z2|2, z2
2|z2|2, z1z̄2|z1|2, z1z̄2|z2|2, z3

1z̄2, z̄1z3
2}, (A9)

where only unique elements are kept. We denote by zn
α any element of the family Zn, with

n ∈ N∗. In addition to these sets, we shall define the set of resonant terms

ZR ≡ {z1, z2, z1|z1|2, z1|z2|2}. (A10)

A.2. Zeroth order
The zeroth order corresponds to the steady-state problem of the governing equations
evaluated at the threshold of instability, i.e. 
η = 0,

0 = F (Qb, 0), (A11)

whose solution is the steady state Qb.

A.3. First order
The first order corresponds to the resolution of a homogeneous linear system, i.e. the
generalized eigenvalue problem evaluated at the threshold of instability, i.e. 
η = 0. In
such a case, the vector is expanded as

q(ε) = z1q̂(z1)
exp(−i(m1θ + ω1t))+ z2q̂(z2)

exp(−i(m2θ + ω2t))+ c.c. (A12)

Then, the eigenpairs [iω	, q̂(z	)] are determined as the solutions of the following eigenvalue
problem:

J (ω	,m	)q̂(z	) =
(

iω	B − ∂F
∂q

|q=Qb,
η=0

)
q̂(z	). (A13)

The eigenmode q̂(z	)(r, z) is then normalised in such a way that 〈û(z	), û(z	)〉L2 = 1.
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A.4. Second order
The second-order expansion term q(ε2)(t, τ ) is determined by the resolution of a set of
linear systems, where the forcing terms are evaluated from first- and zeroth-order terms.
The expansion in terms of amplitudes z	(τ ) of q(ε2)(t, τ ) is assessed by collecting the
second-order forcing terms. Nonlinear second-order terms in ε are

F (ε2) ≡
2∑

j,k=1

(
zjzkN(q̂(zj)

, q̂(zk)
) exp(−i(mj + mk)θ) exp(−i(ωj + ωk)t)+ c.c.

)

+
2∑

j,k=1

(
zjz̄kN(q̂(zj)

, q̂(z̄k)
) exp(−i(mj − mk)θ) exp(−i(ωj − ωk)t)+ c.c.

)

+
2∑
	=1

η	G(Qb, e	), (A14)

where e	 is an element of the orthonormal basis of R2. Then the second-order expansion
of the flow variable is carried out so it matches the terms of the forcing (A14),

q(ε2) ≡
∑
z2
α∈Z

(
z2
α q̂(z2

α)
exp(−i(mαθ + ωαt))+ c.c.

)
+

2∑
	=1

η	Q
(η	)
b . (A15)

Terms q̂(z2
j )

are harmonics of the flow, q̂(zjzk)
with j /= k are coupling terms, q̂(|zj|2) are

harmonic base flow modification terms and Q(η	)
b are base flow corrections due to a

modification of the parameter η	 from the critical point. Then the second-order terms
are determined from the resolution of the following systems of equations:

J (ωj+ωk,mj+mk)q̂(zjzk)
= F̂ (zjzk). (A16)

Here F̂ (zjzk) ≡ N(q̂(zj)
, q̂(zk)

)+ N(q̂(zk)
, q̂(zj)

) and

J (0,0)Q
(η	)
b = G(Qb, e	). (A17)

A.5. Third order
At third order, we proceed as for previous orders, first the forcing term is expanded as

F (ε3)

∑
zα∈Z ,z2

β∈Z2

zα · z2
β

[
N(q̂(z2

β)
, q̂(zα))+N(q̂(zα), q̂(z2

β)
)
]

exp(i(mα + mβ)θ+i(ωα+ωβ)t)

+
2∑

j=1

2∑
	=1

[
zjη	

[
N(q̂(zj)

,Q(η	)
b )+ N(Q(η	)

b , q̂(zj)
)
]

exp(−imjθ) exp(−iωjt)+ c.c.
]

+
2∑

j=1

2∑
	=1

[
zjη	G(q̂(zj)

, e	) exp(−imjθ) exp(−iωjt)+ c.c.
]
, (A18)
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Triple-Hopf bifurcation in the flow past a rotating sphere

where ωn and mn are defined as ωn = ωj + ωk + ω	, mn = mj + mk + m	 with n = j +
k + 	. Followed by the expansion of the state variable q(ε3)(t, τ ),

q(ε3)(t, τ ) ≡
∑
z3
α∈Z

[
z3
α q̂(z3

α)
exp(−i(mαθ + ωαt))+ c.c.

