
The Bulletin of Symbolic Logic

Volume 28, Number 1, March 2022

THEOREMS OF HYPERARITHMETIC ANALYSIS AND ALMOST
THEOREMS OF HYPERARITHMETIC ANALYSIS

JAMES S. BARNES, JUN LE GOH, AND RICHARD A. SHORE

Abstract. Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood
in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all
the fixed (recursive) iterations of the Turing jump but below ATR0 (and so Π1

1-CA0 or the
hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the
papers reported on in this communication, there was only one mathematical example. Barnes,
Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from
Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA0 but are
actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse
Mathematics [19] and supply several other natural principles of different and unusual levels
of complexity.

This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost
theorems of hyperarithmetic analysis (ATHAs). When combined with ACA0 they are THAs
but on their own are very weak. Denizens both mathematical and logical are provided.
Generalizations of several conservativity classes (Π1

1, r-Π1
1, and Tanaka) are defined and

these ATHAs as well as many other principles are shown to be conservative over RCA0 in
all these senses and weak in other recursion-theoretic ways as well. These results answer a
question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles
one of which is very weak over RCA0 but over ACA0 is equivalent to the other which may
be strong (THA) or very strong going up a standard hierarchy and at the end being stronger
than full second-order arithmetic.

§1. Introduction. There are now (at least) two widespread approaches to
analyzing the complexity of mathematical theorems and logical (axiomatic)
systems. One is computational (recursion-theoretic) and the other is proof-
theoretic. They give rise to closely related measures and hierarchies of
complexity. The first grows out of recursive, computable, or constructive
mathematics. Typically, we have a theorem asserting that for every object X
of some kind there is another Y with specified properties. In this setting,
the question one answers is how difficult (given X) is it to construct Y?
The measuring rods for difficulty here are most often marked by levels of
complexity with respect to computability in the sense of Turing (degrees).
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The second, embodied in what is now known as reverse mathematics,
attempts to say how hard is it to prove the theorem. Here the measuring rods
are generally axiomatic subsystems of second-order arithmetic sufficient to
carry out a proof. (The standard proof-theoretically oriented text here is
[26]. Hirschfeldt [11] gives a good view from computability theory.)

The two approaches are closely related and roughly share five basic
levels of complexity that, for the first several decades of each of the two
views, seemed to characterize almost all theorems of classical mathematics.
Proof-theoretically, the first is a weak system of second-order arithmetic,
RCA0 which, in addition to the basic axioms about +, ×, and <,
contains comprehension axioms for Δ0

1 sets and induction for Σ0
1 formulas.

Computationally, this corresponds to classical computable (recursive)
mathematics. The other four levels are determined by adding on stronger
existence/comprehension axioms. WKL0 asserts that every infinite subtree
of 2<N, the tree of finite sequences of 0s and 1s, has an (infinite) branch.
The next level is ACA0 which adds comprehension axioms for arithmetic
formulas or, equivalently, requires closure under (finite iterations of) the
Turing jump. The fourth level, ATR0, extends comprehension to include
transfinite iterations of arithmetic comprehension. This roughly corresponds
to the transfinite iterations of the Turing jump through the recursive ordinals,
i.e., the hyperarithmetic sets. The last of the basic systems is Π1

1-CA0 which
includes comprehension for Π1

1 formulas. This corresponds to Kleene’s
hyperjump in terms of computational strength.

Over the past couple of decades the earlier pattern of results has been
broken by a large number of constructions/theorems which are provably dif-
ferent from each of these “big five” systems and have unusual computational
strength. They are now often called the “zoo” of reverse mathematics. (For
pictures, see https://rmzoo.math.uconn.edu/diagrams/.) For ordinary
theorems of classical mathematics, the large majority of these examples have
been weaker than ACA0 and so constructions recursive in a finite number
of iterations of the Turing jump.

In this communication reporting on the results in [1, 8, 25], we discuss
two related classes of mathematical theorems and logical principles that
occupy neighborhoods of the reverse mathematical zoo that have had
very few other denizens. They all fall outside of the big five and none
are provable from ACA0. The first consists of what are called THAs,
theorems (or theories) T of hyperarithmetical analysis (Definition 2.13).
Computationally, these lie above each fixed transfinite (recursive) iteration
of arithmetic comprehension but do not (proof-theoretically) imply ATR0.
While some of the THAs we study are proof-theoretically strictly weaker
than ATR0, some are incomparable with it. Indeed, while there is a precise
recursion-theoretic characterization of THAs (Definition 2.13), there can
be no proof-theoretic one at least not in first-order logic. (See [29, Theorem
2.2.2] and also [17, remarks after Definition 1.1].)

The study of such systems began with the work of Kreisel [15], Friedman
[5, 6, 7], Steel [28], and others in the 1960s and 1970s and continued into the
last decades (as in Montalbán [17, 18], Neeman [20, 21], and others). Several
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axiomatic systems and logical theorems were found to be THAs and proven
to lie in a number of distinct classes in terms of proof-theoretic complexity.
Until now, however, there has been only one mathematical but not logical
example, i.e., one not mentioning classes of first-order formulas or their
syntactic complexity. This was a result (INDEC) about indecomposability
of linear orderings in Jullien’s thesis [13] (see [23, Lemma 10.3]). It was
shown to be a THA by Montalbán [17] and further investigated in [20, 21].

The natural question, raised explicitly in Montalbán’s “Open Questions
in Reverse Mathematics” [19, Question 30], was are there any others?
The answer is provided by Barnes, Goh, and Shore [1]. There is a whole
family of theorems from graph-theoretic combinatorics that are THAs. The
examples are primarily variations on some classical theorems of Halin [9,
10] and related results in what is now called ubiquity theory. (See [4, Chapter
8] for a contemporary treatment.)

