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(e-mail: fridlend@famaf.unc.edu.ar,pagano@famaf.unc.edu.ar)

Abstract

We introduce a new formulation of pure type systems (PTSs) with explicit substitution and

de Bruijn indices and formally prove some of its meta-theory. Using techniques based on

Normalisation by Evaluation, we prove that untyped conversion can be typed for predicative

PTSs. Although this equivalence was settled by Siles and Herbelin for the conventional

presentation of PTSs, we strongly conjecture that our proof method can also be applied to

PTSs with η.

1 Introduction

In this article, we introduce a new formulation of pure type systems (PTSs)

with explicit substitutions and de Bruijn indices. We consider two formulations:

a semantical variant with typed equality and a syntactical version with untyped

conversion. For both of them, we formally develop some of its meta-theory including

the substitution lemma.

Whereas the first formulation is convenient for theoretical considerations (Stre-

icher, 1989; Miquel & Werner, 2002), the latter is often used in implementations

like Coq (2004) and Matita (Asperti et al., 2011). The kernels of these systems are

implemented with terms using de Bruijn indices instead of named variables (Barras,

1998) and substitutions are handled explicitly rather than as meta-level operations.

The equivalence between these two formulations bridges the gap between the

systems usually considered in theoretical considerations and the ones actually

implemented in proof assistants. This result has been established by Siles and

Herbelin (2012) for the conventional presentation of PTSs using syntactic methods.

Our main contribution is the proof of that equivalence for a class of PTSs which

we call predicative, by semantical means, using techniques based on Normalisation

by Evaluation (NbE). We have a strong confidence that this method can be used to

prove the key result for other systems. In particular, we are starting to work out the

details for PTSs with η and plan to report them in a forthcoming paper.

1.1 Related work

As far as we know, our formulation of PTSs is new, although the variations that we

add were already considered separately. The three aspects in which we depart from

usual PTSs are: explicit substitutions, de Bruijn indices, and abstractions without
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domain annotations. PTSs with explicit substitutions were considered by Bloo (2001);

Muñoz (2001) studied one particular PTSs with explicit substitutions and de Bruijn

indices. Barthe and Sørensen (2000) introduced domain-free PTSs and studied their

meta-theory, which was further extended by Barthe and Coquand (2006).

Geuvers (1993) conjectured that the presentation of PTSs with external equality

is equivalent to the PTSs with judgemental equality. Soon after, Geuvers and

Werner (1994) identified sufficient conditions for the equivalence in the presence of

η. For PTSs without η, Adams (2006) proved the equivalence for functional PTSs.

Later, Siles and Herbelin (2010) extended and formalised Adams’ result to semi-

full systems; finally the equivalence for every PTS was settled by Siles (2010), and

reported also in Siles & Herbelin (2012).

We construct a model and use it to show a weak version of subject reduction for

predicative PTSs; this result leads to a proof of equivalence between the variants

with typed equality and untyped conversion for predicative PTSs. The semantical

method we use in this paper is based on previous works (Abel et al., 2007; Abel

et al., 2011) that define NbE for Martin–Löf type theory.

1.2 Outline

In Section 2, we introduce both families of PTSs with explicit substitutions and

present the results formally proved in Agda, in the article we briefly explain the

proof method for each result.1 In Section 3, we state the equivalence between both

families and prove that every judgement in a PTS with typed equality can be derived

in its untyped counterpart. In Section 4, we define a normalisation function for

predicative PTSs with judgemental equality. In Section 5, we prove the correctness

of the normalisation function; finally in Section 6, we prove that in predicative PTSs

every untyped conversion can be typed.

2 Formal systems

We assume some familiarity with traditional PTSs as presented in Barendregt (1992).

In this section, we introduce and develop the meta-theory of two new formulations

of PTSs. The first family, λσ , corresponds to PTSs where the equality between types

in the conversion rule is generated by the reduction relation over pre-terms (and

pre-substitutions); this variant is also called syntactical. The second formulation,

λσ=, has a typed notion of equality, and is referred as semantical.

As in traditional PTSs, both families of type systems are parameterised by

signatures; each signature determines a concrete calculus and stipulates the kind

of dependency allowed.

A signature S = (S ,A,R) is given by a set S of sorts, a binary relation A over S ,

and a ternary relation R over S . Elements in A are called axioms and elements in

R, rules.

1 The formal proofs accompanying this paper can be found at http://cs.famaf.unc.edu.ar/∼
mpagano/pts/.
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Let S = (S ,A,R) be a signature and let s ranges over S , the syntax of pre-terms

and pre-substitutions are defined by

Term � A,B, t, r ::= q | s | App t r | λt | FunAB | t σ
Sub � σ, δ ::= p | 〈σ, t〉 | δ σ | id

Ctx � Γ ::= � | Γ, A

2.1 Notation

We use some conventions for meta-variables ranging over pre-terms, pre-substi-

tutions, and pre-contexts: capital Greek letters are used for pre-contexts, lower case

Greek letters range over Sub, and Latin letters are for arbitrary pre-terms. Whenever

we write c or s, sometimes primed, we mean a sort, i.e. an element of the set S . The

length of a pre-context Γ is denoted by |Γ|. We use [r] to denote 〈id, r〉.

2.2 About pre-terms and pre-substitutions

The constructors for pre-terms and pre-substitutions are a variant of the calculus λσ

of Abadi et al. (1990): terms are extended with sorts s and FunAB, the constructor

for dependent function spaces. We use juxtaposition both for composition of

substitutions and for the formal application of a substitution to a term; application

of t to r is written App t r. Variables are de Bruijn indices made up from q and the

shifting operator p, so for example the index 3 is written q (p p); here q and p are

the respective names for 1 and ↑ in λσ. In the following, we use pi to denote the

ith-fold self-composition of p, with p0 = id.

The constructors of Sub formalise the various steps involved when performing

substitutions: p is the shifting operator which is used to increment indices when

traversing a binder; σ δ is the composition of substitutions σ and δ; finally, 〈σ, t〉
permits to extend the substitution σ with t, in particular 〈σ, t〉 maps q to t and other

variables to the value assigned by σ. The identity substitution id maps each variable

to itself. In the formalism of Categories with Families of Dybjer (1996), there is an

operator for the empty substitution which is equal to the identity substitution only

under the empty context; we avoid the empty substitution, because it is unclear how

to orient that equation in an untyped reduction rule.

2.3 Normal forms

We define inductively predicates characterising neutral and normal forms; these

notions will be used to define a normalisation function.

Ne � k ::= q | q pi+1 | App k v

Nf � v, V ,W ::= s | FunV W | λv | k

Usually both s and FunV W would be considered neutral terms because when they

appear in head position in an application they do not produce a redex; but such an

application would not be typable, so we treat both s and FunV W as normal forms.
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Fig. 1. Reduction rules.

2.4 PTSs with untyped equality (λσ)

The first family of type systems is the more usual presentation of PTSs, where

equality between types is the congruence relation generated by an untyped reduction

relation between pre-terms.

Definition 1 (Untyped equivalence)

The relation ≡βx ⊆ (Term ∪ Sub) × (Term ∪ Sub) is the congruence closure of the

reduction →βx =→β ∪ →x , shown in Figure 1. The equivalence ≡βx induces an

equivalence relation between pre-contexts, generated by the following rules:

� ≡βx �
Γ ≡βx Δ A ≡βx B

Γ, A ≡βx Δ, B

The confluence of the reduction system →βx can be proved by the same strategy

used in (Abadi et al., 1990; Curien et al., 1996) to prove the confluence of the

system λσ, without meta-variables: first one proves the termination of →x , see

Curien et al. (1992), and then one applies Hardin’s interpretation technique (Hardin,

1989). Kesner (2000) presents an alternative proof which also takes into account η

expansion. The variations – two new constructors for terms and the more liberal

rules for reducing compositions with id in the right – in our reduction rules with

respect to those of λσ do not introduce any difficulty.

2.5 The type systems

There are three forms of judgements in λσ: (i) well-formedness of pre-contexts Γ ,

(ii) typing of terms under a context Γ  t : A, and (iii) typing of substitutions

Γ  σ : Δ. In traditional presentations of PTSs where substitution is an operation

at the meta-level, only the second form of judgement is present; we need the first

form of judgement to ensure that the context of each derivable judgement is well

formed. The third form of judgement states that a pre-substitution is well typed, its

informal meaning is that if one has derived Δ  t : A and the substitution σ can be

typed Γ  σ : Δ, then t σ can be typed under Γ with type Aσ.

The typing rules of λσ are presented in Figures 2 and 3. The rules are basically the

same as those in Muñoz (2001), but without meta-variables. In particular, we also
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Fig. 2. Rules for contexts and terms λσ .

Fig. 3. Rules for substitutions of λσ .

have two rules for substitutions: (sub-ty) and (sub-sort). The latter rule is needed

because otherwise we cannot resolve substitutions in the type when it is a top-sort;

this duplication of rules for substitutions requires to explicitly state by separate the

same result for top-sorts and types. This distinction is avoided in Bloo (2001), where

substitution is explicit on the subject, but a meta-operation in the type.

2.6 Properties of λσ

One of the most important results for a type system is subject reduction, saying that

typing is preserved by untyped reductions. In this section, we prove step-by-step all

the technical lemmas needed for subject reduction.