]

+
2∑

j=1

2∑
	=1

[
zjη	Q

(η	)

(zj)
exp(−imjθ) exp(−iωjt)+ c.c.

]
. (A19)

At this order there exist resonance terms, which are associated with the singular Jacobian
J (ωk,mk) for k = 1, 2, 3. To ensure the solvability of these terms, we must enforce
compatibility conditions, i.e. the Fredholm alternative. The resonant terms are then
determined from the resolution of the following set of bordered systems:

(
J (ωk,mk) q̂(zk)

q̂†
(zk)

0

)(
q̂
(z(R)α )

s

)
=
(

F̂
(z(R)α )

0

)
, z(R)α ∈ ZR. (A20)

Here s = λ(ε2
ν )

k (respectively s = λ(ε
2
Ω)

k ) for z(R)α = zk and s = ν
(0)
kl for z(R)α = zk|z	|2. The

non-resonant terms are then determined as at second order from the resolution of forced
linear systems.

A.6. Fourth order
At fourth order we proceed as at second order, we expand the forcing term F (ε4) as

F (ε4) ≡
∑

zα∈Z ,z3
β∈Z3

zα · z3
β

[
N(q̂(z3

β)
, q̂(zα))+N(q̂(zα), q̂(z3

β)
)
]
exp(i(mα+mβ)θ+i(ωα+ωβ)t)

+
∑

z2
α∈Z2,z2

β∈Z2

z2
α · z2

β

[
N(q̂(z2

α)
, q̂(z2

β)
)
]

exp(i(mα + mβ)θ + i(ωα + ωβ)t)

+
2∑
	=1

η	
∑

z2
α∈Z2

z2
αG(q̂(z2

α)
, e	) exp(−i(mαθωαt))

+
2∑

	,k=1

η	ηk

[
N(Q(ηk)

b ,Q(η	)
b )
]

+
2∑
	=1

η	
∑

zα∈Z ,zβ∈Z

zα · zβ
[
N(Q(η	)

(zα)
, q̂(zβ))

+N(q̂(zβ),Q(η	)

(zα)
)
]

exp(i(mα + mβ)θ + i(ωα + ωβ)t), (A21)
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and the state variable q(ε4) as

q(ε4) ≡
∑

z4
α∈Z4

(
z4
α q̂(z4

α)
exp(−i(mαθ + ωαt))+ c.c.

)

+
2∑
	=1

η	
∑

z2
β∈Z2

z2
βQ(η	)

(z2
β)

exp(−i(mβθ + ωβ t))+
2∑

	,k=1

ηkη	Q
(η	ηk)
b , (A22)

which are determined from the resolution of a forced linear system.

A.7. Fifth order
At fifth order, we uniquely consider the resonant terms. These are the coefficients of
members of ZR. The resonant forcing terms are

F̂
(ηjηk)
z	 = N(q̂(z	),Q

(ηjηk)

b )+ N(Q
(ηjηk)

b , q̂(z	))

+
(

G(Q(ηk)
(z	)
, ej)+ G(Q

(ηj)

(z	)
, ek)− λ(ηj)

	 BQ(ηk)
(z	)

− λ(ηk)
	 BQ

(ηj)

(z	)

)(
1 − 1

2
δjk

)
,

F̂ (η	)zj|zk|2 = N(q̂(zj)
,Q(η	)

(|zk|2))+ N(Q(η	)

(|zk|2), q̂(zj)
)

+ N(q̂(z̄k)
,Q(η	)

(zjzk)
)+ N(Q(η	)

(zjzk)
, q̂(z̄k)

)

+ N(q̂(zj|zk|2),Q(η	)
b )+ N(Q(η	)

b , q̂(zj|zk|2))

+ N(q̂(|zk|2),Q(η	)

(zj)
)+ N(Q(η	)

(zj)
, q̂(|zk|2))

+ N(q̂(zjzk)
,Q(η	)

(z̄k)
)+ N(Q(η	)

(z̄k)
, q̂(zjzk)

)

+
(

N(q̂(zjz̄k)
,Q(η	)

(zk)
)+ N(Q(η	)

(zk)
, q̂(zjz̄k)

)
)
(1 − δjk)

+
(

N(q̂(zk)
,Q(η	)

(zjz̄k)
)+ N(Q(η	)

