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Abstract

This paper demonstrates how the combustion of fossil fuels for transport purpose might cause
health implications. Based on an original case study [i.e. the Hubei province in China, the epi-
centre of the coronavirus disease-2019 (COVID-19) pandemic], we collected data on atmos-
pheric pollutants (PM2.5, PM10 and CO2) and economic growth (GDP), along with daily series
on COVID-19 indicators (cases, resuscitations and deaths). Then, we adopted an innovative
Machine Learning approach, applying a new image Neural Networks model to investigate
the causal relationships among economic, atmospheric and COVID-19 indicators.
Empirical findings emphasise that any change in economic activity is found to substantially
affect the dynamic levels of PM2.5, PM10 and CO2 which, in turn, generates significant varia-
tions in the spread of the COVID-19 epidemic and its associated lethality. As a robustness
check, the conduction of an optimisation algorithm further corroborates previous results.

Introduction

While not reflected in market prices, externalities of energy production induce adverse effects
on the society that we cannot neglect anymore [1]. In most countries, transport, power gen-
eration, heating plants and industrial processes are heavily dependent on fossil fuels. Their
combustion releases harmful pollutants into the atmosphere and drives the concentration of
toxic molecules (notably PM10, PM2.5, O3, CO, NOx, SOx) in highly populated cities. Along
with seminal studies, a strand of the literature emphasises that combusting fossil fuels produce
externalities, which are yet known to affect the overall society through various economic, social
and health effects. Long ignored, their associated costs are rarely accounted by environmental reg-
ulators and must be further internalised within energy planning.

Above all, agricultural outputs (notably wheat and rice) were found to be negatively influ-
enced by short-lived climate pollutants and long-lived Greenhouse Gases (GHG), causing
major crop yields and productivity losses [2–4]. In addition, air pollution was found to be
associated with a decline in educational achievements and cognitive performance, disrupting
the long-run human capital formation [5–8]. Moreover, air pollution was revealed as a sub-
stantial driver of overall crime and on several major crime categories, including those with eco-
nomic motives [9–11], but also mental health issues [12–14].

Finally, a strand of literature has emerged, shedding light on the direct causal association
between air pollutants concentration and health status. For instance, several studies have
demonstrated that people exposed to elevated levels of fossil fuel-based air pollution are
more likely to develop respiratory and cardiovascular diseases and present a lower life expect-
ancy [15, 16]. Moreover, particle exposure has been pointed out to induce heart or lung dis-
ease, non-fatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function
and increased respiratory symptoms such as irritation of the airways, coughing, or difficulty
breathing [17, 18]. Indeed, PM2.5 can be inhaled and reach the deepest part of the lung and
the circulatory system [19–21]. They travel into the blood and attain the cells, causing import-
ant damages and favouring long-run diseases [22]. Accordingly, toxic particle concentrations
are at the heart of premature deaths in polluted cities and call for core solutions. For instance,
Song et al. [23] estimated that when the concentration of PM2.5, PM10, NO2, O3 and CO
increases by 10 μg/m3 in North China cities, the number of people hospitalised for hyperten-
sion raises by 0.56%, 0.31%, 1.18%, 0.40% and 0.03%, respectively. Goodkind et al. [24] ana-
lysed the Bitcoin economic, health and climate damages linked with air pollution emissions.
The authors collected country-level data on emissions rates per kWh of electricity generation
for four pollutants and combined them with knowledge on emission rates with the kWh of
electricity usage per coin created. Knowing the average emissions released to generate a
coin, they found that in 2018, each $1 of Bitcoin value created was responsible for $0.49 in
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health and climate damages in the US and $0.37 in China. Put
differently, the human health and climate damages caused by
Bitcoin represented almost half of the financial value of each
US dollar of Bitcoin created (as represented by market prices).
Xia et al. [25] employed a supply-driven input-output (I-O)
model to estimate the monetary value of total output losses
induced by air pollution-related disease across 30 Chinese pro-
vinces in 2007. They concluded that in 2007, the total reduced
working time attributed to air pollution-related hospital admis-
sions and deaths represent an economic loss estimated at around
346.26 billion Yuan (approximately 1.1% of the national GDP),
which is almost the annual GDP of Vietnam in 2010. Tightly
linked to this view, recent studies pointed out the role of air
pollution in driving public and private healthcare expenditures
[26–28]. Facing the above studies, critical questions can be raised
about the well-established human activity-health-environment
relationship in modern society.

Coronavirus disease-2019 (COVID-19) pandemic recently dis-
closed another potential externality from polluting emissions,
beyond the well-known respiratory diseases: the possible suscepti-
bility of human immune systems to virus contagions. Before the
beginning of the outbreak, only a few studies linking air pollution
to the spread of various viral infections were present in the litera-
ture [29–31]. However, due to its unprecedented nature, little is
known on the atmospheric drivers of COVID-19. Along with
the ongoing pandemic, a range of health risk factors involved in
the spread of the epidemic has been commonly identified by
researchers (i.e. older age, hypertension and respiratory issues)
[32, 33]. However, facing the heterogeneous diffusion rate experi-
enced by urban areas worldwide, some asked whether atmos-
pheric conditions might be an additional driver to COVID-19
spreading and lethality.