The archetypical example here is what we call the Infinite Ray Theorem
(IRT) from [9]. In more contemporary terminology, it says that any graph
G which contains, for each n, a sequence 〈R0, ... , Rn–1〉 of disjoint rays (a
ray is a sequence 〈xi |i ∈ N 〉 of distinct vertices such that there is an edge
between each xi and xi+1) also contains an infinite such sequence of rays. On
its face, this sounds like a compactness theorem and so should be provable
in WKL0 or ACA0. Indeed, the construction of Andreae in [4, Theorem
8.2.5(i)] of the desired sequence of rays proceeds by a recursion through
the natural numbers in which each step is arithmetical and so looks like a
typical application of ACA0. We prove that it and several variations are much
more complicated and indeed THAs. One collection of variations consists of
consequences of a restricted version of Choice, Σ1

1-AC0 which is well known
to be a THA (essentially [15]). The proofs that they are themselves THAs are
recursion-theoretic. The analysis here led us to some related results and even
a new logical system given by a restricted version of Σ1

1-AC0 (Definition 3.13)
which is also a THA. We show by proof-theoretic arguments that another
collection of variants of a version in [9] requiring one type of maximality
of the constructed sequence which are also THAs cannot be proven in
Σ1

1-AC0 because each of them implies more induction than is available there.
Indeed, some go beyond what is provable even in ATR0. Finally we show
that each of another class of variations mentioned in [9] that requires a
different type of maximality is both proof-theoretically and computationally
stronger than ATR0. Each is equivalent to Π1

1-CA0 and so to closure under
the hyperjump.

We present these results in Section 3 and discuss some relations among the
variations from the perspective of reverse mathematics. Almost all of these
results are from [1]. The technically most difficult ones that use Steel forcing
to place some of these theorems (and logical systems) among the previously
studied THAs with respect to proof-theoretic strength are in [8].

The second group of mathematical theorems and logical principles T that
we study contains ones that, from the pure proof-theoretic point of view,
are very weak. More precisely they are conservative over RCA0 for a wide
range of classes Γ of sentences. (That is, for any ϕ ∈ Γ, if RCA0 + T � ϕ

https://doi.org/10.1017/bsl.2021.70 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.70
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then RCA0 � ϕ.) The classes Γ that we consider include new generalizations
of the well studied one Π1

1 and of three less studied ones, r – Π1
2 ([12]) and

what we call Tanaka formulas and r-Tanaka formulas after a conjecture of
Tanaka’s about the conservativity of WKL0 over RCA0 proven in [27]. (See
Definition 4.2.) So, in particular, none of these principles prove ACA0. On
the other hand, what makes them unusual is that they each become very
strong once we add ACA0. Many of them become THAs and these we call,
ATHAs, almost theorems (theories) of hyperarithmetic analysis (Definition
2.14). These include both mathematical theorems related to the variants
of Halin’s theorem and of familiar logical systems. Another collection of
them forms hierarchies whose members (over ACA0) prove Π1

n-CA0 with n
running through the natural numbers as we go up the hierarchies. At the end
of these hierarchies we have principles with all these conservation properties
over RCA0 which are stronger than full second-order arithmetic over ACA0.
These results are from [25].

The proofs of all of these conservativity results proceed by defining some
very general classes of forcings and showing that any sentence of the desired
class Γ that can be made true in an extension of a given model of RCA0 by
iterating forcings from these classes must already be true in the given model.
These notions of forcing include many well-known ones such as Cohen,
Laver, Mathias, Sacks, and Silver forcings and many variations as well as
special purpose ones introduced for specific applications to mathematical
theorems related to our graph-theoretic theorems. Thus we strengthen many
well-known conservativity results as well as proving new ones. The proofs
(also from [25]) that many of these theorems are very strong over ACA0 are
specific to the particular results but are usually not difficult. We view these
results together as answering another question raised in [19, Section 6.1.1].
Attributing the question to Hirschfeldt, Montalbán points out that there are
very few examples where natural equivalences are known to hold over strong
theories but not over RCA0 particularly if one excludes the cases where the
only additional axioms needed are forms of induction. Hirschfeldt asked for
more such examples. This work provides a whole array of pairs of distinct
principles with a wide range of strength which are pairwise equivalent over
ACA0 but not over RCA0. Thus they provide evidence that in some settings it
would make sense to take ACA0 as the base theory for reverse mathematical
investigations rather than RCA0.

§2. Basic notions and background.

2.1. Subsystems of second-order arithmetic. Formally, we are working
in models N = (N,S(N ),+,×,≤,∈, 0, 1) of second-order arithmetic. The
first-order quantifiers range over N. The second-order ones overS(N ) which
is a collection of subsets of N. The function, relations, and constants are
taken to have the usual basic elementary properties. We generally abbreviate
these structures as N = (N,S(N )). We are interested in ones which are
models at least of RCA0. The standard models are those where N is N

(the true natural numbers) and the remaining symbols have their standard
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interpretations. When we define semantics or forcing we expand the formal
language to include constants for each element of N and S(N ) and possibly
some recursive (i.e., Δ0

1) predicates. Unless otherwise specified, all sets and
structures we consider are countable.

The standard text here is [26] to which we refer for formal details of syntax
and terminology including the definitions of the basic axiom systems of
reverse mathematics. The major standard axiomatic principles other than the
five discussed in Section 1 that we need are variations on choice principles:

Definition 2.1. Σ1
n-AC is the principle ∀A[∀n∃XΦ(A, n,X ) →

∃Y∀nΦ(A, n,Y [n])] for every Σ1
n formula Φ with free set variables A and

X. In general, if Q is a principle such as this one we denote the axiomatic
system RCA0 +Q by Q0.

2.2. Graph-theoretic notions. We take [4] as our basic reference for
graph theory but at times provide versions of definitions which are clearly
classically equivalent to the standard ones but are better suited to reverse
mathematics or complexity calculations.