The first lemma we prove is that every context in a judgement is well formed.

Lemma 2 (Well-formedness of contexts)

1. If Γ  t : C , then Γ .

2. If Γ  σ : Δ, then Γ  and Δ .

Proof

By simultaneous induction on Γ  t : C and Γ  σ : Δ. �

Well formedness of contexts is enough to prove that typing is preserved under

equal contexts, provided the second context is also well formed. We point out that

this result is similar to subject reduction of contexts for traditional PTSs.
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Lemma 3 (Context Conversion)

Let Γ ≡βx Γ′ and Γ′ .

1. If Γ  t : A, then Γ′  t : A.

2. If Γ  σ : Δ, then Γ′  σ : Δ.

Proof

By simultaneous induction on Γ  t : A and Γ  σ : Δ. �

For a well-typed term Γ  t : C , the generation lemma gives information about

the type C depending on the shape of the term t. In traditional PTSs, this lemma

comes after the so called thinning lemma; in λσ thinning is internalised by the use of

explicit substitutions.

Lemma 4 (Inversion for terms)

1. If Γ  s : C , then there exists (s, s′) ∈ A and C ≡βx s′.

2. If Γ  q : C , then there exists s ∈ S , and Γ′  A : s, Γ = Γ′, A, and C ≡βx A p.

3. If Γ  FunAB : C , then there exist (s0, s1, s2) ∈ R, and Γ  A : s0, Γ, A  B : s1,

and C ≡βx s2.

4. If Γ  λt : C , then there exist A,B ∈ Term , (s0, s1, s2) ∈ R, Γ  A : s0, Γ, A 
B : s1, Γ, A  t : B, and C ≡βx FunAB.

5. If Γ  App t r : C , then there exist A,B ∈ Term , Γ  t : FunAB, Γ  r : A, and

C ≡βx B 〈id, r〉.
6. If Γ  t σ : C , then there exist Σ and s such that Γ  σ : Σ and either

a. Σ  t : s and C ≡βx s; or

b. there exists A ∈ Term , such that Σ  A : s, Σ  t : A, and C ≡βx Aσ.

Proof

The proof of each statement is by straightforward induction on derivations: for each

point, there are two possible cases for the last rule used, either the introductory rule

or the conversion rule. �

The analogous lemma for substitutions is proved by the same reasoning; here we

use the fact that ≡βx is an equivalence relation for contexts.

Lemma 5 (Inversion for substitutions)

1. If Γ  id : Δ, then Γ ≡βx Δ.

2. If Γ  p : Δ, then there exist Σ, s, and A such that Σ  A : s, Γ = Σ, A, and

Σ ≡βx Δ.

3. If Γ  σ δ : Δ, then there exist Θ and Σ such that Γ  δ : Θ, Θ  σ : Σ, and

Σ ≡βx Δ.

4. If Γ  〈σ, t〉 : Δ, then there exist Σ, s, and A such that Γ  σ : Σ, Σ  A : s,

Γ  t : Aσ, and Σ, A ≡βx Δ.

The inversion lemmas also give information about the types of the immediate

sub-terms of a well-typed term (or substitution); this information is most useful

for proving subject reduction: if Γ e t : C and t →βx t′, we use the typing of the

sub-terms of t to reconstruct a typing derivation for t′.
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The substitution lemma states that one can replace a hypothesis x : A with a fact

r : A, no matter how many other assumptions depended on x. In less picturesque

terms, substitution is usually stated as Γ, x : A,Δ  t : C and Γ  r : A, then Γ,Δ{x :=

r}  t{x := r} : C{x := r}. To formalise the proof of the substitution lemma, we

introduce a new judgement which corresponds to the typing of a list of pre-terms

in a context.

We write [] for the empty list, which can be typed in any well-formed context,

and A � Δ for the list with head A and tail Δ. By abuse of notation, we write |Δ| for

the length of the list Δ.

Definition 6 (Well-typed contexts)

Let Γ be a context and Δ be a list of terms. We define inductively the predicate

Γ  Δ:

Γ 
Γ  []

Γ  A : s Γ, A  Δ

Γ  A � Δ

If Γ  Δ, then one can concatenate Γ with Δ to obtain a well-formed context:

Γ++[] = Γ Γ++(A � Δ) = (Γ, A)++Δ

Lemma 7

Γ  Δ if and only if Γ++Δ .

This notion of concatenation aptly captures the informal notation Γ, A,Δ; we

still have to formalise the meta-operation of applying a substitution over some

suffix of a context. To treat this operation properly, we define the application of a

pre-substitution σ over a list of pre-terms Δ; notice that this does not correspond

to mapping the application of the substitution to each pre-term of the list (as in

traditional PTSs). We also define an operation to repeatedly lift a substitution;

this lifting corresponds to the updating manipulation needed when variables are de

Bruijn indices.

Definition 8 (Substitutions over lists and lifting of substitutions)

[] σ = []

(A � Δ′) σ = (Aσ) � Δ′ 〈σ p, q〉
σ0 = σ

σn+1 = 〈σ p, q〉n

As is to be expected, well typedness of contexts is preserved under substitutions;

and lifting of well-typed substitutions is also well typed.

Lemma 9

Let Δ be a list of terms with n = |Δ|.

1. If Γ  Δ and Θ  σ : Γ, then Θ  Δ σ and Θ++Δ σ  σn : Γ++Δ.

2. If Γ  A � Δ and Γ  r : A, then Γ  Δ [r] and Γ++Δ [r]  [r]n : Γ++A � Δ.

Proof

The first point is by induction on Γ  Δ; the second point follows from the first

one. �
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With all this formal paraphernalia, it is easy to prove substitution. Consider

Γ ++A � Δ  and Γ  r : A; thanks to the previous lemma, we can type the

substitution [r]|Δ|. This lemma is the first one where we need to distinguish between

top-sorts and types.

Lemma 10 (Substitution lemma)

Let Γ++A � Δ , Γ  r : A, and n = |Δ|.

1. If Γ++A � Δ  t : s, then Γ++Δ [r]  t [r]n : s.

2. If Γ++A � Δ  B : s and Γ++A � Δ  t : B, then Γ++Δ [r]  t [r]n : B [r]n.

3. If Γ++A � Δ  σ : Σ, then Γ++Δ [r]  σ [r]n : Σ.

Definition 11 (Types)

A pre-term A is a type under Γ, denoted by Γ  A, if either A is a sort or there exists

s ∈ S such that Γ  A : s.

Lemma 12 (Type validity)

If Γ  t : A, then Γ  A.

Proof

The proof is by induction on derivations, the only non-trivial case is (fun-el): the

premises are Γ  λt : FunAB and Γ  r : A; we need to prove Γ  B 〈id, r〉. By i.h.

on the first premise we know Γ  FunAB : s. We can apply Lemma 4 to conclude

Γ, A  B : s′, from which we conclude Γ  B 〈id, r〉 : s′ using Lemma 10. �

All the results up to here are formalised without any postulate; the proof of subject

reduction depends indirectly on the Church–Rosser property of the reduction →βx .

The main result we need, which can be proved assuming Church–Rosser, is Injectivity

of Products.

Theorem 13 (Subject reduction for λσ)

1. If Γ  t : A and t →βx t′, then Γ  t′ : A.

2. If Γ  σ : Δ and σ →βx σ′, then Γ  σ′ : Δ.

Proof

The proof proceeds by induction on derivations; in each case, we analyse the

reduction and use inversion for getting the types for the sub-terms involved in the

redex. Let us consider the case when the last rule used is (fun-el) and the redex

is at head position: Γ  App (λt) r : B [r], the hypotheses are Γ  λt : FunAB and

Γ  r : A. From inversion (Lemma 4), we know there exist C,D ∈ Term such that

Γ, C  t : D and FunAB ≡βx FunC D. By injectivity of products, we also know

A ≡βx C and B ≡βx D; thus we can conclude Γ, A  t : B by context conversion,

Lemma 3. By the substitution lemma, Lemma 10, we conclude Γ  t [r] : B [r]. �

2.7 PTSs with typed equality (λσ=)

In λσ=, equality is axiomatised as in Martin–Löf type theory, i.e. by a system of

axioms typable under some context. In λσ=, there are six forms of judgements (we

use e for judgements in this family); besides those forms already present in λσ ,
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Fig. 4. Rules for well-formed contexts and their equality.

Fig. 5. Rules for terms of λσ=.

there are three more corresponding to typed equalities for each of the syntactical

categories. Summarising we have the following forms of judgements: (i) well-formed

pre-contexts Γ e, shown in Figure 4, (ii) typing of terms Γ e t : A, presented in

Figure 5, and (iii) typing of substitutions Γ e σ : Δ, in Figure 6; (iv) equality of

contexts e Γ = Δ, also in Figure 4, (v) equality of terms Γ e t = t′ : A, see Figures 7

and 8, and (vi) equality of substitutions Γ e σ = σ′ : Δ, in Figures 9 and 10.

Remark 14

Notice that if Δ e p : Γ1, Γ1 e p : Γ2, . . . , Γn e p : Γ, then Δ e pn+1 : Γ, where pi is the

ith self-composition of p. We write Δ �n Γ if Δ e pn : Γ.

