GENERATION OF THE LOWER CENTRAL SERIES

by ROBERT M. GURALNICK

(Received 12 September, 1980)

0. Introduction. Let G be a group. The rth term L_rG of the lower central series of G is the subgroup generated by the r-fold commutators

$$\Gamma_r G = \{ [x_0, \ldots, x_r] \mid x_i \in G \},\$$

where $[x_0] = x_0$, $[x_0, x_1] = x_0^{-1} x_1^{-1} x_0 x_1$, and for r > 1,

$$[x_0, \ldots, x_r] = [[x_0, \ldots, x_{r-1}], x_r].$$

Dark and Newell [1, Theorem 1] proved that if G is nilpotent and L_rG is cyclic, then $L_rG = \Gamma_rG$. In this paper, we generalize this and obtain:

THEOREM A. Suppose $r \ge 2$. There exists a group G with L_rG cyclic of order n and $L_rG \ne (\Gamma_rG)^k$ if and only if $n = p_1^{\alpha_1} \dots p_m^{\alpha_m}$, where the p_i are distinct primes and $m \ge 2^{k+1} - 1$.

The case r = 1 has been studied in great detail (see [3], [7] and [8]). For r = 1, the condition $m \ge 2^{k+1} - 1$ must be replaced by a more complicated set of conditions (see [4, Theorem 5]). In section 2, we show that if $L_rG = \langle a \rangle$ with $a \in (\Gamma_rG)^k$, then $L_rG = (\Gamma_rG)^{k+1}$. Some results for L_rG a rank 2 abelian p-group are given in section 3. In particular, an example is constructed to show that for $r \ge 2$, this does not imply $L_rG = \Gamma_rG$.

1. Proof of Theorem A. We first consider an example. This is a generalization of one of MacDonald [7].

EXAMPLE 1.1. Denote the nonempty subsets of $\{1, \ldots, k\}$ by $\alpha_1, \alpha_2, \ldots, \alpha_s$, where $s = 2^k - 1$. Let A_1, \ldots, A_s be nontrivial abelian groups. Then we can choose abelian groups B_1, \ldots, B_s so that

$$A_i = \{b^{2^r} \mid b \in B_i\}$$
 $(i = 1, ..., s).$

Let $E = \langle x_1, \ldots, x_k \rangle$ be an elementary abelian group of order 2^k . Consider $G = (B_1 \times \ldots \times B_s)E$ (semidirect), where if $b \in B_i$, then

$$x_i b x_i = \begin{cases} b & \text{if } i \in \alpha_i, \\ b^{-1} & \text{if } i \notin \alpha_j. \end{cases}$$

It is easily seen that $L_rG = A_1 \times \ldots \times A_s$. We claim that if $r \ge 2$ and $1 \ne a_i \in A_i$ for each *i*, then

$$(a_1,\ldots,a_s)\in L_rG-(\Gamma_rG)^{k-1}.$$

To see this suppose $c \in (\Gamma_2 G)^{k-1} \supseteq (\Gamma_r G)^{k-1}$. It is straightforward to verify that this implies

$$c = \prod_{i=1}^{k-1} [(b_{i1}, \ldots, b_{is}), y_i],$$

Glasgow Math. J. 23 (1982) 15-20.

ROBERT M. GURALNICK

where $b_{ij} \in B_j$ and $y_i \in E$ for i = 1, ..., k-1. Let H be a hyperplane of E containing $\langle y_1, \ldots, y_{k-1} \rangle$. Now each $C_E(B_j)$ is a hyperplane and $C_E(B_j) \neq C_E(B_k)$ unless j = k. Thus since there are s hyperplanes, $H = C_E(B_j)$ for some j. Thus the jth component of c is 1, proving the claim.

This proves the sufficiency of Theorem A by taking A_i to be cyclic of order $p_i^{\alpha_i}$. For necessity, we need some preliminary results.

LEMMA 1.2. If A is an abelian normal subgroup of G, then $[A, x_1, \ldots, x_r] \subseteq \Gamma_r G$.

Proof. The map sending $a \rightarrow [a, x_1, \ldots, x_r]$ is an endomorphism of A. Hence its image is $[A, x_1, \ldots, x_r]$.

LEMMA 1.3. Suppose G is a finite group and $x \in (\Gamma,G)^k$. If x has order m and (e, m) = 1, then $x^e \in (\Gamma,G)^k$.