Definition 2.2. A graph H is a pair 〈V,E〉 consisting of a set V (of
vertices) and a set E of unordered pairs {u, v} with u 
= v from V (called
edges). These structures are also called undirected graphs (or here U-graphs).
A structure H of the form 〈V,E〉 as above is a directed graph (or here
D-graph) if E consists of ordered pairs 〈u, v〉 of vertices with u 
= v. To
handle both cases simultaneously, we often use X to stand for undirected
(U) or directed (D). We then use (u, v) to stand for the appropriate kind of
edge, i.e., {u, v} or 〈u, v〉.

Definition 2.3. An X-subgraph of the X-graph H is an X-graph H ′ =
〈V ′, E ′〉 such that V ′ ⊆ V and E ′ ⊆ E.

Definition 2.4. An X -ray in H is a pair consisting of an X-subgraphH ′ =
〈V ′, E ′〉 of H and an isomorphismfH ′ from N with edges (n, n + 1) for n ∈
N toH ′. We say that the ray begins atf(0). We also describe this situation by
saying that H contains the X-ray 〈H ′, fH ′〉. We sometimes abuse notation
by saying that the sequence 〈f(n)〉 of vertices is an X-ray in H. Similarly
we consider double X -rays where the isomorphism fH ′ is from the graph
on {〈n, 0〉 , 〈n, 1〉 |n ∈ N} with edges (〈0, 0〉 , 〈1, 0〉), (〈n + 1, 0〉 , 〈n, 0〉), and
(〈n, 1〉 , 〈n + 1, 1〉) for n ∈ N , i.e., up to isomorphism the graph of the usual
order relation on the integers. We use Z-ray to stand for either a (single) ray
(Z = S) or double ray (Z = D) and so we have, in general, Z-X-rays or just
Z-rays if the type of graph (U or D) is already established.

An X -path P in an X-graph H is defined similarly to single rays except
that the domain of fP is a proper initial segment of N instead of N itself.

Definition 2.5. H contains k many Z-X -rays for k ∈ N if there is a
sequence 〈Hi, fi〉i<k such that each 〈Hi, fi〉 is a Z-X-ray in H (with
Hi = 〈Vi, Ei〉).

H contains k many disjoint (or vertex-disjoint) Z-X -rays if the Vi are
pairwise disjoint. H contains k many edge-disjoint Z-X -rays if the Ei are
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pairwise disjoint. We often use Y to stand for either vertex (V) or edge (E)
as in the following definitions.

An X -graph H contains arbitrarily many Y -disjoint Z-X -rays if it contains
k many such rays for every k ∈ N .

An X -graph H contains infinitely many Y -disjoint Z-X -rays if there is
an X-subgraph H ′ = 〈V ′, E ′〉 of H and a sequence 〈Hi, fi〉i∈N such that
each 〈Hi, fi〉 is a Z-X-ray in H (withHi = 〈Vi, Ei〉) such that the Vi or Ei ,
respectively for Y = V,E, are pairwise disjoint andV ′ = ∪Vi andE ′ = ∪Ei .

The starting point of the work in [1] is a theorem of [9] that we call the
infinite ray theorem as expressed in [4].

Definition 2.6 (Halin’s Theorem). IRT, the infinite ray theorem: Every
graph H which contains arbitrarily many disjoint rays contains infinitely
many.

We consider versions IRTXYZ of this theorem which allow H to be an
undirected (X = U) or a directed (X = D) graph and for the disjointness
requirement to be vertex (Y = V) or edge (Y = E). We also allow the
rays to be single (Z = S) or double (Z = D) and consider restrictions of
some of these theorems to specific families of graphs. In particular, we
begin with trees. Note that we define trees as a class of graphs and so
use in our basic language for our definitions the edge relation but not the
induced partial order. This causes some conflict between the standard graph-
theoretic terminology above and some common set-theoretic terminology.
For example, a path in a tree (viewed as a graph) need not start at the root
of the tree or be linearly ordered in the induced partial order on the tree. We
define the branches of a tree so that they are actually the maximal linearly
ordered sets in the tree with respect to the usual induced ordering as is fairly
common in set-theoretic terminology.

Definition 2.7. A tree is a graph T with a designated element r called its
root such that for each vertex v 
= r there is a unique path from r to v. A
branch in T is a ray that begins at its root. We denote the set of its branches by
[T ] and say that T is well-founded if [T ] = ∅ and otherwise it is ill-founded.
A forest is an effective disjoint union of trees, or more formally, a graph with
a designated set R (of vertices called roots) such that for each vertex v there
is a unique r ∈ R such that there is a path from r to v and, moreover, there
is only one such path. In general, the effectiveness we assume when we take
disjoint unions of graphs means that we can effectively (i.e., computably)
identify each vertex in the union with the original vertex (and the graph to
which it belongs) which it represents in the disjoint union.

Definition 2.8. A directed tree is a directed graphT = 〈V,E〉 such that its
underlying graph T̂ = 〈V, Ê〉 where Ê = {{u, v}|〈u, v〉 ∈ E ∨ 〈v, u〉 ∈ E} is
a tree. A directed forest is a directed graph whose underlying graph is a forest.

Definition 2.9. An X -graph H is locally finite if, for each u ∈ V , the set
{v ∈ E|(u, v) ∈ E ∨ (v, u) ∈ E} of neighbors of u is finite.
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2.3. The hyperarithmetic hierarchy. We assume familiarity with the
basic notion of relative complexity of sets and functions as given by
Turing reducibility, X ≤T Y , and the Turing jump operator, X ′, and
refer to any standard text such as [22]. Iterating the jump into the
transfinite brings us to hyperarithmetic theory. Here, the now standard
text is [24].