The following fairly technical lemma will be freely used in Section 5. The proof

goes by induction on j.

Lemma 15

If Δ �i Γ and Γ �j Σ, then Δ �i+j Σ and Δ e pi+j = pi ◦ pj : Σ.

2.8 Properties of λσ=

Some of the meta-theoretical results of λσ=require more work than those of λσ ,

because of the mutual dependency between the various forms of judgements. For

Fig. 6. Rules for substitutions of λσ=.
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Fig. 7. Axioms for terms.

Fig. 8. Equality is an equivalence and a congruence for terms.

Fig. 9. Axioms for substitutions.
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Fig. 10. Equality is an equivalence and a congruence for substitutions.

example, to prove that Γ e σ : Δ implies Δ e, one needs to prove e Γ = Δ implies

Δ e, which in turn depends on validity of equality and context conversion.

Lemma 16 (Well formedness of contexts)

1. If Γ e σ : Δ, then Γ e. Moreover if Γ e t : A, then Γ e.

2. If Γ e σ = σ′ : Δ, then Γ e; and if Γ e t = t′ : A, then Γ e.

Proof

First one proves the case for substitutions by induction on derivations; then

using that result, one proceeds to the case for terms, again by induction on

derivations. �

Notice that successive application of the rule (cnv-ty) can use equalities under

different sorts, so we introduce a notion of heterogeneous equality of types in order

to prove an inversion lemma for λσ=. We write Γ e t ≈ t′ if there is a sequence of

equivalences Γ e t = t1 : s1, Γ e t1 = t2 : s2, . . . , Γ e tn = t′ : sn; when n = 0, we have

that t and t′ are the same term.

Definition 17 (Heterogeneous equalities)

Γ e t ≈ t

Γ e t = t′ : s

Γ e t ≈ t′
Γ e t ≈ t′ Γ e t′ = t′′ : s

Γ e t ≈ t′′

e Γ ≈ Γ

e Γ = Δ

e Γ ≈ Δ

e Γ ≈ Δ e Δ ≈ Σ

e Γ ≈ Σ

It is immediate that typing judgements are preserved under these equalities, i.e.

if Γ e t : A and Γ e A ≈ B, then Γ e t : B; the analogous statement for preservation

under heterogeneous equality of contexts should wait until we have proved more

meta-theoretical results.

Lemma 18

If Γ e t : A and Γ e A ≈ B, then Γ e t : B.

Lemma 19 (Inversion of typing)

1. If Γ e s : C , then there exists (s, s′) ∈ A and Γ e C ≈ s′.

2. If Γ e q : C , then there exists s ∈ S , Γ′ e and A ∈ Term , such that Γ′ e A : s,

Γ = Γ′, A, and Γ e C ≈ A p.
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3. If Γ e FunAB : C , then there exists (s0, s1, s2) ∈ R, such that Γ e A : s0,

Γ, Ae B : s1, and Γ e C ≈ s2.

4. If Γ e λt : C , then there exist A,B ∈ Term and (s0, s1, s2) ∈ R, such that

Γ e A : s0, Γ, Ae B : s1, Γ, Ae t : B, and Γ e C ≈ FunAB.

5. If Γ e App t r : C , then there exist A,B ∈ Term , such that Γ e t : FunAB,

Γ e r : A, and Γ e C ≈ B 〈id, r〉,

Proof

Each point is proved independently of the others. All the cases follow by induction

on derivations. �

Lemma 20 (Inversion of typing for substitutions)

1. If Γ e id : Δ, then e Γ ≈ Δ.

2. If Γ e p : Δ, then there exist a pre-context Σ, a sort s, and a term A, such that

Σ e A : s, Γ = Σ, A, and e Σ ≈ Δ.

3. If Γ e σ δ : Δ, then there exist pre-contexts Θ and Σ, such that Γ e δ : Θ,

Θ e σ : Σ, and e Σ ≈ Δ.

4. If Γ e〈σ, r〉 : Δ, then there exist a pre-context Σ, a sort s, and a pre-term A,

such that Γ e σ : Σ, Σ e A : s, Γ e t : Aσ, and e Σ, A ≈ Δ.

Using the same notions defined in the previous section to prove Lemma 10 for λσ ,

we can also prove the substitution lemma for λσ=. We avoid the repetition of those

definitions and state directly the lemma, which is also valid for equalities. Remember

the need to distinguish the cases for terms typed with a sort and terms typed with

another typable term.

Lemma 21 (Substitution lemma)

Let Γ++A � Δ e, Γ e r : A, n = |Δ|, and Γ′ = Γ++Δ [r].

1. If Γ, A,Δ e t : s, then Γ′ e t [r]n : s.

2. If Γ, A,Δ e B : s and Γ, A,Δ e t : B, then Γ′ e t [r]n : B [r]n.

3. If Γ, A,Δ e σ : Σ, then Γ′ e σ [r]n : Σ.

4. If Γ, A,Δ e t = t′ : s, then Γ′ e t [r]n = t′ [r]n : s.

5. If Γ, A,Δ e B : s and Γ, A,Δ e t = t′ : B, then Γ′ e t [r]n = t′ [r]n : B [r]n.

6. If Γ, A,Δ e σ = σ′ : Σ, then Γ′ e σ [r]n = σ′ [r]n : Σ.

Reflexivity of well-formed contexts can be proved without any other result, but it

is necessary to generalise its statement.

Lemma 22 (Reflexivity of contexts)

1. If Γ e, then e Γ = Γ.

2. If Γ e t : A, then e Γ = Γ.

3. If Γ e σ : Δ, then e Γ = Γ.

Proof

We prove simultaneously the three points by induction on derivations. �

Remember that we say a term A is a type under Γ, written Γ e A, if A is a sort

or Γ e A : s for some sort s. As we mentioned, the mutual dependency between the

different forms of judgement complicates the proof of validity of types for λσ=. We
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will explain the mutual relationship between the lemmas needed to prove validity;

this intricacy results in a huge lemma that can be proved by mutual induction in all

the forms of judgements.

Lemma 23 (Validity of types and contexts)

1. If Γ e t : A, then Γ e A.

2. If Γ e σ : Δ, then Δ e.

Because of (cnv-ty), and (cnv-sub), to prove validity of types we need to prove

validity of equality.

Lemma 24 (Validity of equality)

1. If e Γ = Δ, then Γ e and Δ e.

2. If Γ e t = t′ : A, then Γ e t : A and Γ e t′ : A.

3. If Γ e σ = σ′ : Δ, then Γ e σ : Δ and Γ e σ′ : Δ.

In turn to prove validity of equality, one needs to know context conversion, as

can be seen when analysing the following rule:

(fun-cng)

Γ e A = B : s Γ, Ae C = D : s′

Γ e FunAC = FunB D : s′′ (s, s′, s′′) ∈ R

By i.h. on the first premise, we have Γ e A : s and Γ e B : s; also by i.h. on the second

one, we obtain Γ, Ae C : s′ and Γ, Ae D : s′. So we can conclude Γ e FunAC : s′′,

but not Γ e FunB D : s′′. Notice, however, that we can prove e Γ, A = Γ, B; which,

had we context conversion at hand, would suffice to conclude Γ, B e D : s′ and so

Γ e FunB D : s′′.

Lemma 25 (Context conversion)

If Γ e J and e Γ = Δ, then Δ e J .

To prove context conversion, we need in turn Lemma 24. Indeed, consider the

case (axiom), we know e Γ = Δ and Γ e, but we should have Δ e. To deal with this

circularity we prove all these points simultaneously.

Lemma 26 (Validity of judgements for λσ=)

1. If e Γ = Γ′, then (a) symmetry of equality: e Γ′ = Γ, and (b) validity of

contexts: Γ e and Γ′ e.

2. If Γ e t : A and e Γ = Γ′, then (a) type validity: Γ e A and Γ′ e A, and

(b) context conversion: Γ′ e t : A.

3. If Γ e σ : Δ and e Γ = Γ′, then (a) validity of context: Δ e, and (b) context

conversion: Γ′ e σ : Δ.

4. If Γ e t = t′ : A and e Γ = Γ′, then (a) type validity: Γ e A and Γ′ e A;

(b) equality validity: Γ e t : A, Γ e t′ : A, Γ′ e t : A, and Γ′ e t′ : A; and (c) context

conversion: Γ′ e t = t′ : A.

5. If Γ e σ = σ′ : Δ and e Γ = Γ′, then (a) validity of context: Δ e; (b) type

validity: Δ e; (c) equality validity: Γ e σ : Δ and Γ e σ′ : Δ, Γ′ e σ : Δ, and

Γ′ e σ′ : Δ; and (d) context conversion: Γ′ e σ = σ′ : Δ.
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Proof

All the points are proved by simultaneous induction on derivations. Let us analyse

the following rule:
(ext-eq-ctx)

e Γ = Γ′ Γ e A = B : s

e Γ, A = Γ′, B

By i.h. on the first premise, we know (a) Γ e, (b) Γ′ e, and (c) e Γ′ = Γ. By

i.h. on the second premise, using the first premise as the equality of contexts, we

obtain (d) Γ e A : s, (e) Γ e B : s, (f) Γ′ e A : s, (g) Γ′ e B : s, and (h) Γ′ e A = B : s.