Proof. Set

$$\phi(g) = \left| \left\{ (g_{ij}) \mid g = \prod_{i=1}^{k} [g_{io}, \ldots, g_{ir}] \right\} \right|.$$

Clearly $g \in (\Gamma, G)^k$ if and only if $\phi(g) \neq 0$. Also ϕ is a class function. Hence

$$\phi = \sum a_{\chi}\chi,$$

where the sum runs over the irreducible complex characters of G. Gallagher [2, Equation 4] has shown that the a_{χ} are rational. Let θ be a primitive *m*th root of 1 and σ an automorphism with $\sigma(\theta) = \theta^e$. Thus

$$\phi(x) = \sigma(\phi(x))$$
$$= \sum a_x(\sigma\chi(x))$$
$$= \sum a_x\chi(x^e)$$
$$= \phi(x^e).$$

In particular, $\phi(x) = 0$ if and only if $\phi(x^e) = 0$.

LEMMA 1.4. If L_rG is finite, then there exist a finite group H and an isomorphism φ of L_rG and L_rH such that $\varphi(\Gamma_sG) = \Gamma_sH$ for all $s \ge r$.

Proof. By passing to a subgroup, we can assume G is finitely generated. Now G is nilpotent-by-finite. Hence G has a torsion-free characteristic subgroup T of finite index (cf. [9, p. 153]). Let H = G/T. If $s \ge r$, then

$$L_sH = TL_sG/T \cong L_sG/(T \cap L_sG) \cong L_sG.$$

Clearly $\Gamma_s G$ and $\Gamma_s H$ correspond under this isomorphism.

We need one more lemma to obtain the result of Dark and Newell for L_rG finite cyclic.

LEMMA 1.5. Let P be a p-group with L_rP cyclic. Suppose $P = \langle I \rangle$. If $x \in L_rP$, there exist $t \in G$ and $t_1, \ldots, t_r \in I$ such that $\langle x \rangle = \langle [t, t_1, \ldots, t_r] \rangle$.

Proof. Since $P = \langle I \rangle$, there exist $t_0, \ldots, t_r \in I$ such that $y = [t_0, \ldots, t_r]$ is a generator of $L_r P$. If $x \in L_{r+1} P$, the result follows by induction since $|L_{r+1} P| < |L_r P|$. Otherwise

$$x = y^e \equiv [t_0^e, t_1, \ldots, t_r] \pmod{L_{r+1}P},$$

and so $\langle x \rangle = \langle [t_0^e, t_1, \ldots, t_r] \rangle$.

THEOREM 1.6 (Dark-Newell [1]). If G is nilpotent and L_rG is a finite cyclic group, then $L_rG = \Gamma_rG$.

Proof. By Lemma 1.4, we can assume G is finite, and so we can take G a p-group. The result now follows from Lemmas 1.3 and 1.5.

Dark and Newell [1] also proved the result for L_rG infinite cyclic without assuming G nilpotent. Rodney [8] proved the above results for r=1. The assumption that G is nilpotent can be weakened. Set

$$L_{\infty}G=\bigcap_{i=1}^{\infty}L_{i}G.$$

THEOREM 1.7. If L_rG is finite cyclic and $L_{\infty}G$ has order p^e , then $L_rG = \Gamma_rG$.

Proof. By Lemma 1.4 and Theorem 1.6, we can assume G is finite and $e \ge 1$. Let $P \in Syl_p(G)$. Since $H = L_{\infty}G \subseteq P$, P is normal in G and thus has a complement T. Note that $K = L_rG \cap P \supset H \ne 1$. As K is cyclic, $L_rP \subseteq K = [T, K] = H$. So if $x \in L_rG$, then x = hu with $h \in H$ and $u \in L_rT$. Since T is nilpotent, by Lemma 1.5, there exist $t \in T$ and $t_1, \ldots, t_r \in T - C_T(H)$ so that $\langle u \rangle = \langle [t, t_1, \ldots, t_r] \rangle$. Now since $t_i \in T - C_T(H)$ and (|T|, p) = 1, $[H, t_i] = H$, and so $[H, t_1, \ldots, t_r] = H$. Thus there exists $y \in H$ so that $[y, t_1, \ldots, t_r] = h$. Hence $\langle hu \rangle = \langle [ty, t_1, \ldots, t_r] \rangle$, and so $x = hu \in \Gamma_rG$ by Lemma 1.3.