Definition 2.10. We represent ordinals α as well-ordered relations on N.
Typically such ordinal notations are endowed with various additional
structures such as identifying 0, successor, and limit ordinals and specifying
cofinal�-sequences for the limit ordinals. An ordinal is recursive (in a set X)
if it has a recursive (in X) representation. For a set X and ordinal (notation)
α recursive in X, we define the transfinite iterations X (α) of the Turing jump
of X by induction: X (0) = X ; X (α+1) = (Xα)′; and for a limit ordinal �,
X (�) = ⊕{X (α)|α < �} (or as the sum over the X (α) in the specified cofinal
sequence).

Definition 2.11. HYP(X ), the collection of all sets hyperarithmetic in X
consists of those sets recursive in some X (α) for α an ordinal recursive in X.
These are also the sets Δ1

1 in X.

Above all the sets hyperarithmetic in X lies its hyperjump.

Definition 2.12. The hyperjump of X, OX , is the set {e|ΦXe is (the
characteristic function of) a well-founded subtree of N<N}.

We can now define the primary objects of our analysis. Note that the
definitions only refer to standard models.

Definition 2.13. A sentence (theory) T is a theorem (theory) of
hyperarithmetic analysis (THA) if

1. For every X ⊆ N, (N, HYP(X )) � T and
2. For every S ⊆ 2N, if (N, S) � T and X ∈ S thenHYP(X ) ⊆ S.

Definition 2.14. A theorem or theory T is an almost theorem (theory)
of hyperarithmetic analysis (ATHA), if T � ACA0 but T + ACA0 is a
THA.

§3. IRTXYZ and hyperarithmetic analysis. We analyze the strength of the
variations IRTXYZ of Halin’s theorem. Classically, IRTUVS and IRTUVD were
proved by Halin [9, 10]. IRTUES is an exercise in [4, Theorem 8.2.5(ii)] while
IRTDVS and IRTDES may be folklore. We prove that all of these are THAs.
Of the other three variants, IRTDED and IRTDVD are open problems of
graph theory ([2] and Bowler (personal communication)). We do, however,
have interesting and unusual results about these principles when restricted
to directed forests. The remaining variant, IRTUED, was proved by Bowler,
Carmesin and Pott [2] using structural results about the topological notion
of ends in graphs. All the results in this section not otherwise attributed are
from [1].
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We first note some reverse mathematical relations among these principles.

Theorem 3.1 (RCA0). (i) IRTDED → IRTDVD, IRTUED, IRTDES.
(ii) IRTDVD → IRTUVD, IRTDVS.
(iii) IRTDES → IRTDVS, IRTUES.
(iv) IRTDVS → IRTUVS.

The proofs of these implications are purely combinatorial and all follow
the same basic plan. To deduce IRTXYZ from IRTX′Y′Z′ we provide
computable maps g, h, and k which take X-graphs G to X′-graphs G ′,
Y-disjoint Z-rays or sets of Y-disjoint Z-rays in G to Y′-disjoint Z′-rays
or sets of Y′-disjoint Z′-rays in G ′, and Y′-disjoint Z′-rays or sets of
Y′-disjoint Z′-rays in G ′ to Y-disjoint Z-rays or sets of Y-disjoint Z-rays
in G, respectively. These functions are designed to take witnesses of the
hypothesis of IRTXYZ in G to witnesses of the hypothesis of IRTX′Y′Z′ in
G ′ and witnesses to the conclusion of IRTX′Y′Z′ in G ′ to witnesses to the
conclusion of IRTXYZ in G. Clearly it suffices to provide such computable
maps to establish the desired reduction in RCA0. We use these reductions to
prove one of our major results: all of the IRTXYZ have strength at least that
of some THAs and that most are, in fact, themselves THAs. We discuss two
other reductions not in RCA0 in Theorem 3.10 and Section 4.

Theorem 3.2. All single-ray variants of IRT (i.e., IRTXYS) and IRTUVD

are theorems of hyperarithmetic analysis.

The proofs have two parts. One is recursion-theoretic. It first provides a
coding into computable graphs that have arbitrarily many disjoint rays such
that any sequence of infinitely many disjoint rays computes 0′. Thus each of
the principles implies ACA0. Then we prove that, if 0(α) exists for each α < �
(recursive ordinals), then 0(�) exists. The method here is to use known facts
of hyperarithmetic theory to construct a sequence of trees each of which has
exactly one branch uniformly of degree 0(α) (or variations appropriate to
the version of IRT being considered) and apply the version of IRT to get a
sequence of these branches cofinal in � and so construct 0(�). This guarantees
that the second clause of the definition of THA (2.13) is satisfied.

The second part consists of showing that each of these versions of IRT
is provable from the THA Σ1

1-AC0. Thus the IRT variants satisfy the first
clause as well. The proofs of the variants in Σ1

1-AC0 are mostly careful
analyses of standard proofs or variations on such. The basic constructions
are recursions which at each step perform arithmetic operations on given
or constructed graphs and apply Menger’s theorem for finite graphs. The
construction for IRTDES requires some additional ideas that include using
line graphs to move from edge disjointness to vertex disjointness and a
reduction to locally finite graphs similar to an analysis in [2] that we discuss
in Section 4.

What prevents the construction from being one in ACA0 is the need to
apply the hypothesis of IRT at step n to be able to use a sequence Rn =
〈Rni |i < f(n)〉 of disjoint rays of length f(n) for some specified recursive
function f. While the hypothesis tells us there is such a sequence for each
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n, producing the whole sequence 〈Rn〉 to start the constructions formally
seems to use some form of choice (Σ1

1-AC clearly suffices). This preliminary
step is the essential source of the complexity of the IRTXYZ. Indeed, we
show that, each IRTXYS and IRTUVD is equivalent (over RCA0) to the
principle that its hypothesis implies the existence of a sequence 〈Rn〉 as just
described.