(zjz̄k)
, q̂(zk)

)
)
(1 − δjk)

−
(
λ
(η	)
j + λ(η	)k + λ̄(η	)j

)
Bq̂(zj|zk|2) − ν

(0)
jk BQ(η	)

(zj)
, (A23)

with j, k, 	 = 1, 2 and δjk is the Kronecker symbol. Finally, the coefficients of the normal
form are obtained as

λ
(ηjηk)

	 =
〈q̂†
(z	)
, F̂

(ηjηk)
z	 〉

〈q̂†
(z	)
,Bq̂(z	)〉

,

ν
(η	)
jk =

〈q̂†
(z	)
, F̂ (η	)zj|zk|2〉

〈q̂†
(z	)
,Bq̂(z	)〉

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A24)

for j, k, 	 = 1, 2.

Appendix B. Non-normality (lift-up and convective mechanisms)

In this section we explore the effect of the non-normal mechanisms on the instability.
Two non-normal mechanisms were identified in the flow configuration of the static sphere
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Triple-Hopf bifurcation in the flow past a rotating sphere

(Ω = 0), cf. Meliga et al. (2009b), the lift-up and convective non-normality mechanisms.
The lift-up mechanism is associated with the transport of the steady-state solution by the
perturbation, that is, to the component û · ∇Ub of (3.2), cf. Marquet et al. (2009). On the
other hand, the convective non-normality is due to the advection of disturbances by the
steady state, that is, the term Ub · ∇mû of (3.2) and −Ub · ∇mû† for the adjoint operator.
In physical terms, it corresponds to the convection of disturbances in opposite directions.
In terms of direct q̂ and adjoint q̂† global modes, the lift-up non-normality is characterized
by the near orthogonality of the direct and adjoint components of velocity because they
tend to concentrate in different components of velocity, even if both direct and adjoint
modes are active in the same region of space. Instead, the convective non-normality is
associated with direct and adjoint modes that tend to be orthogonal because they are
localized in different regions of the space. The non-normality may be measured by the
angle θN (Meliga et al. 2009b) defined as

cos
(π

2
− θN

)
=

〈q̂†
(z	)
,Bq̂(z	)〉(

〈q̂†
(z	)
,Bq̂†

(z	)
〉
)1/2 (〈q̂(z	),Bq̂(z	)〉

)1/2 , (B1)

where the direct and adjoint modes are normalised such that 〈q̂†
(z	)
,Bq̂(z	)〉 = 1 and

〈q̂(z	),Bq̂(z	)〉 = 1. It thus measures the departure of θN from π/2 of the angle between
direct and adjoint global modes, that is, the smaller the departure the larger the
non-normality. However, such a quantity does not suffice to estimate the global effect
of each non-normal mechanism, lift-up and convective non-normality. To overcome such
an issue, Meliga et al. (2009b) proposed to introduce the estimator γ defined as

γ = 1 −
〈|q̂†

(z	)
|,B|q̂(z	)|〉(

〈q̂†
(z	)
,Bq̂†

(z	)
〉
)1/2 (〈q̂(z	),Bq̂(z	)〉

)1/2 , (B2)

where |q̂(z	)|2 = |û(z	)|2 + |p̂(z	)|2 = |û(z	)|2 + |v̂(z	)|2 + |ŵ(z	)|2 + |p̂(z	)|2 stands for the
Euclidean pointwise norm. Such an estimator is used to determine whether the
non-normality is due to the lift-up effect or the convective non-normality and it is bounded
0 ≤ γ ≤ 1. In the case of dominance of the lift-up effect γ is close to 0, i.e. a similar
spatial distribution of direct and adjoint modes. On the other hand, a value of γ close to
unity implies separation in the support of the adjoint and direct global modes.

Appendix C. Unfolding of the triple-Hopf bifurcation

C.1. Classification of solutions
The trivial axisymmetric steady-state solution transits into a rotating wave

RWi = {zj = 0| ∀j /= i, i, j = 1, 2, 3} (C1)

via Hopf-bifurcation. Each of the three types of rotating waves are potential candidates for
a primary bifurcation, and they appear in distinct regions of the parameter space (Re,Ω).

