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Abstract

Under what conditions does machine learning (ML) model opacity inhibit the possibility of
explaining and understanding phenomena? In this article, I argue that nonepistemic values
give shape to the ML opacity problem even if we keep researcher interests fixed. Treating ML
models as an instance of doing model-based science to explain and understand phenomena
reveals that there is (i) an external opacity problem, where the presence of inductive risk
imposes higher standards on externally validating models, and (ii) an internal opacity prob-
lem, where greater inductive risk demands a higher level of transparency regarding the
inferences the model makes.

1. Introduction
Machine learning (ML) models can be so complex that it is unclear how the model
arrived at its conclusions. The ML opacity problem inspired a proliferation of papers
in computer science developing explainable artificial intelligence (XAI) methods and
philosophers describing various conceptions of opacity (Creel 2020). However, to
what extent is opacity really a problem for explaining and understanding phenomena
with ML models?

Recent work has provided some boundaries to the ML opacity problem. Creel
(2020) suggests that depending on the type of opacity present—functional, structural,
or run opacity—there exists various XAI methods that make models transparent
enough for the ends that researchers often have. Sullivan (2022) argues that going
outside the model by reducing “link uncertainty” (i.e., external evidential support
connecting the model to the phenomena) is a more promising candidate for increas-
ing understanding from ML models. Zednik (2021) claims the type of question a par-
ticular stakeholder asks—either a where, how, what, or why question—matters for
whether ML models are “black boxes.”
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In this article, I provide more boundaries regarding the conditions under which ML
opacity undermines explaining and understanding phenomena. I argue that the
problem of model opacity is entangled with nonepistemic values. Particular ML
use cases—medical diagnosis, tracking criminal activity, recommending which news
to read—vary greatly in personal and social significance. It is not simply stakeholder
interests or research questions that influence explanation, understanding, and ulti-
mately the problem of opacity. I argue that even when we hold the target phenomena
and researcher interests fixed, nonepistemic values impact when an ML model is
capable of explaining target phenomena and the level of transparency necessary
to enable understanding of phenomena.

My starting point is that ML modeling is another instance of doing model-based
science. Thus, I am interested in the following traditional set of questions: How can
models explain? When do models provide understanding of phenomena? When do
models represent their targets? This starting assumption also implies that I am think-
ing of the ML opacity problem in a particular way: How much do we need to know
about the model in order for it to explain, provide understanding, or say it accurately
represents its targets? There are several other interesting questions about how ML
models fit the paradigm of model-based science due to their predictive function, as
well as ethical and political implications of model opacity (Burrell 2016). However, in
this article, I draw focus on the way that nonepistemic values impact the previously
mentioned set of traditional questions regarding model-based science. ML models are
not necessarily unique in being entangled with nonepistemic values, but they do
showcase the way that nonepistemic values have the potential to impact explanation,
understanding, and general problems of model opacity.

I first introduce the problem of inductive risk and current applications to ML mod-
els (section 2). In section 3, I focus on an unexplored area of inductive risk impacting
the ML modeling process: model acceptance. I then argue that inductive risk in ML
model acceptance has consequences for the ML opacity problem for explanation and
understanding (section 4). Nonepistemic values frame the problem of model opacity
for explaining and understanding phenomena as: (i) an external problem, where
higher standards on externally validating models are necessary, and (ii) an internal
problem, where the greater inductive risk demands a higher level of transparency
regarding the inferences the model makes.

2. Inductive risk and ML models
There is always a risk of error with accepting (or rejecting) scientific hypotheses, the-
ories, or using a scientific model in practice. A fundamental question in science is
when to accept a given hypothesis in face of this risk and uncertainty. Proponents
of inductive risk argue that hypotheses that have nonepistemic consequences that
result from accepting (or rejecting) that hypothesis require the consideration of non-
epistemic values (Rudner 1953; Steel 2013). Moreover, inductive risk seems to be pres-
ent in several aspects of the scientific process beyond hypothesis acceptance, such as
choosing a methodology, gathering and characterizing data, and the interpretation of
data (Douglas 2000; Elliott 2013; Parker and Winsberg 2018). Trade-offs between cli-
mate models, dosing for harmful chemicals, and trade-offs between type I (accepting a
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false hypothesis) and type II errors (rejecting a true hypothesis) are common
examples.