Definition 3.3. SCRXYZ: For every X-graph G with arbitrarily many
Y-disjoint Z-rays, there is a sequence 〈Rn〉 such that each Rn is a sequence
of n many Y-disjoint Z-rays.

We now turn to two other types of variations on IRT that involve notions
of maximality. The first actually follows the original formulation of IRT in
[9].

Definition 3.4. IRT∗
XYZ: Every X-graph G has a set of Y-disjoint Z-rays

of maximum cardinality.

It is easy to see that the difference between IRT∗
XYZ and IRTXYZ is just

an induction argument. It suffices to have IΣ1
1, induction for Σ1

1 (rather than
Σ0

1) formulas.

Proposition 3.5. For each choice of XYZ, IRT∗
XYZ implies IRTXYZ over

RCA0 and IRTXYZ implies IRT∗
XYZ over RCA0 + IΣ1

1. Therefore IRTXYZ and
IRT∗

XYZ are equivalent over RCA0 + IΣ1
1.

As a theory being a THA depends only on its standard models (in which
full induction holds), we see that we have another collection of THAs from
the literature.

Theorem 3.6. For all the IRTXYS and IRTUVD (which are THAs by
Theorem 3.2), the IRT∗

XYZ are also THAs.

Moreover, we can show that these IRT∗
XYZ are proof-theoretically strictly

stronger than the corresponding IRTXYZ and indeed not even provable from
Σ1

1-AC0.

Theorem 3.7. For each choice of XYZ, IRT∗
XYZ implies ACA∗

0 and so proves
the consistency of Σ1

1-AC0. Thus none is provable in Σ1
1-AC0. In particular

IRTXYS and IRTUVD are each strictly weaker than the corresponding IRT∗
XYZ.

Here ACA∗
0 is the known principle adding the instance of induction

giving all finite iterations of the jump: (∀A)(∀n)(∃W )(W [0] = A ∧ (∀i < n)
(W [i+1] =W [i ]′)). The proof of Theorem 3.7 shows first that ACA∗

0 follows
from each IRT∗

XYZ by using [26, Lemma V.5.4] and then examining the
argument for [26, Corollary IX.4.6] to get the consistency result.

We can do more for special cases of the open questions IRTDED and
IRTDVD. Indeed, we have that restricting these principles to various classes
of graphs supplies new THAs which are strictly stronger than Σ1

1-AC0 and
not provable even in ATR0.

Theorem 3.8. Each of IRT∗
DYD restricted to directed forests is a THA which

strictly implies Σ1
1-AC0 over RCA0 but is not provable in ATR0.
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More generally, we can precisely characterize the reverse mathematical
strength of all these variants.

Theorem 3.9. The following are equivalent (over RCA0):

1. Σ1
1-AC0 + IΣ1

1.
2. IRTDED for directed forests + IΣ1

1.
3. IRT∗

DED for directed forests.
4. IRT∗

DVD for directed forests.
5. IRTDVD for directed forests + IΣ1

1.

The proofs here use a new combinatorial argument to show
that Σ1

1-AC0 implies IRTDED for directed forests, a short coding to derive
Σ1

1-AC from IRT∗
DVD and another one to show that IRT∗

DVD implies IΣ1
1 as

well as several previously established implications. As IΣ1
1 is not provable in

ATR0 by [26, Corollary IX.4.7], we have a lower bound for IRT∗
DYD.

More difficult combinatorial arguments show that if we consider IRT∗
UVD

over RCA0 and so IRTUVD over RCA0 + IΣ1
1 we can derive a reduction not

implied by those of Theorem 3.1 and the immediate ones of Proposition 3.5.

Theorem 3.10. IRT∗
UVD implies IRTUVS over RCA0. Therefore (1) IRTUVD

implies IRTUVS over RCA0 + IΣ1
1; and (2) if any standard model of RCA0

satisfies IRTUVD, then it satisfies IRTUVS as well.

We now turn to the second notion of maximality for IRT variants. Instead
of asking for sets of disjoint rays of maximal cardinality we ask for ones that
are maximal in the sense of containment. Of course, the existence of such
sets follows immediately from Zorn’s Lemma and was so noted in [9]. In
terms of computational and reverse mathematical strength, they are much
stronger than the IRT or IRT∗ versions.

Definition 3.11. MIRTXYZ: Every X-graph G has a (possibly finite)
sequence (Ri)i of Y-disjoint Z-rays which is maximal, i.e., for any Z-ray
R in G, there is some i such that R and Ri are not Y-disjoint.

Theorem 3.12. Each MIRTXYZ is equivalent to Π1
1-CA0 over RCA0.

We close this section with a summary of the relations between the THAs
introduced here along with another new one that they suggested and others
already studied in the literature. Many of our results are displayed in
Figure 1.

As mentioned in Section 1, the only previously known purely mathematical
THA was INDEC. There were also one or two quasi-mathematical ones
which, like ABW, are versions of standard principles such as the Bolzano–
Weierstrass theorem but restricted to arithmetic sets of reals. (See [7] and
[3].) All the others were typical logical axioms or theorems. The standard
examples include Σ1

1-DC0, Σ1
1-AC0, Δ1

1-CA0, as well as Π1
1-SEP and weak-

Σ1
1-AC0. The known relationships among these systems were as follows:

Σ1
1-DC0 ⇒ Σ1

1-AC0 ⇒ Π1
1-SEP ⇒ Δ1

1-CA0 ⇒ INDEC0; Δ1
1-CA0 ⇒ weak-

Σ1
1-AC0; INDEC0 + IΣ1

1 ⇒ weak-Σ1
1-AC0; Σ1

1-AC0 + IΣ1
1 ⇒ABW0 + IΣ1

1 ⇒
weak-Σ1

1-AC0; and Δ1
1-CA0 � ABW0 � INDEC0. We use ⇒ to denote strict
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Π1
1-CA0MIRT