From (c) and (h), we conclude e Γ′, B = Γ, A; validity of of Γ, A follows from (a)

and (d). �

An immediate corollary of context conversion is context conversion with respect

to the heterogeneous equality of contexts.

Corollary 27

If Γ e t : A and e Γ ≈ Δ, then Δ e t : A.

3 Equivalence between λσ and λσ=

Now that we have formally introduced the two families of PTSs, we can precisely

state the equivalence between the syntactical, λσ , and semantical, λσ=, versions.

Theorem 28 (Equivalence between λσ and λσ=(Siles, 2010))

1. Γ e t : A iff Γ  t : A.

2. Γ e t = t′ : A iff Γ  t : A,Γ  t′ : A, and t ≡βx t′.

In the Introduction, we have commented on the previous works on this equiv-

alence. Let us remark that the direction from λσ=to λσ is straightforward; a fact

formally proved by Adams and recognised in Geuvers’ PhD thesis (Geuvers, 1993).

The key result to prove the other implication depends on subject reduction for λσ=:

if Γ e t : A and t ≡βx t′, then Γ e t′ : A. In Sections 4 and 5, we use the machinery

of NbE to prove a slightly weaker, but strong enough, version of that lemma for a

class of PTSs. In contrast with our semantical approach, Adams’ and Siles’ results

are based on a typed parallel reduction for PTSs with typed equality. It is not clear

whether their method is applicable to domain-free PTSs.

The proof that any derivation in λσ= has a corresponding derivation in λσ is

relatively straightforward and can be proved for every PTS. We have formally

proved it in Agda.

Theorem 29 (From λσ=to λσ)

If Γ e J , then Γ  J .

Proof

The proof is by mutual induction on all form of judgements; if the last rule used

is an introductory rule, then one can use the same rule on the untyped system.

Typed equalities are transformed into untyped conversions by removing the type

information. �
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The proof in the other direction will occupy the rest of the paper and is quite

different from the others. Let us sketch here the strategy, in the hope of it being

a guide through the technicalities. If we try to prove the statement “Γ  J implies

Γ e J” by induction on derivations, we encounter a problem in the conversion rule:

the premises of the rule are Γ  t : A, Γ  B : s, and A ≡βx B. We get Γ e t : A and

Γ e B : s as the inductive hypotheses; however nothing tell us that there is a typed

equivalence Γ e A = B : s′ for any sort s′. In the light of Lemma 18, it is enought

to prove Γ e A ≈ B, in words: one has to find some term C and sorts s1, s2 such

that Γ e A = C : s1 and Γ e B = C : s2. In the next section, we define a function

nbe : Term → Term with the following properties:

1. If Γ e t : A, then Γ e t = nbe(t) : A;

2. if t ≡βx t′, then nbe(t) ≡ nbe(t′).

With such a function at hand, we can complete the proof for conversion: let

C = nbe(A); from both properties we get Γ e B = C : s. On the other hand, from

inversion on Γ e t : A there is a sort s1 such that Γ e A : s1; therefore by the first

property we obtain Γ e A = C : s1.

Let us remark that any function nbe with those properties will be enough to finish

the proof. For example, one could get such a function from a proof of normalisation

which can be carried out in Agda (Danielsson, 2007; Altenkirch & Chapman, 2009).

The rest of the paper is not formalised in Agda, as we use fairly complicated

mathematics (mainly the existence of solutions for equations of domain equations).

4 Semantics

In this section, we construct a model suitable to define a NbE function for a

restricted class of PTSs. This model validates the untyped conversion →βx ; later

we exploit this property to prove a weak version of subject reduction. We refer the

reader to Abel et al. (2011) for an explanation of the model and the NbE function.

The model construction is based on the existence of a well-founded relation on

sorts; we discuss briefly the issue of modelling impredicative type systems.

4.1 Domain model and reification

Given a signature S = (S ,A,R), our model will be based on the least solution

for the following recursive domain equation, which can be solved in the category

DOM⊥ of pointed ω-cpo and continuous functions (Abramsky & Jung, 1994):

DS = {�}⊥ ⊕ DS ×DS ⊕ �⊥ ⊕ [DS → DS] ⊕ DS ×[DS → DS] ⊕ DS ×DS ⊕ {S }⊥

We use the sub-index S to indicate that the domain is parameterised by the

signature; we skip the sub-index in the domain DS when no confusion arises. Let

us remark that the first two components of the domain are used to internalise

environments, which are the interpretation of substitutions. We use the following

https://doi.org/10.1017/S0956796815000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000210


16 D. Fridlender and M. Pagano

conventions for denoting non-bottom elements of DS:

� (d, d′) for d, d′ ∈ DS

Var i s for i ∈ � and s ∈ S

lam f Fun d f for d ∈ DS and f ∈ [DS → DS]

App d d′ for d, d′ ∈ DS

We internalise application, denoted by · , as a binary operation on D and

projections, π1 and π2, as unary functions over D.

d · e =

⎧⎪⎪⎨
⎪⎪⎩
f e if d = lam f

App d e if d = Var i or d = App d′ d′′

⊥ otherwise

πi d =

{
di if d = (d1, d2)

⊥ otherwise

At this point, we can introduce a reification function which maps some elements

of D to pre-terms; later, the normalisation function consists of the composition of

reification with the interpretation function. Notice that the lack of (η) allows us to

simplify the definition of NbE with respect to Abel et al. (2011).

Definition 30 (Reification function)

Rj (s) = s Rj (FunX F) = Fun (Rj X) (Rj+1 (F (Var j)))

Rj (App d d′) = App (Rj d) (Rj d
′) Rj (lam f) = λ(Rj+1 (f (Var j)))

Rj (Var i) =

{
q if j � i + 1

q pj−(i+1) if j > i + 1

We can identify normal forms and neutral values in the domain by taking the inverse

image of the reification function over the sets of normal forms and neutral terms,

respectively:

Ne =
⋂
i∈�

{d ∈ D | Ri d ∈ Ne} and Nf =
⋂
i∈�

{d ∈ D | Ri d ∈ Nf}

4.2 Denoting types and sorts

In a previous work (Abel et al., 2011), we have used Dybjer’s (2000) schema of

induction–recursion to define the denotation of types; small types were interpreted

as subsets of D and the interpretation of universes was defined together with a

function [ ] mapping elements of the subset of (semantical) types to subsets of D.

For PTSs, it is not possible to use the same approach, because there are signatures

which do not have a well-founded order between sorts.

Given a signature S = (S ,A,R), let us analyse informally which elements of DS
should be in the subset denoting types; remember that a type is either a sort or a

term that can be typed with a sort. By rule (axiom), we know that sorts are among

the possible types; so, S should be included in the universe types. Note also that

terms typed with a sort can also be types; which suggests to add any element of [s]
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to types, for each s ∈ S . The definition of [s] ⊆ DS depends both on axioms and

rules of the system: axioms tell us that if (c, s) ∈ A, then c ∈ [s]. The set R of rules

indicates when one element of the form Fun d f should be a member of [s]. Since

we add Fun d f to types as soon as it is in some [s], we have to define [Fun d f].

If we try to apply that reasoning for the type system type-in-type given by the

signature λ
 = ({
}, {(
, 
)}, {(
, 
, 
)}), we would have the following clause:

Fun d f ∈ [
], if d ∈ [
] and f e ∈ [
] for all e ∈ [d]

This is a typical issue of impredicative definitions: to decide if some element belongs

to [
] we should test a condition over all the elements in that very same set.

We can safely use the inductive–recursive schema by restricting our attention to

predicative PTSs as captured by the following definition.

Definition 31 (Predicative PTSs)

A specification S = (S ,A,R) is called predicative if there is a well-founded order

over the sorts, �⊆ S 2, such that

1. if (s1, s2) ∈ A, then s1 ≺ s2;

2. if (s1, s2, s3) ∈ R, then s1 � s3 and s2 � s3.

The next definition introduces subsets of D for predicative PTSs. In order to

understand it, one should think that first one defines [s] inductively for every

minimal element s ∈ S (minimal with respect to the underlying order making the

signature predicative).

Definition 32

Let S = (S ,A,R) be a predicative specification. The following rules define simulta-

neously T ⊆ DS and [d] ⊆ DS, for every d ∈ T .

Ne ⊆ T S ⊆ T

d ∈ T f e ∈ T , for all e ∈ [d]

Fun d f ∈ T

(s, s′) ∈ A

s ∈ [s′]

(s, s′, s′′) ∈ R d ∈ [s] f e ∈ [s′], for all e ∈ [d]

Fun d f ∈ [s′′]

d ∈ T

Ne ⊆ [d]

g e ∈ [f e], for all e ∈ [d]

lam g ∈ [Fun d f]

The well-founded order over S extends to a well-founded order � over [s], for

every s ∈ S , and over T . We can characterise the order � as follows: an element d

is minimal with respect to � if d ∈ Ne, or d = s ∈ S and s is minimal with respect

to �; s � s′ if s � s′, and if Fun d f ∈ T , then d � Fun d f and f e � Fun d f, for all

e ∈ [d].

Remark 33

Notice that if d ∈ [FunX F] and e ∈ [X], then d · e ∈ [F e].

By abusing the terminology, we say that X ⊆ D is saturated if Ne ⊆ X ⊆ Nf .