One more result is needed for Theorem A. Set

$$[H, x; 1] = [H, x]$$
 and $[H, x; n] = [[H, x; n-1], x]$.

If $|H| = p_1^{\alpha_1} \dots p_m^{\alpha_m}$, set $\ell(H) = m$.

LEMMA 1.8. Let A be a group acting on a nontrivial cyclic group H such that [H, A] = H. Let r be a positive integer.

- (a) There exists $x \in A$ such that $\ell(H/[H, x; r]) < \ell(H)/2$.
- (b) If $\ell(H) \le 2^k 3$, there exists $x \in A$ such that $\ell(H/[H, x; r]) \le 2^{k-1} 3$.

Proof. Without loss of generality, we can assume |H| is squarefree, and so [H, x; r] = [H, x] and $H = [H, x] \oplus C_H(x)$. Choose $x \in A$ with $\ell([H, x])$ maximal. By induction, there exists $y \in A$ with $\ell([C, y]) > \ell(C)/2$, where $C = C_H(x)$. Hence,

$$\ell([H, x]) \ge \ell([H, xy])$$

$$\ge \ell([H, x]) - \ell([H, x, y]) + \ell([C, y])$$

$$= \ell([H, x]) - \ell([H, y]) + 2\ell([C, y]).$$

This yields

$$\ell(C) < 2\ell([C, y]) \le \ell([H, y]) \le \ell([H, x])$$
(*)

and proves (a).

To prove (b), it suffices to assume that $\ell(H) = 2^k - 3$ and $k \ge 2$. Choose x and y as above. By (a), $\ell([H, x]) \ge 2^{k-1} - 1$. If $\ell([H, x]) = 2^{k-1} - 1$, then $\ell(C) = 2^{k-1} - 2$, and so $\ell([C, y]) \ge 2^{k-2}$. Then (*) implies that

$$\ell([H, x]) \ge 2\ell([C, y]) \ge 2^{k-1},$$

and the result follows.

Proof of Theorem A. Suppose L_rG is cyclic of order $n = p_1^{\alpha_1} \dots p_m^{\alpha_m} (m < 2^{k+1} - 1)$. Set $H = L_{\infty}G$. First consider the case $H = L_rG$. By Lemma 1.8(a), there exists $x \in G$ with

 $\ell(H/[H, x; r]) < m/2 \le 2^k - 1.$

By induction and Lemma 1.1,

$$L_rG = (\Gamma_rG)^{k-1}[H, x; r] \subseteq (\Gamma_rG)^k$$

as desired.

Now assume $H \neq L_rG$. Since H is a summand of L_rG , this implies $\ell(H) \leq 2^{k+1} - 3$. We now show that if $\ell(H) \leq 2^{k+1} - 3$, then $(L_rG) = (\Gamma_rG)^k$. This follows from Theorem 1.7 for k = 1. If $k \geq 2$, by Lemma 1.8(b), there exists $x \in G$ with $\ell(H/[H, x; r]) \leq 2^k - 3$. As above, we obtain $L_rG = (\Gamma_rG)^k$.

2. Generators of L_rG **.** If $L_rG = \langle a \rangle$ and $a \in \Gamma_rG$, then all generators of L_rG are in Γ_rG by Lemma 1.3. However, this does not imply $L_rG = \Gamma_rG$. (See [3] for examples with r = 1.) Similar examples can be constructed for r > 1. However, we do obtain:

THEOREM 2.1. If $L_rG = \langle a \rangle$ and $a \in (\Gamma_rG)^e$, then $L_rG = (\Gamma_rG)^{e+1}$.

Proof. If L_rG is infinite, then $L_rG = \Gamma_rG$ by [1, Theorem 4]. If r = 1, the result follows by [4, Theorem 1]. Thus we can assume G is finite and $r \ge 2$. Let $H = L_{\infty}G$. Thus

$$a=\prod_{i=1}^{e} \left[t_{0i},\ldots,t_{ri}\right]$$

It follows easily since $r \ge 2$ that

$$H = \prod_{i=1}^{e} [H, t_{ri}] = \prod_{i=1}^{e} [H, t_{ri}; r] \subseteq (\Gamma, G)^{e}$$

Hence by Theorem 1.6, we have $L_r G = (\Gamma_r G) H \subseteq (\Gamma_r G)^{e+1}$.