ATR0

Σ1
1-AC0

Δ1
1-CA0

w-Σ1
1-AC0

ACA0

finite-Σ1
1-AC0

IRTDES

IRTUVD

IRTUVS

IRT∗
UVS

IRT∗
DES

IRT∗
UVD

Σ1
1-AC0 + IΣ1

1

IRT∗
DED,DF

(6)

(7)

(1)

(1)

(3)

(2)

(3)

(2)

(4)

(5)

(5)

(1)

|

|

Figure 1. Partial zoo involving known axiom systems and some IRT variants. Single arrows denote
implication over RCA0 while double arrows denote strict implication over RCA0. All theories are THA
except for MIRT, Π1

1-CA0, ATR0, and ACA0: For the IRT variants see Theorems 3.2 and 3.6; otherwise
see [17]. For readability we have not displayed all variants of IRT and IRT∗. Most of the results in
the figure are proved for some other IRTXYZ as well (or IRT∗

XYZ, as appropriate) except for (4). The
unlabeled implications and nonimplications along and to the right of the vertical axis from Π1

1-CA0

to ACA0 are well-known (see [26], in particular Corollary IX.4.7). (1): These are proved in [8]. The
implications from Σ1

1-AC0 to IRTDES and IRTUVD follow from our proof of Theorem 3.2 (see the
second paragraph after Theorem 3.2). The implications from Σ1

1-AC0 + IΣ1
1 to IRT∗

DES and IRT∗
UVD

follow from the above and Proposition 3.5. The strict implications from IRT∗
XYZ to IRTXYZ hold by

Proposition 3.5 and Theorem 3.7. (2): Theorems 3.14 and 3.7. (3): Theorem 3.1. (4): Theorem 3.10;
strictness follows from Theorem 3.7. The strict implications (5) follow from our proof of Theorem 3.2
(see the first paragraph after Theorem 3.2). (6): Theorem 3.12. (7): Theorem 3.9 (the subscript DF
indicates that we restrict IRT∗

DED to directed forests).

implication between theories. (See [3, 17, 18, 20, 26] for definitions, proofs,
and references.)

We have already provided many relations between Σ1
1-AC0 and IRT∗

XYZ
and IRTXYZ. Our first step in providing consequences of the IRT∗

XYZ or
IRTXYZ which we know are implied by Σ1

1-AC0 + IΣ1
1 or Σ1

1-AC0, respectively,
was that weak-Σ1

1-AC0 follows from IRT + IΣ1
1. This proof led us to an

apparent strengthening of weak-Σ1
1-AC0 which was also a consequence of

each IRT∗
XYZ.

Definition 3.13. The principle finite-Σ1
1-AC asserts that, for every

arithmetic Φ(A, n,X ),

∀A[(∀n)(∃ nonzero finitely many X )Φ(A, n,X ) → ∃Y∀nΦ(A, n,Y [n])].
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Here we have weakened the usual hypothesis of weak-Σ1
1-AC0 from

asserting that for each n there is precisely one X such that A(n,X ) to there
being a finite sequence containing all such X. So, of course, finite-Σ1

1-AC0

implies weak-Σ1
1-AC0. We provide many other relations as well.

Theorem 3.14. IRT∗
XYZ implies finite-Σ1

1-AC0 over RCA0. So IRTXYZ

implies finite-Σ1
1-AC0 over RCA0 + IΣ1

1.

Theorem 3.15. IRT∗
XYZ implies ABW0 over RCA0. Therefore IRTXYZ

implies ABW0 over RCA0 + IΣ1
1.

Theorem 3.16. Δ1
1-CA0 � IRTXYZ, IRT∗

XYZ.

Theorem 3.17. ABW0 � IRTXYZ, IRT∗
XYZ.

These nonimplication results use previously known models. Goh [8] proves
an additional implication and uses a technically difficult new argument based
on a variation of Steel forcing to provide new separations.

Theorem 3.18 [8]. ABW0 + IΣ1
1 is strictly stronger than finite-Σ1

1-AC0.

Theorem 3.19 [8]. Δ1
1-CA0 � finite-Σ1

1-AC0 and so, as Δ1
1-CA0 � weak-

Σ1
1-AC0 [26, Example VIII.4.14], finite-Σ1

1-AC0 is strictly stronger than
weak-Σ1

1-AC0.

§4. Almost theorems of hyperarithmetic analysis. Bowler, Carmesin, and
Pott [2, top of p. 2] sketch a reduction of IRTUES to IRTUVS. While the
proof sketch appears to be elementary, a closer look shows that underneath
it seems to use principles that are THAs and about as strong as the ones
being proven equivalent. Our expectation was that these principles, like the
IRTXYS, themselves would also prove to be THAs. That turned out not to be
the case. Rather, the graph-theoretic principle that they used (about being
able to restrict attention to locally finite graphs) implied (over ACA0) some
known THA. The unusual aspect of the situation was that we could prove
that it was not possible to show that they implied any known THA in RCA0.
In particular they did not even imply ACA0. This led to the definition and
analysis of ATHAs in [25] on which we report in this section. For various
reasons we do not consider double rays in this section and so use only the
subscripts X and Y when appropriate. For these cases, our variants of the
principle they use (with UV for XY) are as follows:

Definition 4.1. LFXY: Every X-graph which contains arbitrarily many
Y-disjoint rays contains a locally finite subgraph which also contains
arbitrarily many Y-disjoint rays.

The starting point of our analysis is that, for each choice of X and Y,
LFXY + ACA0 is equivalent to IRTXY over RCA0 and so is a THA. To see
that the LFXY are all ATHAs we need to prove that none imply ACA0. We
actually prove much more.