The first result we prove using well-founded induction over T is that every subset

denoting types, that is [d] for every element d ∈ T , is saturated.
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Lemma 34

For all d ∈ T , [d] is saturated. An immediate corollary is that T itself is saturated.

4.3 Interpretation and soundness

The missing pieces of the semantics are the interpretation of terms and the

satisfaction of judgements in the model.

� �t : Term × D → D

�s�td = s

�q�td = π2 d

�App t r�td = �t�td · �r�td

�λt�td = lam (e �→ �t�t (d, e))

�t σ�td = �t�t (�σ�sd)

�FunAB�td = Fun (�A�td) (e �→ �B�t (d, e))

� �s : Sub × D → D

�id�sd = d

�〈σ, t〉�sd = (�σ�sd, �t�td)

�p�sd = π1 d

�σ δ�sd = �σ�s (�δ�sd)

Since the interpretation is given for pre-terms and pre-substitutions, we can prove

that the interpretation models the untyped equality.

Lemma 35

If t ≡βx t′ and d ∈ D, then �t�d = �t′�d.

The semantics of judgements uses the set T and the mapping [ ] : T → P(D). In

the following definition, we state formally the validity of judgements in the model

and introduce, at the same time, the semantics of well-formed contexts.

Definition 36 (Validity)

1. Well formedness of contexts:

a. � �;

b. Γ, A � iff Γ � A : s for some sort s;

2. Semantics of valid contexts:

a. � ∈ ���;

b. If d ∈ �Γ� and d′ ∈ [�A�d], then (d, d′) ∈ �Γ, A�.

3. � Γ = Γ′ iff �Γ� = �Γ�′.

4. Γ � t : A iff Γ � and �t�d ∈ [�A�d], for all d ∈ �Γ�.

5. Γ � δ : Δ iff Γ �, Δ � and �δ�d ∈ �Δ�, for all d ∈ �Γ�.

6. Γ � t = t′ : A iff Γ � t : A and �t�d = �t′�d, for all d ∈ �Γ�.

7. Γ � δ = δ′ : Δ iff Γ � δ : Δ and �δ�d = �δ′�d, for all d ∈ �Γ�.

Theorem 37 (Soundness of the model )

If Γ e J , then Γ � J .

By soundness, we know that each typed term is interpreted as an element of the

denotation of the type; moreover, we know that judgmentally equal elements have

the same denotation. As a corollary, we know that they have the same normal form.

Corollary 38 (Completeness of normalisation)

If Γ e t = t′ : A and d ∈ �Γ�, then Rj (�t�d) ≡ Rj (�t′�d), for any j ∈ �.
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5 Correctness of NbE

The proof of the equivalence between λσ and λσ=can be completed once subject

reduction is proved for the latter:

Definition 39 (Subject reduction)

Let S = (S ,A,R) be a signature, we say that the corresponding system λσ=satisfies

Subject reduction if Γ e t : A and t →βx t′ imply Γ e t = t′ : A.

Subject reduction in turn depends on having injectivity of Fun:

Definition 40 (Injectivity of Fun)

We say that a system satisfies Injectivity of Fun, denoted by Inj (Fun), if Γ e FunAB =

FunA′ B′ : C implies Γ e A = A′ : s0 and Γ, Ae B = B′ : s1, for some sorts s0 and s1.

Adams devised a new type system, with more annotations, satisfying several

properties, which lead to a proof of Inj (Fun) for λσ=. His proofs depends on

uniqueness of types, which in turn depends on the signature being injective. Siles

and Herbelin get rid of that condition by modifying the annotations; they manage

to prove subject reduction for the annotated system which can later be used to

transfer that result for λσ=. Their results are purely syntactical and do not rely on

the normalisation of the calculus.

As we advanced at the end of Section 3, our approach is different. Following

previous works (Abel et al., 2007, 2008, 2011), we use Kripke logical relation to prove

the correctness of the normalisation function nbe: if Γ e t : A, then Γ e t = nbe(t) : A.

From correctness and Lemma 35, we get weak subject reduction for λσ=: if Γ e t : A
and t →∗

βx t′, then there exists t′′ such that Γ e t = t′′ : A, and t′ →∗
βx t′′.

The logical relations are slightly different than those for Martin–Löf type theory:

for PTSs, there is only one kind of logical relations relating terms typable with A

under context Γ with elements of [X] with X ∈ T :

Γ e : A �� ∈ [X] ⊆ {t | Γ e t : A} × [X]

Definition 41 (Logical Relations)

Let X ∈ T , Γ e A, d ∈ [X], and Γ e t : A, then Γ e t : A �� d ∈ [X] if and only if

1. for X ∈ Ne

a. there exists s ∈ S , such that Γ e A : s and for all Δ �i Γ, Δ e A pi = R|Δ| X : s;

and

b. for all Δ �i Γ, Δ e t pi = R|Δ| d : A pi.

2. for X = s ∈ S and d ∈ Ne ∪ S :

a. either A = s or there exists s′ ∈ S such that, for all Δ �i Γ, Δ e A pi = s : s′;

and

b. for all Δ �i Γ, Δ e t pi = R|Δ| d : s.

3. for X = s ∈ S and d = FunX ′ F

a. either A = s or there exists s′ ∈ S such that, for all Δ �i Γ, Δ e A pi = s : s′;

and
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b. there exist s0, s1 ∈ S , such that (s0, s1, s) ∈ R; and

c. there exist A′, B ∈ Term such that Γ e t = FunA′ B : s

d. Γ e A′ : s0 �� X ′ ∈ [s0]; and

e. for all Δ �i Γ and Δ e r : A′ pi �� e ∈ [X ′], Δ e B 〈pi, r〉 : s1 �� F e ∈ [s1].

4. for X = FunX ′ F

a. there exist s0, s1, s ∈ S , such that (s0, s1, s) ∈ R; and

b. there exist A′, B ∈ Term , such that Γ e A = FunA′ B : s and Γ e A′ : s0 ��

X ′ ∈ [s0]; and

c. for all Δ �i Γ and Δ e r : A′ pi �� e ∈ [X ′], Δ e App (t pi) r : B 〈pi, r〉 �� d · e ∈
[F e]; and

d. if d = lam f, then there exists t′ ∈ Term , such that Γ e t = λ t′ : A; and

e. if d ∈ Ne, then for all Δ �i Γ, Δ e t pi = R|Δ| d : A pi.

The following two technical lemmas are necessary to prove the third one,

sometimes called in-out lemma. This lemma allows us to deduce that if a term

t is related with some element d, then t is judgementally equal to the reification of

d. The proofs of these three lemmas are presented in the Appendix.

Lemma 42 (Preservation of the logical relation by judgemental equality)

Let Γ e t : A �� d ∈ [X].

1. If Γ e t = t′ : A, then Γ e t′ : A �� d ∈ [X].

2. If Γ e A : s �� X ∈ [s] and Γ e A = B : s, then Γ e t : B �� d ∈ [X].

Lemma 43 (Monotonicity of logical relations)

1. If Γ e t : s �� d ∈ [s] and Δ �i Γ, then Δ e t pi : s �� d ∈ [s].

2. If Γ e A : s, Γ e t : A �� d ∈ [X] and Δ �i Γ, then Δ e t pi : A pi �� d ∈ [X].

Lemma 44 (Derivability of equality of reified elements)

1. Let Γ e t : A �� d ∈ [X] and Δ �i Γ, then Δ e t pi = R|Δ| d : R|Δ| X.

2. Conversely, if Γ e A : s �� X ∈ [s], k ∈ Ne and Δ e t pi = R|Δ| k : A pi, for all

Δ �i Γ, then Γ e t : A �� k ∈ [X].

To deduce correctness of NbE, we just have to show that every well-typed term t

is related with its denotation under a suitable environment. The fundamental theorem

is a more general version of that result; its statement requires to introduce logical

relations between substitutions and environments modelling contexts. These relations

are defined by recursion on the codomain of substitutions.

Definition 45 (Logical relation for substitutions)

If Γ e and Δ e, then Γ e : Δ �� ∈ �Δ� ⊆ {σ | Γ e σ : Δ} × {d | d ∈ �Δ�}.

1. Γ e σ : � �� d ∈ ���.

2. Γ e σ : Δ, A �� (d, d′) ∈ �Δ, A� iff Γ e p σ : Δ �� d ∈ �Δ� and Γ e q σ : A (p σ) ��

d′ ∈ [�A�d].

By induction on the codomain of substitutions, we can easily prove preservation

of the relations by judgemental equality of substitutions and weakening. Notice

the lack of a counterpart for lemma 44, which is justified because we do not reify

environments.
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Lemma 46

Let Γ e σ : Δ �� d ∈ �Δ�.

1. If Γ e σ = σ′ : Δ, then Γ e σ′ : Δ �� d ∈ �Δ�.

2. If Θ �i Γ, then Θ e σ pi : Δ �� d ∈ �Δ�.

Theorem 47 (Fundamental theorem of logical relations)

1. If s ∈ S , s is a top-sort, Γ e t : s, and Δ e δ : Γ �� d ∈ �Γ�, then Δ e t δ : s ��

�t�d ∈ [s].

2. If Γ e t : A and Δ e δ : Γ �� d ∈ �Γ�, then Δ e t δ : Aδ �� �t�d ∈ [�A�d], providing

A is not a top-sort.