In addition, in the vicinity of the organizing centre of the type (Hopf-Hopf) one can
predict the type of secondary bifurcation from each of the rotating waves. Secondary
bifurcations of rotating axisymmetric bodies are of mixed-mode type MMij, i, j = 1, 2, 3,

MMij = {z	 = 0| ∀	 /= i, 	 /= j, i, j, 	 = 1, 2, 3}. (C2)

Mixed-mode solutions are quasiperiodic solutions with possibly different azimuthal
patterns. The transition to a mixed-mode solution MM12 is possible either from RW1
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or RW2 but not from RW3. Finally, near a triple-Hopf bifurcation point there may exist
a mixed mode composed of three (incommensurate) frequencies, here denoted IMM123.
This branch can bifurcate from any of the two-frequency component mixed modes MMij,
for distinct i, j = 1, 2, 3.

C.2. Unfolding amplitude equations – types of solutions

C.2.1. Rotating waves – RW
Rotating waves RWi are fixed points of (4.9), where two modes are null, i.e. they satisfy

r(RW)
i =

√
−λ

R
i

νR
ii
, for i = 1, 2, 3. (C3)

Rotating wave solutions are stable if

λR
i > 0, λR

j − νR
ji
λR

i

νR
ii
< 0, for j /= i, for i, j = 1, 2, 3. (C4)

C.2.2. Mixed modes – MMij
Mixed-mode solutions MM12 (respectively MM13 or MM23) are two-component solutions
of (4.9) where r3 = 0 (respectively r2 = 0 or r1 = 0) and the other two components are
non-null. Amplitudes ri, rj depend on parameters as follows:

r
(MMij)

i =
√√√√λR

j ν
R
ij − λR

i ν
R
jj

det(VR
kk)

, r
(MMij)

j =
√√√√λR

i ν
R
ji − λR

j ν
R
ii

det(VR
kk)

. (C5a,b)

Here i, j, k = 1, 2, 3 with i /= j, k /= i and k /= j.
The Jacobian matrix D f R can be written in block-diagonal form, which simplifies the

stability computations. It is composed of a 2 × 2 and a 1 × 1 block. The eigenvalue
associated with the 1 × 1 block is stable if

σk ≡ 1
det(VR

kk)

[
λR

k det(VR
kk)+ λR

i det(VR
ik)+ λR

j det(VR
jk)
]
< 0. (C6)

The 2 × 2 block is

Df R
ij = 2

⎛
⎝ νR

ii (r
(MMij)

i )2 νR
ij r
(MMij)

i r
(MMij)

j

νR
ji r
(MMij)

i r
(MMij)

j νR
jj (r

(MMij)

j )2

⎞
⎠ , (C7)

with r
(MMij)

i r
(MMij)

j =
√
λR

i λ
R
j [νR

ij ν
R
ji + νR

jj ν
R
ii ] − [(λR

i )
2νR

jj ν
R
ji + (λR

j )
2νR

ii ν
R
ij ]/ det(VR

kk).
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Triple-Hopf bifurcation in the flow past a rotating sphere

The eigenvalues that govern the stability of the mixed-mode solutions of kind MMij are
the roots of the characteristic polynomial

σ 2 − tr
(

Df R
ij

)
σ + det

(
Df R

ij

)
= 0, (C8)

where

tr
(

Df R
ij

)
= νR

ii

(
r(

MMij)
i

)2
+ νR

jj

(
r(

MMij)
j

)2
(C9)

and

det
(

Df R
ij

)
=
(

r(
MMij)

i

)2 (
r(

MMij)
j

)2
det
(
VR

kk

)
. (C10)

Therefore, one can express the pair of eigenvalues as

σ±
ij ≡

νR
ii r2

i + νR
jj r2

j

2
±
√(
νR

ii r2
i − νR

jj r2
j

)2
/4 + νR

ij ν
R
ji r2

i r2
j , (C11)

where, for ease of notation, the uperscript MMij has been removed. A necessary condition
for the Hopf bifurcation of the mixed-mode solutions to occur is that νR

ii ν
R
jj < 0 and

νR
ij ν

R
ji < 0. In other words, a Hopf bifurcation from the mixed mode may occur if one

of the rotating waves comprised in the mixed mode arises from a supercritical bifurcation
whereas the other arises as a result of a subcritical bifurcation from the axisymmetric
steady state. This case is discussed in detail in Kuznetsov (2013, § 8.6) and is denoted as
the difficult case. The case where νR

ii ν
R
jj > 0 is denoted as the simple case, in such a case

the mixed-mode solution is a sink or a source located in the separatrix of the basin of
attraction of rotating waves.