We also prove by the same methods that many other principles are ATHAs.
Indeed, we prove not only that they do not imply ACA0 but that they are
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very weak over RCA0. To be specific, we show that they can each be forced
by a notion of forcing from a general class of tree forcings without adding
branches to trees lacking them or any (of countably many specified) new
sets. Moreover, any such principle is highly conservative over RCA0.

Definition 4.2. Each of our classes of formulas consists of a base
class which includes the quantifier-free formulas and is then closed under
conjunction (∧), disjunction (∨), first-order quantification (∀x and ∃x for
number variables), and universal second-order quantification (∀X for set
variables). The G-Π1

1 class of formulas has only the quantifier free ones in its
base. The G-r-Π1

2 class of formulas also has in its base all formulas which are
of the form ∃YΘ(Y ) where Θ is Σ0

3. The G-Tanaka class of formulas instead
adds to the base class all formulas of the form ∃!YΦ(Y ) for arithmetic
Φ. The G-r-Tanaka class also includes in its base all formulas of the form
∃!Y∃ZΨ(x̄, Y,Z) with Ψ a Σ0

3 formula. For a class Γ of formulas, a theory
T is Γ-conservative over one S if, for every sentence ϕ ∈ Γ, T � ϕ → S � ϕ.
If S is RCA0 we omit mentioning it.

We assume a basic familiarity with forcing. This can be carried over to
forcing over models of second-order arithmetic satisfying RCA0 without too
much trouble. Our basic class of tree forcings have many familiar examples
even with the effectiveness notion we require. The definition of the uniform
version is more technical but most of the familiar examples are also uniform
or can be made so.

Definition 4.3. A notion of forcing P = 〈P,≤〉 is a tree forcing (t-forcing)
if the following hold:

1. Conditions in P are of the form 〈�, T 〉 where T ∈ S(N ) is a subtree of
N<N (i.e., a subset of N<N in N closed under initial segments with
respect to ⊆) and � is comparable with every � ∈ T . The root of T is
taken to be the empty string. The stem of T is defined to be the longest
string comparable with every element of T.

2. If 〈�′, T ′〉 ≤ 〈�, T 〉 then �′ ⊇ � and T ′ ⊆ T .
3. For every n ∈ N the class {〈�, T 〉 ||�| ≥ n} is dense in P , i.e.,

(∀ 〈�, T 〉 ∈ P)(∃ 〈�′, T ′〉)(〈�′, T ′〉 ≤ 〈�, T 〉 & |�′| ≥ n).

Definition 4.4. A tree notion of forcing P is an effective tree forcing
(et-forcing) if, for every 〈�, T 〉 ∈ P , the classExt(〈�, T 〉) = {�′|(∃T ′)(〈�′, T ′〉
≤ 〈�, T 〉)} is Σ0

1, i.e., there is an A ∈ S(N ) such that Ext(〈�, T 〉) is Σ0
1(A)

(over N).

Definition 4.5. An et-forcing P is uniform (a uet-forcing) if, for
every condition 〈�, T 〉, every �, � ∈ Ext(〈�, T 〉) with |�| = |�|, and every
〈�′′, R′′〉 ≤ 〈�′, R′〉 ≤ 〈�, T 〉 with � ⊆ �′, 〈�′′� , R′′

� 〉 ≤ 〈�′�, R′
�〉 ≤ 〈�, T 〉. For

technical convenience we also require that if 〈�, T 〉 ∈ P and the stem
of T is some � ⊃ � then 〈�, T 〉 ≤ 〈�, T 〉 whenever � ⊇ � ⊇ �. Note: For
� ∈ T , T� = {	� |	 ∈ T} where 	�(i) = �(i) for i < |�| and 	�(i) = 	(i)
for i ≥ |�|.
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Common examples of uet-forcings are Cohen, Mathias, and Silver forcings
and many variations. The usual versions of Laver and Sacks forcings are et
but not uniform. Sacks forcing can be made so by using “uniform” trees as in
[16, Definition VI.2.3]. A similar variation can be applied to Laver forcing.
We now want to know that these notions of forcing have various preservation
properties.

Theorem 4.6. If P is an et-forcing over a countable model N of RCA0,
there is a countable collection D of dense sets (including the ones specified in
Definition 4.3) such that

1. If G is P-generic for D, then N [G ] � RCA0.
2. If R is a subtree of N<N (not necessarily in S(N )) with no branch in
S(N ), then there is a countable collection D′ ⊇ D of dense sets such that
if G is P-generic for D′, then there is no branch of R in N [G ].

3. Thus for any countable collection Ri of trees as in 2 (such as all those in
S(N )) there is a single D′ as in 2 which works for everyRi . In particular,
for a set {Ci |i ∈ �} with Ci ⊆ N and Ci /∈ S(N ) for every i ∈ �, there
is a D′ ⊇ D such that, for any D′-generic G, no Ci ∈ N [G ].

It is now easy to see that if, for any theory T and countable model N
of RCA0, we can iterate et-forcings to produce an extension N∞ � T , T �

ACA0. (Start with the recursive sets as N and iterate the forcings without
adding the set 0′.) So no such T can be a THA.

We want to prove that we can also use these notions of forcing to derive
the Γ-conservativity of theories T for the classes Γ of Definition 4.2. All of
our proofs have the same general format. For the sake of a contradiction, we
assume that there is a sentence Λ ∈ Γ such thatT � Λ and a countable model
N � ¬Λ of RCA0. We then construct, by iterated forcing, a model N∞ of T.
If we can also guarantee that N∞ � ¬Λ, we have proven Γ-conservativity.