If the proponents of inductive risk are right, then we should expect that aspects of
the ML modeling process are subject to inductive risk, with the necessary weighing of
nonepistemic values at various stages in the ML pipeline. And indeed, there are yearly
conferences like FAccT that focus exclusively on issues of fairness, bias, and values
present in algorithms.1 Mostly focus is placed on issues of bias, such as data biases
that lead to different error rates for different populations or the way that certain
architectures might exploit biases (Fazelpour and Danks 2021). Model transparency
is seen as one possible solution to value-laden models and model biases. However,
as proponents of inductive risk will argue, there is no value-free ideal, especially con-
cerning algorithms (Johnson, forthcoming). Yet there has been little philosophical
engagement with how ML models are impacted by traditional considerations of
inductive risk. Biddle (2020) is one exception, highlighting various aspects of the
ML modeling process that are subject to ineliminable trade-offs that reflect values,
such as the trade-offs exhibited in data choices and different conceptions of fairness
that are impossible for a model to jointly satisfy and stressing that there is no value
neutral way to construct ML models.2

While Biddle’s discussion is insightful for thinking about value trade-offs at several
stages of constructing ML models, the way risk impacts issues of model justification or
the grounds we have for accepting a ML model are conspicuously absent. It is not
simply the construction of ML models that can arguably involve nonepistemic values.
After a model is constructed, we face the question whether to accept the model as
being able to explain or provide understanding of particular phenomena and how
nonepistemic values should influence accepting a model as having epistemic value.
Getting closer to this goal there has been some discussion on ML model choice.
Dotan (2021) argues that the epistemic value of accuracy alone cannot be used to
choose between computational models. However, Dotan considers aesthetic values,
like simplicity, and does not explore social consequences or social values of model
choice or acceptance.

In this article, I explore how treating ML models as an instance of doing model-
based science for explaining and understanding phenomena shows that ML model
acceptance is subject to traditional questions of inductive risk concerning evidence
and justification, and as a result, nonepistemic values encroach on the ML opacity
problem.

3. Inductive risk in ML model acceptance
For a model to be explanatory and provide understanding there must be a connection
between the model and the target phenomena. On one common view, models explain
and enable understanding when they capture patterns of counterfactual dependence
that are true of their target (Bokulich 2011; Ylikoski and Kuorikoski 2010). Let’s adopt
this view as a working hypothesis for the following discussion. The first step is to
identify a model’s target or purpose. For example, a target could be answering a

1 See https://facctconference.org/
2 See also Karaca (2021) for inductive risk in ML model construction.
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specific question, like whether there is racial bias in police stops in the United States.
Once the target is identified, then assessing whether a model captures the counter-
factual dependencies of interest for that target consists in two further checks for
model adequacy: (a) whether the data the model is based on is adequate for establish-
ing a true counterfactual dependence, and (b) whether the model, using adequate
data, represents or finds counterfactual dependences true of the target. Both can
be subject to inductive risk.

3.1. Accepting data as adequate for the target phenomena
As mentioned in the preceding text, Biddle (2020) discusses how data choices that go
into model construction are value-laden and reflective of nonepistemic values. Biddle
often frames the discussion in terms of how (implicit) researcher interests and goals
can influence data choices. However, researcher interest concerns identifying the pur-
pose or target of the model (Parker 2020; Potochnik 2015).3 Although the way none-
pistemic values influence the direction of scientific inquiry is important,
nonepistemic values still seem relevant once researchers identify a model target
or purpose. Adopting the framework of inductive risk, I argue that nonepistemic val-
ues can be relevant for assessing whether, given a specific target or purpose, a par-
ticular dataset is adequate for establishing a true counterfactual dependence.

Consider the target of whether there is racial bias in police stops in the United
States. Pierson et al. (2020) took to examining racial disparities in police stops using
a data approach. They discuss the importance of having the right data to evaluate
whether there is racial bias in policing practices (i.e., assessing model adequacy based
on [a]). One important data point—if not the most important for this purpose—is the
race of the person stopped by police. In the data archives Pierson et al. accessed, race
was recorded based on the stopping officer’s perception. They argue that this method
may introduce errors, suggesting alternative methods that potentially reduce these
errors. In addition to self-reporting of the stopped individual, they suggest using a
third-party’s perception based on a driver’s license photo (2020, 742).