C.3. Interacting mixed mode – IMM123

The IMM123 mode is a 3-tori solution (phases φi are non-resonant) with their amplitudes
determined as the solution of the following linear system:

r2 ≡ (r2
1, r2

2, r2
3)

T = −
(
VR
)−1

ΛR = −1
detVR

⎛
⎜⎜⎝

detVR
11λ

R
1 + detVR

21λ
R
2 + detVR

31λ
R
3

detVR
12λ

R
1 + detVR

22λ
R
2 + detVR

32λ
R
3

detVR
13λ

R
1 + detVR

23λ
R
2 + detVR

33λ
R
3

⎞
⎟⎟⎠ .

(C12)

The stability of the interacting mixed-mode solution is determined by the eigenvalues of
the Jacobian D f R,

Df R ≡ 2

⎛
⎜⎜⎝
νR

11r2
1 νR

12r1r2 νR
13r1r3

νR
21r1r2 νR

22r2
2 νR

23r3r2

νR
31r1r3 νR

32r3r2 νR
33r2

3

⎞
⎟⎟⎠ . (C13)

The eigenvalues of D f R are roots of its characteristic polynomial denoted as p(D f R),

p(Df R) ≡ σ 3 − I1σ
2 + I2σ − I3 = 0,

I1 = tr
(

Df R
)
, I2 = 1

2

[(
tr
(

Df R
))2 − tr

(
[Df R]2

)]
, I3 = det

(
Df R
)
.

⎫⎪⎬
⎪⎭ (C14)

942 A54-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.395


J. Sierra-Ausín, M. Lorite-Díez, J.I. Jiménez-González, V. Citro and D. Fabre

The trace of the Jacobian can be expressed as a function of the square of the amplitudes
r2

1, r2
2 and r2

3 and the real part of the matrix of coefficients V ,

tr
(

Df R
)

≡ 2
(
νR

11r2
1 + νR

22r2
2 + νR

33r2
3

)
, (C15)

similarly the second invariant of the Jacobian

1
2

[(
tr
(

Df R
))2 − tr

(
[Df R]2

)]
≡ 4
(

r2
1r2

2 detVR
33 + r2

1r2
3 detVR

22 + r2
2r2

3 detVR
11

)
,

(C16)

and the determinant

det
(

Df R
)

= 8r2
1r2

2r2
3 detVR. (C17)

The characteristic polynomial (C14) is a cubic polynomial with real coefficients. Thus,
the eigenvalues σ of the Jacobian D f R are either all real or one of them is real and the other
two are complex conjugate. The nature of the eigenvalues depends on the discriminant of
the cubic equation. A stationary bifurcation occurs when det(D f R) = 0, which under the
generic condition detVR /= 0 only occurs at the origin of the IMM123.

A Hopf bifurcation arises when the following conditions are satisfied:

tr
(

Df R
)
< 0,

[(
tr
(

Df R
))2 − tr

(
[Df R]2

)]
> 0

and
[(

tr
(

Df R
))3 − tr

(
Df R
)

tr
(

[Df R]2
)]

= det
(

Df R
)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C18)

The condition tr (D f R) < 0 ensures that Hopf bifurcation is the primary bifurcation
of the IMM123 solution, i.e. the real eigenvalue is negative. Such a condition holds true
in the supercritical case, when νii < 0, for i = 1, 2, 3. Additionally, there is a change in
the nature of the solution IMM123 whenever the discriminant changes sign, it changes
from sink to stable foci, from source to unstable foci, from saddle to saddle foci or vice
versa. Even though these local changes in the nature of the fixed-point solution IMM123
cannot be considered as a local bifurcation, they could be linked to global changes in
dynamics, e.g. the appearance of a heteroclinic cycle as in the difficult case of a Hopf-Hopf
bifurcation (Kuznetsov 2013, Ch. 8.7.). Finally, a necessary and sufficient condition for the
stability of the asymptotic stability of the IMM123 solution can be expressed in terms of
the invariants of the Jacobian matrix

I1 < 0, I2 > 0, I3 < 0, I1I2 > I3. (C19)

Inspection of (C19) shows that the condition for the Hopf bifurcation indeed corresponds
to the limit case of the condition I1I2 ≥ I3.