Typical arguments of this sort deal with T whose axioms (other
than RCA0) are Π1

2 principles, i.e., sentences of the form ∀X (Φ(X ) →
∃YΨ(X,Y )) with Φ and Ψ arithmetic. One shows that for each such axiom
Q and countable model M of RCA0 and instance of Q given by some X
with M � Φ(X ), one has a notion of forcing and a collection of dense sets
such that, for any generic G, M[G ] � ∃YΨ(X,Y ). (We say that the forcing
adds a solution for the instance of Q given by X.) One can then perform an
� length iteration to construct M∞ such that each instance of each Q ∈ Y
in M∞ gets a witness there as well. As M and M∞ have the same first-
order part, it is easy to see that M∞ � T and any Π1

1 sentence Λ false in
M remains false in M∞. The crucial point here is that as Φ and Ψ are
arithmetic, truth and falsity of all instances of Q are preserved upward in
the iteration. We prove that the truth of negations of G-Π1

1 sentences are
also preserved by an induction argument. If the forcings needed are et then
we get G-r-Π1

2 conservativity. If the forcings are uet, we get G-Tanaka and
G-r-Tanaka conservativity. These results strengthen many known conserva-
tion theorems.
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In terms of ATHAs and various stronger principles, however, we are
interested in situations where the axioms of T are more complicated. Our
starting examples are the LFXY (Definition 4.1). Here the axioms/principles
Q are as above but Φ and Ψ are of the form ∀n∃ZΘ with Θ arithmetic (saying
Z is a sequence of disjoint rays of length n). We prove that for any graph
which is an instance of an LFXY there is an et (indeed uet) forcing that adds a
solution, i.e., a locally finite subgraph with the desired sequences of disjoint
rays. While the added solutions remain solutions in N∞, we may have new
instances that did not seem to be instances at any point along the way: The
required witnesses Z for some X may appear cofinally in the iteration. So
N∞ may not be a model of LFXY. The natural plan here is to continue the
iteration to length �1 as any assumed witnesses for an X appearing in N∞
must then also all appear at some stage of the length �1 iteration and so
have a solution added at some point as well.

Theorem 4.7. For each of the LFXY there are uet-forcings that add solutions
for any instance. Thus all of them together are G-r-Tanaka (and so G-Tanaka,
G-r-Π1

2, and G-Π1
1) conservative over RCA0. As over ACA0 each implies

IRTXY which is a THA, each of them is an ATHA.

The SCRXY are equivalents of the corresponding IRTXY. We can adjust
them slightly to get other ATHAs which are equivalent to IRTXY only over
ACA0. One example is that we just require that the sequence 〈Rn〉 has each
Rn being a sequence of almost (i.e., up to finite difference) disjoint rays of
length n. We also consider variations of an array of known strong principles
that provide versions that are Γ-conservative for all the class of Definition 4.2
but very strong over ACA0.

Definition 4.8. Σ1
n+1-AC∗:∀A[∀n∃XΦ(A, n,X )→∃Y∀n∃�Φ(A, n,Y [n]

� )],
for Φ Π1

n.
(Note: For Y ∈ NN and � ∈ N<N , we define Y� by Y�(i) = �(i) for
i < |�| and Y�(i) = Y (i) for i ≥ |�|.)

Σ1
n+1-AC–: ∀A[∀n∃XΦ(A, n,X ) → ∃Y∀n∃mΦ(A, n,Y [m])] for Φ Π1

n.
Σ1
∞-AC∗ and Σ1

∞-AC– assert, respectively, that Σ1
n-AC∗ and Σ1

n-AC– hold
for all n ∈ �.

Theorem 4.9. For each n ∈ �, RCA0 � Σ1
n+1-AC → Σ1

n+1-AC∗ →
Σ1
n+1-AC– and ACA0 � Σ1

n+1-AC– → Σ1
n+1-CA. So over ACA0, all of

Σ1
∞-AC∗, Σ1

∞-AC–, and Σ1
∞-CA are equivalent as are Σ1

n+1-AC, Σ1
n+1-AC∗,

and Σ1
n+1-AC– for each n.

Theorem 4.10. Σ1
∞-AC∗

0 is Γ-conservative for all the classes Γ of Defini-
tion 4.2 and so are all the Σ1

n+1-AC∗
0 and Σ1

n+1-AC–
0 by the previous theorem.

So, in particular, Σ1
1-AC∗

0 , Σ1
1-AC–

0, Σ1
∞-AC∗

0 , and Σ1
∞-AC–

0 are highly
conservative over RCA0 but over ACA0 each of the first pair is equivalent
to Σ1

1-AC0 (and so are ATHAs) and each of the second pair is equivalent to
Σ1
∞-AC0 and so stronger than full second-order arithmetic. (See [26, Remark

VII.6.3].) Some earlier conservation results for some of the theories covered
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here are in [14, 30 and 32] as well as in work by Tanaka, Montalbán and
Yamazaki as reported in [31].

The proof of Theorem 4.9 is combinatorial and proceeds by induction
on n. Theorem 4.10 is proven by providing et- or even uet-forcings that add
solutions for Σ1

∞-AC∗. Now Σ1
∞-AC∗ has both hypotheses/instances Φ(X )

and conclusions/solutions Ψ(X,Y ) of arbitrary complexity. Thus we need
another idea to guarantee that adding what looks like a solution stays a
solution in N∞ as well as a procedure that makes sure we handle everything
that is an instance in N∞ along the way. The crucial idea here is to use the
fact that if we do an �1 iteration to produce models Nα for α < �1 then,
for a closed unbounded set of � < �1, N� will be an elementary submodel
of N∞. Thus, if we carefully handle everything that looks like an instance in
such an N� and supply something that looks like a solution, all will be well
at the end.

We view these results and the previous ones on ATHAs that are equivalent
to known THAs over ACA0 as supplying answers to the question raised by
Hirschfeldt and repeated in [19] by providing an ample list of many pairs of
principles that are very different over RCA0 but equivalent over ACA0. It
could well be argued that these weak ones should really be seen as the same
as their strong counterparts in an analysis that works over ACA0 rather than
RCA0.
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