In this example, we see that, in the opinion of the researchers, the model could
more accurately find counterfactual dependencies in the target if the dataset were con-
structed in a different manner. The interests of the researchers do not change if they
prescribe data methods that increase accuracy and potentially reduce error. The
alternative data classification method is thought to capture the phenomena of racial
bias more accurately, where one data method may (incorrectly) uncover racial bias
that an alternative method would not. Inductive risk becomes relevant here. First, if
the model suggests that police practices are not biased—and the model is wrong—
this will prevent necessary public policy interventions. More related to (a), defining
the epistemic concepts of “error” and “accuracy” and deciding which data establishes
“‘ground truth”—in the police bias case—involves the interplay with social and polit-
ical values concerning racial identity. The practice of race labeling involves social/
political considerations and has a history of marginalization and injustice (Browne
2015; Hanna et al. 2020; James and Burgos 2022). As Crawford and Paglen (2019)

3 Bokulich and Parker (2021) discuss (a) in the context of their adequacy-for-purpose view applied to
data models of highly physical systems, such as data collection from a Mars rover.
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say, in struggles for justice, people have sought to “define the meaning of their own
representations” and that “representations aren’t simply confined to the spheres of
language and culture, but have real implications in terms of rights, liberties and forms
of self-determination.”

Accepting that a particular dataset provides insight into racial bias requires adopt-
ing a particular definition of race that turns an epistemic question concerning model
representation into one that is entangled with nonepistemic considerations that bear
on how to define accuracy in a dataset and what kinds of error are acceptable. It is not
simply a case of value trade-offs or the balancing of false negatives and false positives;
it is fundamentally about what data best captures the target. Thus, assessing a model
based on (a)—the data is adequate for establishing a true counterfactual dependence
—involves inductive risk and weighing nonepistemic values.

3.2 Accepting dependencies as representative of the target phenomena
Even if data classification issues are resolved there is still the question of (b): whether
the model, using adequate data, represents or finds counterfactual dependences true
of the target. Consider two more ML models: a melanoma detection and sexual-
orientation classification model. First, Esteva et al. (2017) developed a deep neural
network (DNN) that identifies cases of melanoma from healthy moles. The model
was trained with semisupervision of human-labeled images of melanoma and healthy
moles. When applied to a novel set of images, the model outperforms dermatologists
at classification. Second, Wang and Kosinski (2018) developed a facial recognition
model that seeks to identify the sexual orientation of individuals using DNNs.
Briefly, this model uses roughly the same method as the melanoma model. The input
data consisted of human labeled images of purportedly heterosexual men and women
along with images of openly self-identifying gay men and lesbians. The model was
said to be accurate at identifying sexual orientation when the model had five images
of the same person. The researchers sought to add evidential support for the parental
hormone theory (PHT), an origin theory for sexual orientation.

The targets in these cases are the visual appearance of a mole versus melanoma and
how visual appearance could lend support to PHT theory, respectively. The high-level
counterfactuals themodels capture are: “If x and y visual patterns had not been present,
then moleMwould not have been a melanoma” and “if gender atypical facial topologies
had been present, then sexual-orientation O would not have been heterosexual.” Are
the counterfactual dependencies found by the models true of their targets? Notice that
the task of deciding whether a counterfactual dependence should be accepted as truly
representative of a target becomes a traditional problem of inductive risk about how
much evidence is necessary to accept or reject a hypothesis, and whether nonepistemic
considerations impact the amount or kind of evidence required.

The visual appearance of a mole is the leading factor for medical intervention. The
general types of counterfactuals the model provides already have significant medical
support. There are, of course, risks involved with medical diagnosis that need to be
considered when accepting whether the model should be used in practice. Traditional
issues regarding the trade-offs between type I and type II errors are relevant here.
Moreover, because of bias in the training data, the model is only accurate on light
skin and thus has generalization problems and should not be applied globally.
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However, using facial appearance as getting at the truth of someone’s sexual iden-
tity involves considerably higher demands for model acceptance beyond type I and
type II errors. First, the dependencies the model finds between facial topologies and
sexual orientation are scientifically controversial. Furthermore, as the proponents of
inductive risk argue, social consequences that would result from accepting a hypoth-
esis in error should be weighed. However, it can be difficult to weigh social conse-
quences because the consequences or the severity of them can be unknown. But
in the case of phrenology and physiognomy we have considerable historical evidence
of the kinds of consequences that have resulted from accepting such hypotheses by
looking at its use in justifying racism, sexism, and eugenics. Given this track record,
the amount of evidence needed to adopt a physiognomy-based theory is higher com-
pared to accepting a competing theory. When considering Wang and Kosinski’s model
in particular, widespread discrimination throughout the world against gay individuals
cannot be overlooked. Thus, the presence of such social implications creates a higher
demand for evidence that the counterfactuals the model captures is true of the target.
We better be reasonably sure that such a hypothesis is true before adopting it.