3. If Γ e γ : Θ and Δ e δ : Γ �� d ∈ �Γ�, then Δ e γ δ : Θ �� �γ�d ∈ �Θ�.

Proof

By induction on typing derivations.

1. The first two points are shown by the following cases.

a. Γ e s′ : s by (axiom): we have �s�d = s, since (s, s′) ∈ A we also have s ∈ [s′],

and the reification of s is s itself. On the other hand, we can use (sub-sort)

to conclude Δ′ e(s δ) pi = s : s′, for any Δ′ �i Δ.

b. Γ e FunAB : s3 by (fun-f): first we need to prove that there exists A′, B′ ∈
Term such that Δ e(FunAB) δ = FunA′ B′ : s3; we get this by (fun-sub):

A′ = Aδ and B′ = B 〈δ p, q〉. The second point to prove is Δ e Aδ : s1 ��

�A�d ∈ [s1]; this follows from the i.h. on Γ e A : s1. Finally, let

Δ′ e r : (Aδ) pi �� e ∈ [�A�d]; then, by definition of logical relations for

substitutions, Δ′ e〈δ pi, r〉 : Γ, A �� (d, e) ∈ �Γ, A�. By i.h. on Γ, Ae B : s2,

we have Δ′ e B 〈δ pi, r〉 : s2 �� �B�(d, e) ∈ [s2]; by Lemma 42 we conclude

Δ′ e B 〈δ p, q〉 〈pi, r〉 : s2 �� �B�(d, e) ∈ [s2].

c. Γ e λt : FunAB by (fun-i): It is easily proved, using (abs-sub), that there

exists t′, such that Γ e(λt) δ = λt′ : (FunAB) δ. The main point is proved

in a similar way as we proved the second condition in the previous rule.

First, we note App λ(t 〈δ p, q〉) pi r = t 〈δ pi, r〉 by applying successively

the following rules (app-cong), (comp-subs), (beta), (ass-subs), (dist-subs),

(fst-subs), (snd-subs). Now let Δ′ �i Δ and Δ′ e r : (Aδ) pi �� e ∈ [�A�d]; so

by i.h. on Γ, Ae t : B we know Δ′ e t 〈δ pi, r〉 : B 〈pi, r〉 �� �t�(d, e) ∈ [(�B�d) e].

d. Γ, Ae q : A p by (hyp): by inversion on the hypothesis, Δ e δ : Γ �� d ∈ �Γ�,

we know δ = 〈δ′, t〉 and d = (d′, e); since q 〈δ′, t〉 = t and �q�(d′, e) = e;

the only point to prove Δ e t : Aδ′ �� e ∈ [�A�d′] comes again from the

hypothesis.

e. Γ e t σ : Aσ by (subs-tm): this is easily seen to hold by i.h. on both premises.

f. Γ e Aσ : s by (subs-s): as in the previous point by i.h.

g. Γ e t : B by (conv): we use the i.h. and Lemma 42.

2. For substitutions:

a. Γ e id : Γ by (id-subs): by Lemma 46 on the main hypothesis and Γ e id δ =

δ : Δ.
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b. Γ e〈σ, t〉 : Θ, A by (ext-subs): we apply the i.h. on both premises, Γ e σ : Θ

and Γ e t : Aσ, to get, respectively, Δ e σ δ : Θ �� �σ�d ∈ �Θ� and

Δ e t δ : (Aσ) δ �� �t�d ∈ [�Aσ�d]. By Lemma 46 and Lemma 42 we

conclude Δ e p 〈σ δ, t σ〉 : Θ �� �σ�d ∈ �Θ� and Δ e q 〈σ δ, t σ〉 : A (σ δ) ��

�t�d ∈ [�Aσ�d].

c. Γ e σ γ : Θ by (comp-subs): by applying the i.h. twice: first on Γ e γ : Σ with

the main hypothesis to get Δ e δ γ : Σ �� �γ�d ∈ �Σ�; and then with that

substitution we can apply the i.h. on Σ e σ : Θ to get Δ e σ (γ δ) : Θ ��

�σ�(�γ�d) ∈ �Θ�.

d. Γ, Ae p : Γ by (fst-subs): by definition of the logical relation for substitutions

Δ e p δ : Γ �� d ∈ �Γ�.

�

By induction on Γ e, we define an environment ρΓ which models Γ and is

logically related with the identity substitution id. The normalisation function is the

composition of the reification with the evaluation under the environment ρΓ.

Definition 48 (Canonical environment and normalisation function)

nbeΓ(t) = R|Γ| (�t�ρΓ), where ρ� = �
ρΓ,A = (ρΓ,Var |Γ|)

Lemma 49

If Γ e, then Γ e id : Γ �� ρΓ ∈ �Γ�.

An immediate corollary of the previous results in this section is correctness of

NbE.

Theorem 50 (Correctness of NbE )

If Γ e t : A, then Γ e t : A �� �t�ρΓ ∈ [�A�ρΓ] and Γ e t = nbeΓ(t) : A.

Proof

We can instantiate Theorem 47 with the identity substitution and the canoni-

cal environment deducing Γ e t id : A id �� �t�ρΓ ∈ [�A�ρΓ], and by Lemma 42,

using (sub-id-t), Γ e t : A �� �t�ρΓ ∈ [�A�ρΓ]; by Lemma 44 we obtain Γ e t =

R|Γ| (�t�ρΓ) : A. �

Although it is not needed in our proof method, we can prove a weaker version of

Inj (Fun) by using the fundamental theorem of logical relations and completeness of

the normalisation function.

Lemma 51 (Weak injectivity of Fun)

If Γ e FunAB = FunA′ B′ : C , then Γ e A ≈ A′ and Γ, Ae B ≈ B′.

Proof

From Γ e FunAB = FunA′ B′ : C , we get by validity of equality (Lemma 26,4b)

Γ e FunAB : C (a) and Γ e FunA′ B′ : C (b)

By inversion (Lemma 19) on (a), we know Γ e A : s0 and Γ, Ae B : s1 for some s0, s1 ∈
S; by Theorem 50 we conclude Γ e A = nbeΓ(A) : s0 and Γ, Ae B = nbeΓ,A(B) : s1. By

the same token, on (b) we get Γ e A′ = nbeΓ(A′) : t0 and Γ, A′ e B = nbeΓ,A′
(B′) : t1.
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To conclude, notice that by Corollary 38 we know nbeΓ(FunAB) ≡ nbeΓ(FunA′ B′),

which implies nbeΓ(A) ≡ nbeΓ(A′), therefore we can derive Γ e A = nbeΓ(A′) : s0. The

proof of the heterogeneous equality for the codomains is slightly more involved: first

notice that e Γ, A′ ≈ Γ, A, therefore by Corollary 27 we get Γ, Ae B′ = nbeΓ,A′
(B′) : t1.

Since nbeΓ,A(B) ≡ nbeΓ,A′
(B′), we can also derive Γ, Ae B = nbeΓ,A′

(B′) : s1, so we

have by transitivity Γ, Ae B ≈ B′, �

The counterexample for injectivity of products given by Siles and Herbelin (2012)

uses the type of abstractions. Although not directly translatable, their example can

be adapted.

Lemma 52 (Failure of injectivity of Fun)

There is a predicative signature S = (S ,Ax ,Rel ), terms A, B, A′, C , s ∈ S , and a

context Γ, such that Γ e FunAB = FunA′ B : C , but Γ �e A = A′ : s.

Proof

The signature is given by S = {u, v1, v2, w, w1, w2, z}, Ax = {(u, v1), (u, v2), (v1, w1),

(v2, w2), (v1, w), (v2, w), (w, z)}, and Rel = {(v1, w, w), (v2, w, w), (z, w1, z), (z, w2, z)}, with

s ≺ s′ if (s, s′) ∈ Ax .

We can derive � e λu : Fun v1 v1 and also � e λu : Fun v2 v2. Notice that the absence

of a rule (w1, w2, s) impedes us to derive � e λu : Fun v1 v2. Let Ai = App (λu) vi, then

� e Ai : vi; moreover if � e Ai : Di, then � e Di ≈ vi. We can easily prove � e Ai = u : vi.

Leading to derivations of � e FunAi v1 = Fun u v1 : w. From those premises is easy

to conclude � e FunA1 v1 = FunA2 v1 : w.

Now suppose � e A1 = A2 : s, then by validity of equality � e Ai : s; then � e s ≈ v1

and � e s ≈ v2, which is absurd by consistency. �

6 From λσ to λσ=

In the last section, we prove subject reduction for λσ=using correctness and complete-

ness of NbE. Subject reduction is enough to complete the proof of the equivalence

between λσ and λσ=for predicative PTSs. Since our model construction is only

suitable for predicative PTSs, the results in this section are restricted to that class

of PTSs.