Appendix D. Mesh convergence

Mesh independent solutions have been verified systematically. First, we have considered
a given mesh refinement, and we have varied the physical size of the domain. We have
observed that, for a domain length of 50 diameters downstream of the sphere centre,
20 diameters upstream of the cylinder centre and 20 in the cross-stream direction, the
effects of the boundary condition do not have an effect on the solution. Secondly, we
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M1 M2 M3 M4

Num. tri. 5.6 × 103 2.4 × 104 3.9 × 104 8.1 × 104

hmax 3D 2D 1D 0.25D
haniso 5 2 1 1
Adaptation Steady state Steady state and modes Same as M2 Same as M2

Table 7. Properties of the meshes used in the study of mesh convergence.

Coef. M1 M2 M3 M4

νB
22 −1.8 + 0.23i −1.8 + 0.22i −1.8 + 0.22i −1.8 + 0.22i
νB

23 −2.1 − 0.26i −2.0 − 0.27i −1.9 − 0.21i −1.9 − 0.0.22i
νB

32 −0.32 − 0.042i −0.35 − 0.027i −0.34 − 0.027i −0.34 − 0.031i
νB

33 −1.6 + 0.91i −1.6 + 0.87i −1.7 + 0.89i −1.7 + 0.89i

Table 8. Cubic coefficients of the normal form (4.9) evaluated at the codimension-two point A.

have looked at the effect of mesh refinement on the properties of the solution. For that
purpose, we performed a parametric study of eigenvalues, normal form coefficients of
the codimension-two point B (table 8). Every mesh is initially computed by Delauny
triangulation, and subsequently adapted to either base flow, eigenmode or both, following
the methodology described in Fabre et al. (2018); and their properties are summarised in
table 7.

Appendix E. Higher-order dynamic mode decomposition

This analysis allows us to gain valuable insight on the dominant modes and associated
spatio-temporal flow structures which govern the wake for the different regimes
encountered in our transition scenario (figure 9). As detailed by Le Clainche & Vega
(2017a), Vega & Le Clainche (2020), HODMD is an extension of the standard dynamic
mode decomposition (DMD) technique (Schmid 2010), which has been proven useful
to study flow structures associated with quasiperiodic (featuring a large number of
frequencies) or transitional regimes (Le Clainche & Vega 2017b), where the classical DMD
approach may fail, being therefore applicable to complex spectral and spatial cases, as the
problem investigated herein. The number of modes identified by HODMD is determined
by M, whose value is related to the spatial resolution of the input data, and N, determined
by the temporal resolution.

Thus, the present HODMD tool has been applied to resolve the spatial structure related
to dominant frequencies characterizing the different flow regimes identified from the DNS
results. Typically, the input data consists of a set of N = 2000 streamwise vorticity, �z,
snapshots interpolated in a 80×80 (M = 6400) rectangular grid whose domain is (x, y) ∈
[−1, 1] located at z = 2.5. Moreover, it should be noted that the vorticity snapshots are
equally spaced in time with a 
t = 0.15. Such temporal parameters allow us to resolve
frequencies between Stmin = 0.003 and Stmax = 3.33, according to the Nyquist criterion.
Given such input data, which satisfies the condition N < M, the values of the main
HODMD parameters, i.e. order, d, and tolerance, ε, have been calibrated and fixed at
d = 50 and ε = 1e − 6 to capture a great number of modes.
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Appendix F. The 0-1 test

The quantitative 0-1 method (Gottwald & Melbourne 2004) is used to evaluate the
dynamic complexity and likely chaotic nature of the flow regimes. The method is
directly applied to time series of any scalar, as the pointwise fluctuating radial
velocity U′. In particular, given a set of data from velocity of N samples, U′(j) with
j = 1, . . . ,N, a translation variable is defined as p(m) = Σ

ms
j=1U′(j) cos(js), for m =

1, . . . ,ms and s ∈ (0,π/5). The mean square displacement is defined as Mc(m) =
limN→∞(1/N)ΣN

j=1[pc(j + m)− p(j)]2, which requires that ms ≤ N (as in Gottwald &
Melbourne (2004), we use ms = N/10). Thus, the variable Mc(m) is bounded when p(j) is
also bounded which is the case for regular dynamics. However, if the translation variable
p(m) is chaotic, Mc(m) grows linearly with m, so that an asymptotic growth K can be
defined as

K = lim
m→∞

log(Mc(m))
log(m)

, (F1)

which will take the value of 1 for chaotic dynamics and 0 for regular dynamics. Further
information and validation of the use of this estimate to evaluate the dynamic nature of
complex flow regimes can be found in Lorite-Díez & Jiménez-González (2020).
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