4. Inductive risk and the ML opacity problem
How does the presence of inductive risk for accepting a model as being able to explain
or provide understanding of phenomena impact the problem of ML opacity? The ML
opacity problem emerges from model complexity, creating difficulty in understand-
ing how the model arrived at its decisions. While it can be theoretically possible to
document paths in a decision by tracing an input to an output, this documentation is
often unhelpful. Decision paths can be too complex for people to understand, and do
not necessarily capture how all the subcomponents are related (Creel 2020). Solutions
to opacity are relative to a given purpose or target, just like the adequacy of models is
relative to a given purpose. As such, transparency is a stakeholder relative concept
involving value trade-offs about which aspects of the model need to be revealed in a
human understandable way, and which aspects do not (Biddle 2020; Zednik 2021).
Thus, nonepistemic values give shape the opacity problem through researcher capa-
bilities and through identifying the explanatory targets of interest. However, even if
we hold fixed the target and hold fixed the question a researcher wants answered,
nonepistemic values influence the opacity problem in other ways. I argue that non-
epistemic values influence both an external and internal problem for ML opacity.

4.1. Opacity as an external problem
In previous work, I argued that the problem of model opacity is often not resolved by
looking inside the model (Sullivan 2022). Instead, model opacity is an external prob-
lem connecting the model to the target; the problem of opacity is a function of how
much “link uncertainty” the model has. The less evidence connecting the model to the
target phenomena, the less understanding is possible from an opaque ML model.
Among other examples, I used the preceding cases of the melanoma and sexual-
orientation classification models. The argument rests on the claim that these models
seem to provide us with varying degrees of understanding while having similar
amounts of model opacity. A better explanation for the varying understanding has
to do with the level of independent empirical support connecting the model to
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the intended phenomena, instead of model opacity qua opacity. I did not consider
how nonepistemic values might impact the problem of model opacity. However, if
we accept there is inductive risk, in the link uncertainty framework it follows that
nonepistemic values are entangled with the (external) problem of opacity.

Resolving the external problem of model opacity requires connecting the model’s
data and counterfactual inferences to the target phenomena, thereby reducing link
uncertainty and defusing worries of opacity. Judgments about when there is enough
evidence connecting a model to its target, such that model’s links are strong enough, is
target and domain specific. In cases in which researchers are interested in whether
counterfactual dependencies the model relies on are causally representative of phe-
nomena, reducing link uncertainty will involve more traditional empirical research
over and above the ML model.4 In cases in which the target of interest is establishing
strong statistical correlations, reducing link uncertainty could alternatively require
robustness checks with multiple models.

The greater the inductive risk, the higher demand there is for connecting the mod-
el’s data and the model’s inferences to the target, which amounts to a higher burden
for reducing link uncertainty. Reducing link uncertainty can again range from
improving ground truth methods for data collection to increasing statistical signifi-
cance before accepting a counterfactual-inference as true of the target (Douglas 2000).
For example, the higher threshold of evidence required to connect the sexual-
orientation model to its target phenomena because of the risks involved, as discussed
in section 3.2, directly entails that a higher threshold of independent evidence is nec-
essary to overcome the model’s opacity problem. If I am right that the extent to which
model opacity poses a problem for explanation and understanding depends on the
degree to which there is an external connection between the model and target, then
the problem of opacity in ML is entangled with nonepistemic values because the pro-
cess of accepting whether there is sufficient connection between the model and its
target is entangled with nonepistemic values. Thus, exploring methods that exter-
nally validate models helps with overcoming inductive risk and opacity.

4.2. Opacity as an internal problem
Besides an external problem of opacity, inductive risk also exposes an internal prob-
lem for model opacity. The internal problem of model opacity requires verifying that
extracted counterfactuals from the model are faithful to how the model works. To
accept a model, there must be a set of counterfactual dependencies that we can
extract from that model to measure against the target. In more traditional modeling
methods—what Knüsel and Baumberger (2020) call process-based models—particu-
lar counterfactual dependences are deliberately built into the model. However, in
data-driven ML models, counterfactual dependencies are not built in, but must be
extracted post hoc. This is where ML model opacity strikes us as a problem. If the
model is so complex that it is unclear how the model makes its decisions, then
how can we be sure that the counterfactual dependencies extracted are faithful to
how the model works?