Lemma 53 (Logical relations are preserved by untyped conversion)

1. If Γ e t : A and t ≡βx t′, then Γ e t : A �� �t′�ρΓ ∈ [�A�ρΓ].

2. If Γ e σ : Δ and σ ≡βx σ′, then Γ e σ : Δ �� �σ′�ρΓ ∈ �Δ�.

Proof

By Theorem 50 on the first hypothesis Γ e t : A �� �t�ρΓ ∈ [�A�ρΓ] and by Lemma 35,

�t�ρΓ = �t′�ρΓ, therefore Γ e t : A �� �t′�ρΓ ∈ [�A�ρΓ]. �

Corollary 54 (Weak subject reduction for λσ=)

1. If Γ e t : A and t ≡βx t′, then Γ e t = nbeΓ(t′) : A.

2. If Γ e, Δ e, and Γ ≡βx Δ, then there exists Σ such that e Γ = Σ and e Σ = Δ.
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Proof

1. Immediate from the previous lemma.

2. By induction on Γ ≡βx Δ: if both are the empty context, then Σ is also the

empty context. If Γ ≡ Γ′, A and Δ ≡ Δ′, B, then by i.h. there exists Σ′ such

that e Γ′ = Σ′ and e Σ′ = Δ′; by inversion and by Corollary 54 we have

Γ′ e A = nbeΓ′ (B) : s, so we conclude e Γ′, A = Σ′, nbeΓ′ (B). On the other hand,

by Theorem 50, and (sym-eq), we also have Δ′ e nbeΓ′ (B) = B : s′, so we can

conclude e Δ′, B = Σ′, nbeΓ′ (B).

�

Finally, we can prove the second part of Theorem 28; the formal proof of the next

theorem assumes as a postulate the last corollary. Since that corollary depends on

the results of the previous two sections, the next theorem only applies to predicative

PTSs.

Theorem 55 (From λσ to λσ=)

Let S = (S ,A,R) be a predicative signature.

1. If Γ , then Γ e.

2. If Γ  t : A, then Γ e t : A.

3. If Γ  σ : Δ, then Γ e σ : Δ.

Proof

By induction on derivations. We explain the case for (conv): the premises are

Γ  t : A, Γ  B : s and A ≡βx B. By i.h. on the first premise, we know Γ e t : A,

and by i.h. on the second premise, Γ e B : s. By type validity on Γ e t : A, there

is a sort s′, such that Γ e A : s′. By Theorem 50 Γ e A = nbe(A) : s′; therefore

by (conv), Γ e t : nbe(A). From Γ e B : s and A ≡βx B, by Corollary 54 we know

Γ e B = nbeΓ(A) : s. Now we can apply (conv) again to get Γ e t : B. �

Corollary 56

If Γ  t : A, Γ  t′ : A, and t ≡βx t′, then Γ e t = t′ : A.

Proof

By Theorem 55, we have Γ e t : A and Γ e t′ : A. By Corollary 54, we know Γ e t =

nbeΓ(t′) : A; and, by Theorem 50 Γ e t′ = nbeΓ(t′) : A. We conclude by (sym) and

(trans). �

7 Conclusion and future work

We introduced a new formulation of PTSs with explicit substitutions and formalised

in Agda some meta-theoretic results about them. By exploiting proof methods of

previous works on NbE for dependent-type theory, we have been able to show the

equivalence between predicative PTSs with typed equality and untyped conversion.

Let us remark that it is the proof method, and not the result in itself, which should

be considered as novel.

Our next goal is to prove the equivalence between λσ and λσ=extended with η.

We are confident that our method can be adapted, again only for predicative PTSs,
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and we are now working on that. There are, however, several details to be sorted

out, beginning with the formulation of the η rule in the untyped setting. As far as

we know, the equivalence is known only for functional, normalising PTSs (Geuvers

& Werner, 1994) and for a restricted η-reduction in the setting of domain-free PTSs

(Barthe & Coquand, 2006).

Another interesting direction is to extend NbE to impredicative PTSs, Abel (2010)

has made some progress towards defining NbE for the core calculus of constructions.

Since NbE can also cope with systems featuring subtyping (Fridlender & Pagano,

2013), the method should also be useful for PTSs with a hierarchy of sorts as in

ECC (Luo, 1994).

We plan also to study more deeply the meta-theory of PTSs with explicit

substitutions and complete its formalisation in Agda, for instance we would like

to formalise the equivalence between λσ and the domain-free PTSs of Barthe &

Sørensen (2000); this result would allow to transfer the results in this article to

PTSs presented without explicit substitutions and named variables. It would be also

interesting to extend our presentation with meta-variables, which will require to

change the calculus of explicit substitutions since σ is not confluent in open terms.
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Löf type theory. In Proceedings of the 9th International Conference on Mathematics of

Program Construction, MPC 2008, Marseille (Luminy), France, 15–18 July 2008, Audebaud,

P. & Paulin-Mohring, C. (eds), Lectures Notes in Computer Science, vol. 5133. Springer,

pp. 29–56.

Abel, A., Coquand, T. & Pagano, M. (2011) A modular type-checking algorithm for type

theory with singleton types and proof irrelevance. Log. Methods Comput. Sci. 7(2:4), 1–57.

Abramsky, S. & Jung, A. (1994) Domain Theory. Oxford University Press. pp. 1–168.

Adams, R. (2006) Pure type systems with judgemental equality. J. Funct. Program. 16(2),

219–246.

Altenkirch, T. & Chapman, J. (2009) Big-step normalisation. J. Funct. Program. 19(3-4),

311–333.

https://doi.org/10.1017/S0956796815000210 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000210


26 D. Fridlender and M. Pagano

Asperti, A., Ricciotti, W., Coen, C. S. & Tassi, E. (2011) The Matita interactive theorem prover.

In Cade, Wroc�law, Poland, 31 July–5 August 2011, Bjørner, N. & Sofronie-Stokkermans,

V. (eds), Lecture Notes in Computer Science, vol. 6803. Springer, pp. 64–69.

Barendregt, H. (1992) Lambda calculi with types. In Handbook of Logic in Computer Science,

Abramsky, S., Gabbay, D. M., & Maibaum, T. S. E. (eds), Oxford University Press, pp.

117–309.

Barras, B. (1998) Verification of the interface of a small proof system in coq. In Types

for Proofs and Programs, Aussois, France, December 15–19, 1996, Giménez, E. & Paulin-
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A Proofs

Proof of Lemma 34

By well-founded induction over �. If d is minimal, then [d] = Ne. If d is not minimal,

then either d = s or d = Fun d′ f:

1. for d = s: since S ⊆ Nf , we only consider Fun d′ f ∈ [s] arising from some

rule (s0, s1, s) ∈ R. By i.h. on s0, d′ ∈ Nf; and by i.h. on d′, Ne ⊆ [d′];

therefore f (Var i) ∈ [s1] for every Var i. By i.h. on s1, f (Var i) ∈ Nf . Therefore,

Fun d′ f ∈ Nf .

2. for d = Fun d′ f: if e ∈ [Fun d′ f], then either e ∈ Ne or e = lam g. We consider

only this last case: by i.h. on d′ we know Ne ⊆ [d′]; therefore, for every Var i,

g (Var i) ∈ [f (Var i)]. By i.h. on f (Var i) we know g (Var i) ∈ Nf .

�

Proof of Lemma 35

By induction on t ≡βx t′; note that it is enough to prove that the interpretation

models the reduction relations. We show some cases.

1. (beta):

�App (λt) t′�d = �λt�d · �t′�d = lam (e �→ �t�(d, e)) · �t′�d

= �t�(d, �t′�d) = �t�(�〈id, t′〉�d) = �t 〈id, t′〉�d

2. (fun-subs):

�(FunAB) σ�d = �FunAB�(�σ�d)

= Fun (�A�(�σ�d)) (e �→ �B�(�σ�d, e))

= Fun (�A�(�σ�d)) (e �→ �B�(�σ�(�p�(d, e)), e))

= Fun (�A�(�σ�d)) (e �→ �B�(�σ p�(d, e), �q�(d, e)))

= Fun (�A�(�σ�d)) (e �→ �B�(�〈σ p, q〉�(d, e)))

�

Proof of Theorem 37

By induction on Γ e J; note that the last two items are proved by the inductive

hypothesis and using Lemma 35.
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1. (empty-ctx): trivial.

2. (ext-ctx) Γ, Ae: by i.h. on Γ e A : s.

3. (axiom) Γ e s′ : s: by i.h. Γ � and by definition of the model s ∈ [s′].

4. (fun-f) Γ e FunAB : s2: by i.h. Γ �, Γ � A : s0; also by i.h. Γ, A � B : s1. From

the last two conditions we see that Fun (�A�d) (e �→ �B�(d, e)) ∈ [s2] for any

d ∈ �Γ�.

5. (fun-i) Γ e λt : FunAB: by i.h. Γ �, Γ � A : s0, Γ, A � B : s1, and Γ, A � t : B.

The last condition implies �t�(d, e) ∈ [�B�(d, e)] for any d ∈ �Γ� and e ∈ [�A�d];

therefore �λt�d ∈ [�FunAB�d] for any d ∈ �Γ�.

6. (fun-el) Γ e App t r : B 〈id, r〉: by i.h. Γ � t : FunAB and Γ � r : A; therefore

for any d ∈ �Γ�, �r�d ∈ [�A�d]. By Rem. 33, �t�d · �r�d ∈ [�B�(d, �r�d)].

7. (sub-ty) Γ e t σ : Aσ: by i.h. Γ � σ : Δ. For d ∈ �Γ�, then �σ�d ∈ �Δ�; therefore

by i.h. on Δ e t : A, we have �t�(�σ�d) ∈ [�A�(�σ�d)].