If r=1 and $e \ge 2$, then in fact $G' = (\Gamma_1 G)^e$ (see [4, Theorem 1]). We do not know if this is true for r > 1.

3. Rank 2 Subgroups. By Example 1.1, if A is a finitely generated abelian group with $A = A_1 \times A_2 \times A_3$, there exists G with $L_rG = A$ and $L_rG \neq \Gamma_rG$. This leaves open the

case where L_rG is a rank 2 p-group. Dark and Newell [1, Theorem 2] proved in this case that if also $L_{r+1}G = \{1\}$, then $L_rG = \Gamma_rG$. (See [6] for the case r = 1.) The author [5, Theorem A] has shown that if $P \in \text{Syl}_p(G')$ is a rank 2 abelian p-group, then $P \subseteq \Gamma_1G$. We give an example with p = 2 and r = 2 with $L_rG \neq \Gamma_rG$.

EXAMPLE 3.1. Let $G = \langle x, y, a, b \rangle$ with relations

$$[x, y] = b,$$
 $b^{x} = b^{-1},$ $b^{y} = ba,$
 $b^{8} = a^{2} = [x, a] = [y, a] = [b, a] = 1.$

Now

$$\Gamma_2 G \subset [G', x] \cup [G', y] \cup [G', xy] = \langle b^2 \rangle \cup \langle a \rangle \cup \langle ab^2 \rangle.$$

Hence $ab^4 \in L_2G$, but $ab^4 \notin \Gamma_2G$. Similar examples can be constructed for any $r \ge 2$.

Certain assumptions do guarantee that $L_rG = \Gamma_rG$.

THEOREM 3.2. Suppose L_rG is a rank 2 abelian p-group. If any of the following hold, then $L_rG = \Gamma_rG$.

(i) r = 1.

(ii) $L_{r+1}G = \{1\}.$

(iii) G is not nilpotent.

(iv) L_rG has exponent p.

Proof. As we remarked above, (i) and (ii) are known. We sketch the proof of (iii). So assume $H = L_{\infty}G \neq \{1\}$. As usual, we take G finite. Let T be a complement of $P \in \text{Syl}_{p}(G)$. We can choose $t \in T$ with [H, t; r] = [H, t] = H (see [5, Lemma 2.6]). Then

$$L_rG = \{[ts_0, \ldots, ts_r] \mid s_i \in P\} \subseteq \Gamma_rG.$$

This follows by Theorem 1.6 and induction on G/[ZP, t]. Further, (iv) follows since if (ii) and (iii) do not hold, then $L_{r+1}G$ is cyclic and central. Hence $L_{r+1}G \subseteq \Gamma_r G$ and if $x, y \in L_r G - L_{r+1}G$, then $\langle x \rangle$ and $\langle y \rangle$ are conjugate. Hence $L_r G \subseteq \Gamma_r G$ by Lemma 1.3.

We close with a conjecture.

CONJECTURE 3.3. There exists a finite set of primes Ω (perhaps depending on r) such that if $p \notin \Omega$ and L_rG is a rank 2 abelian p-group, then $L_rG \doteq \Gamma_rG$.

For r=1 and $L_1G = G'$ a rank 3 abelian p-group, we can take $\Omega = \{2, 3\}$ (see [5, Theorem B]).

REFERENCES

1. R. S. Dark and M. L. Newell, On conditions for commutators to form a subgroup, J. London Math. Soc. (2) 17 (1978), 251-262. (Reviewed in Zbl. Math. 388 (1979), 102).

2. P. X. Gallagher, The generation of the lower central serie's, Canad. J. Math. 17 (1965), 405-410.

ROBERT M. GURALNICK

3. B. Gordon, R. Guralnick, and M. Miller, On cyclic commutator subgroups, Aequationes Math. 17 (1978), 241-249

4. R. Guralnick, On cyclic commutator subgroups, Aequationes Math., 21 (1980), 33-38.

5. R. Guralnick, Commutators and commutator subgroups, Advances in Math. (to appear).

6. H. Liebeck, A test for commutators, Glasgow Math. J. 17 (1976), 31-36.

7. I. D. MacDonald, On cyclic commutator subgroups, J. London Math. Soc. 38 (1963), 419-422.

8. D. M. Rodney, On cyclic derived subgroups, J. London Math. Soc. (2) 8 (1974), 642-646.

9. W. R. Scott, Group theory (Prentice-Hall, 1964).

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA 90007

20