4 See Reichstein et al. (2019) for a hybrid method using ML models and physical models to understand
climate phenomena.
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Various ML interpretability methods can provide some insight into the way mod-
els make decisions, such as feature importance methods that seek to identify the most
salient features that determine a classification. Saliency maps, for example, highlight
areas of an image that contribute most to the model’s decision. In the melanoma
detection model, a saliency map can highlight areas of the image with various pig-
mentation differences that the model relies on most for classification. Saliency maps
can aid counterfactual reasoning about the target, along the lines of “If x and y visual
patterns had not been present, then mole M would not have been a melanoma.” The
internal opacity problem of inductive risk requires a higher standard of verification
that the counterfactuals extracted from the model are faithful to how the model
makes its classifications, and that they are genuine correlations and not mere arti-
facts. A higher degree of model transparency is necessary.5 Given the inductive risk
present in the sexual-orientation model, more fine-grained counterfactual dependen-
ces about how the model made its decisions are required compared to the melanoma
model or compared to a very benign model that, say, classifies handwritten numbers.
And as it turns out, upon closer inspection of the sexual-orientation model, the
researchers found—using saliency maps—the model places a high emphasis on
superficial features, like makeup or hairstyle. Thus, the counterfactual inference
the model made more often tracked “if x grooming pattern was y, then sexual-
orientation O would not have been heterosexual.” This suggests the model does
not strongly rely on facial topologies, which was the primary target of interest.
Thus, there is not only a higher burden of proof verifying that a dataset and a given
counterfactual are representative of a target (the external problem) but also there is a
higher burden of proof for extracting the counterfactuals in the first place.

This is not to say that ML models with less inductive risk do not require verification.
The claim is that models that have a higher level of inductive risk have a higher bar for
verification. Moreover, we need to be aware of the limitations on current interpretabil-
ity methods. For example, Wachter et al. (2018) provides an interpretability method
that involves counterfactual extraction specifically, providing a counterfactual expla-
nation along the lines of a “what if things had been different?” explanation. Themethod
shows through hypothetical scenarios how small changes to certain feature values
would result in changes to the outcome. However, this method has drawbacks, with
the possibility to generate contradictory counterfactuals (Molnar 2019). Most, if not
all, interpretability methods can be misleading to some degree. Saliency maps can
be the same for multiple classes, calling their usefulness into question (Rudin 2019).
Such limitations are the reason Rudin (2019) argues that opaque ML models should
not be used in high-stakes cases. Other models that have similar predictive
accuracy—that are “in principle” interpretable—should be used instead.6

To put the point differently, if a highly reliable ML interpretability method would
require costly computational power compared to a less reliable method, models that
have a high level of inductive risk would require researchers to opt for the costly

5 I have in mind what Creel (2020) calls functional transparency, though nonepistemic values may also
demand greater structural or run transparency.

6 Perhaps model use in some high stakes contexts lessons the need for transparency (Durán and
Formanek 2018). However, in this article, I am concerned with explanation and understanding, not
deployment.
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method over the less costly method. So, while the current limitations on interpret-
ability methods are not a barrier for explaining and understanding certain low stakes
phenomena using ML models, the limitations can be a barrier for ML models that
involve significant social implications. Thus, the presence of inductive risk not only
has an impact on the external problem of ML opacity but it also has an impact on
the internal problem of model opacity. Accepting that a ML model is capable of
explaining or providing understanding of phenomena requires a greater threshold
for model transparency from models that face high stakes or face far reaching social
consequences.

5. Conclusion
Most accept that nonepistemic values shape the problem of opacity insofar as non-
epistemic values influence researcher or stakeholder interests. I argued here that
even if we keep researcher interests fixed, there is a further sense in which nonepis-
temic values place a burden on model transparency. The higher the inductive risk, the
greater demand there is to reduce link uncertainty and connect an ML model to its
target through external validation (i.e., independent grounds connecting the model to
the target) and the greater demand for internal model verification (i.e., extracting
counterfactual inferences that are faithful to how the model works). Treating ML
models as an instance of doing model-based science allows us to utilize helpful tools
from the philosophy of science to ground discussions of ML model bias and their
social and political implications.
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