8. (sub-sort) Γ e Aσ : s: as in the previous item.

9. (hyp) Γ, Ae q : A p: (d, e) ∈ �Γ, A� if d ∈ �Γ� and e ∈ [�A�d]; that is enough to

conclude, because �A p�(d, e) = �A�d and �q�(d, e) = e.

10. (conv) Γ e t : B: by i.h. �t�d ∈ [�A�d] for any d ∈ �Γ�; by i.h. �A�d = �B�d,

therefore �t�d ∈ [�B�d].

11. (ext-subs) Γ e〈σ, t〉 : Δ, A: for d ∈ �Γ�, by i.h. �σ�d ∈ �Γ� and �t�d ∈ [�Aσ�d].

12. (comp-subs) Γ e σ δ : Δ: using the same reasoning as for (sub-ty).

13. (fst-subs) Γ, Ae p : Γ: using the same reasoning as for (hyp).

�

Proof of Lemma 42

By induction on X ∈ T .

1. X ∈ Ne: the first condition is obtained directly from the main hypothesis it

depends on the type. For the second condition, let Δ �i Γ:

(trans)

(sym)

(sub-eq-ty)

Δ e pi = pi : Γ Γ e A : s Γ e t = t′ : A

Δ e t pi = t′ pi : A pi

Δ e t′ pi = t pi : A pi Δ e t pi = R|Δ| d : A pi

Δ e t′ pi = R|Δ| d : A pi

2. X = s ∈ S and d ∈ Ne: if A = s, then

(trans)

(sym)

(sub-eq-sort)

Δ e pi = pi : Γ Γ e t = t′ : s

Δ e t pi = t′ pi : s

Δ e t′ pi = t pi : s Δ e t pi = R|Δ| d : s

Δ e t′ pi = R|Δ| d : s

If there exists s′ ∈ S and for all Δ �i Γ, Δ e A pi = s : s′, then we know, by

validity of equality, Γ e A : s′, therefore
Δ e pi = pi : Γ Γ e A : s′ Γ e t = t′ : A

Δ e t pi = t′ pi : A pi

Δ e t′ pi = t pi : A pi Δ e A pi = s : s′

Δ e t′ pi = t pi : s Δ e t pi = R|Δ| d : s

Δ e t′ pi = R|Δ| d : s
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3. X = s ∈ S and d = FunX ′ F: from the main hypothesis, we get s0, s1 ∈ S

and (s0, s1, s) ∈ R; moreover we know there are A′, B ∈ Term such that

Γ e t = FunA′ B : A; hence our witnesses are also A′ and B:
Γ e t = t′ : A

Γ e t′ = t : A Γ e t = FunA′ B : A

Γ e t′ = FunA′ B : A

Since A′ and B satisfy the third and four items we are done.

4. X = FunX ′ F: from the main hypothesis we get s0, s1, s ∈ S such that

(s0, s1, s) ∈ R and A′, B ∈ Term , such that Γ e A = FunA′ B : s. For the

third point, we use the inductive hypothesis with Δ e App (t pi) r : B 〈pi, r〉 ��

d · e ∈ [F e] and Δ e App (t pi) r = App (t′ pi) r : B 〈pi, r〉.
The last two items are immediate using (sym) and (trans).

�

Proof of Lemma 43

By induction on X ∈ T .

1. X ∈ Ne: from the main hypothesis, we know there exists s ∈ S such that

Γ e A : s and for all Θ �k Γ, Θ e A pk = R|Θ| X : s. Let Σ �j Δ, then by

Lemma 15 Σ �j+i Γ, thus Σ e A pj+i = R|Σ| X : s, from which we can conclude

Σ e(A pi) pj = R|Σ| X : s. The second part follows the same reasoning.

2. X = s and d ∈ Ne ∪ S : As the previous point.

3. X = S and d = FunX ′ F:

4. X = FunX ′ F: From the definition of the logical relations, we know that there

exist (s1, s2, s3) ∈ R and C,D ∈ Term such that Γ e A = FunC D : s3. We get

by congruence Δ e A pi = Fun (B pi) (C 〈pi+1, q〉) : s3, and by i.h. Δ e B pi : s1 ��

X ′ ∈ [s1]. Let Θ �j Δ and Θ e r : (B pi) pj �� e ∈ [X ′]; by Lemma 42 we

have Θ e r : B pi+j �� e ∈ [X ′]; thus by def. Θ e App (t pi+j) r : C 〈pi+j , r〉 ��

d · e ∈ [F e]; and using Lemma 42 again we conclude Θ e App ((t pj) pj)

r : C 〈pi p, q〉 〈pj , r〉 �� d · e ∈ [F e]. Finally, we do case analysis on d ∈
[FunX ′ F]. If d = lamf, then Γ e t = λt′ : A, hence by congruence Θ e t =

λ(t′ 〈pi p, q〉) : A. If d ∈ Ne, then we have Θ e(t pi) pj = t pi+j : (A pi) pj , thus

Θ e(t pi) pj = R|Θ| d : (A pi) pj , from def. of logical relations.

�

Proof of Lemma 44

By induction on X ∈ T . The case for X ∈ Ne is trivial.

1. X = s ∈ S : by induction on d ∈ [s]: The first part for d ∈ Ne and d ∈ S are

obtained directly by definition. Moreover, the second part is trivial, because

the hypothesis is the main condition in the definition of the logical relation.

We show only the first part for d = FunX ′ F: by i.h. on Γ e A : s0 �� X ′ ∈ [s0]

we have Δ e A pi = R|Δ| X
′ : s0. By i.h. on Δ e B 〈pi, r〉 : s1 �� F e ∈ [s1]. On the

other hand, we have Δ′ e q pj = R|Δ| (Var |Γ|) : A pj , for all Δ′ �j Γ, A, so by

i.h. on the second part, we know Γ, Ae q : A p �� Var |Γ| ∈ [X ′]. From which
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we conclude Γ, Ae B 〈p, q〉 = R|Δ| (F (Var |Γ|)) : s1. Using (prod-eq) we conclude

the equality.

2. X = FunX ′ F: For the first part, we only show the case when d = lam f.

(a) If d = lam f: by definition of the logical relation Γ e t = λt′ : A. As

was shown in the previous point, we have Γ, A′ e q : A′ p �� Var |Γ| ∈
[X ′]; by definition of the logical relation and Lemma 42 we know Γ, A′ e
: B 〈p, q〉 �� App ((λt′) p) q ∈ [lam f ·(Var |Γ|)]F (Var |Γ|). By Lemma 42 and

by definition of application Γ, A′ e t′ : B �� f (Var |Γ|) ∈ [F (Var |Γ|)]. Now

we can apply the i.h. to obtain Γ, A′ e t′ = R|Γ|+1 (f (Var |Γ|)) : B. Since

R|Γ| (lam f) = λ(R|Γ|+1 (f (Var |Γ|))), by (cong-abs) we deduce Γ e λt′ =

R|Γ| (lam f) : FunA′ B.

(b) For the second point, we only need to prove Δ e App t r : B 〈pi, r〉 ��

k · d′ ∈ [F d′], for any Δ �i Γ and Δ e r : A′ pi �� d′ ∈ [X ′]. By Lemma 34,

d′ ∈ Nf , therefore k · d′ = App k d′ ∈ Ne. We prove that by i.h. on

the second part. By i.h. we know Δ′ e r pj = R|Δ′ | d
′ : A′ pi+j , for any

Δ′ �j Δ and also, from the main hypothesis and (conv-eq), Δ′ e t pi+j =

R|Δ′ | k : Fun (A′ pi+j) (B 〈p(i+j)+1, q〉). By definition of reification we have

R|Δ′ | (App k d′) = App (R|Δ′ | k) (R|Δ′ | d
′), therefore we use (app-cong) to deduce

Δ′ e App (t pi+j) (r pj) = R|Δ′ | (App k d′) : B 〈pi+j , r pj〉.

�

Proof of Lemma 46

By induction on Δ e. Both points are trivial for �.

1. Preservation of logical relations by judgemental equality for Δ, A is proved

by applying the i.h. on Γ e p σ = p σ′ : Δ and Γ e p σ : Δ �� d ∈ �Δ�. The

second part is obtained by using Lemma 42 on Γ e q σ = q σ′ : A (p δ) and

Γ e q δ : A (p δ) �� d′ ∈ [�A�d].

2. Monotonicity of logical relations for Δ, A is obtained using the i.h. and

Lemma 43.

�

Proof of Lemma 49

By induction on Γ e. The base case is trivial. For the inductive case, Γ, Ae, we have

by i.h. Γ e id : Γ �� ρΓ ∈ �Γ�. By both parts of Lemma 46 Γ, Ae p id : Γ �� ρΓ ∈ �Γ�.

Let n = |Γ|, then Δ e q pi = R|Δ| (Var n) : A pi, for all Δ �i Γ, A; so, by Lemma 44,

we have Γ, Ae q : A p �� Var n ∈ [�A�ρΓ] and by Lemma 42 Γ, Ae q id : A (p id) ��

Var n ∈ [�A�ρΓ]. So, we conclude Γ, Ae id : Γ, A �� (ρΓ,Var n) ∈ �Γ, A�. �
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