A new research direction has been opened by seminal experi-
mental studies in search of establishing a link between environ-
mental and health indicators, distinguishing across countries
and pollutants: Bashir et al. [34] on California; Setti et al. [35]
on Italy; Travaglio et al. [36] on England; Yongjian on China;
Magazzino et al. [37] and Mele et al. [38] on France;
Magazzino et al. [39] on New York state; Mele and Magazzino
[40] on India. As a result, all of them gave at least support to
the existence of a substantial correlation between air pollution
exposure and COVID-19 spread. However, some of the standard
econometric procedures showed serious limitations in depicting
causal inferences [41]. Indeed, the constraint of data unavailability
makes the number of variables included into linear specifications
limited, which, in turn, might report misleading estimates in
absence of confounding factors. For the Hubei province in
China, the epicentre of the pandemic, no study has been carried
out. This is surprising since the critical pollution levels and the
dramatic COVID-19 outbreak observed there make this case
interesting. In China as in other developing countries, most of
the population live in places with unsafe air [7]. The damages
caused by air pollution imposes substantial health and economic
costs that are not reflected in the market prices of fossil fuels.
Therefore, while the exact predisposing factors contributing to
worsen clinical severity and death of affected patients remain
unclear, researchers unanimously argue that mitigating this pri-
mary pollutant ought to become a priority policy target.
Accordingly, there is a need to understand how the rate of
COVID-19 spread is affected by extreme disruptions in atmos-
pheric pollutants as it can provide crucial clues to explain the effi-
ciency of lockdown policies and helpful tools to control the

epidemic diffusion in densely populated and polluted areas.
Given that the COVID-19 pandemic is currently ongoing and
far from being over, the complexity of such a topic requires urgent
scientific responses.

In this research, we extend the discussion on the relationship
between economic activity, atmospheric externalities derived
from fossil fuel combustion and respiratory health outcomes, by
bringing a specific focus on the channel between air pollution
and COVID-19-related deaths. A potential mechanism is that
particulate matters (PM2.5) can be inhaled and reach the deepest
part of the lung and the circulatory system [19–21]. They travel
into the blood and attain the cells. They cause lung cell inflamma-
tion, thereby increasing the sensitivity and damages of symptoms
in COVID-19 patients [22, 42]. Starting from the recent evidence
drawn in Magazzino et al. [37], this paper seeks to contribute to
the literature in three distinct ways.

• First, this study fills a gap in the literature, conducting the first
empirical assessment of the relationship between air pollution
and COVID-19 related deaths for the case of the epicentre of
the pandemic: the Hubei province in China. While the con-
sumption of oil, natural gas and coal covers 87% of the total
needs in this country, only 27% of the power sector is decarbo-
nised, explaining why Chinese cities continue to record critical
pollution levels1. Thus, critical levels of air pollution have been
recorded in Chinese cities [45, 46].

• Second, this paper extends the novel literature that employed
Machine Learning (ML) tools to assess the complex dynamic
nexus between air pollution and virus epidemic [47–50]. As sta-
ted in Chudnovsky [51], some criticisms towards econometric-
based inferences remain and should be overcome by more
advanced methodological tools. Nonetheless, our study con-
trasts from the previous one as it applies a new sophisticated
Deep Learning (DL) process derived from Artificial Neural
Networks (ANNs) experiments for the first time.

• Third, this research relies on an original dataset elaborated
based on a newly available series of local daily data on atmos-
pheric pollutants (PM2.5, PM10 and CO2

2) and COVID-19 sta-
tus (cases, resuscitations and deaths) in China. All variables
cover the largest and most recently available period of time
(i.e. from January 20th to July 31st, 2020).

Besides the Introduction, the rest of the paper proceeds as fol-
lows: Section ‘The Revealing context of the externality: COVID-19
pandemic in Chinese polluted areas’ presents the scenario of the
COVID-19 pandemic in Chinese polluted areas. Section
‘Literature review’ outlines the literature review. In Section ‘Data
and methodology’ the theoretical ML framework is provided.
Section ‘Results and discussion’ displays, comments and discusses
the empirical results. Finally, in Section ‘Conclusions and policy
recommendations’, concluding remarks are given, along with pol-
icy recommendations.

1As it turns to become a major regulatory concern, several emission control policies
have been implemented and accompanied by various pollution abatement targets for pro-
vinces and cities [25, 43]. For instance, all existing coal power plants have shifted to a new
air quality standard in 2014 (GB13223-2011), while industrial and vehicle exhaust emis-
sions have been required to display efficiency gains [44].

2PM2.5: Particulate Matters with diameters smaller than 2.5 micrometres; PM10:
Particulate Matters with diameters smaller than 10 micrometres; CO2: Carbon Dioxide
particles.
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The revealing context of the externality: COVID-19
pandemic in Chinese polluted areas

COVID-19 is a viral respiratory disease that can be contracted
through three key channels: saliva, nasal discharge, or airborne
particles [52]. When contracted, the disease induces a myriad of
respiratory difficulties accompanied by fever and dyspnoea. First
discovered in Wuhan, the COVID-19 virus has quickly spread
across countries. By early 2020, the scale of the virus became
worldwide, forcing countries to implement drastic and historical
lockdown measures [53]. As each country began preventive and
containment decrees, many citizens travelling abroad could not
reach their home country while economic and social activities
(i.e. the transport, tourism and hotel sectors) faced important lim-
itations for national health safety reasons. Since the Spanish flu
pandemic of 1918 (which killed about 50 million people world-
wide), the current situation remains historical [54].

Nonetheless, before the shutdown of its manufacturing activ-
ities, Chinese cities have been recording critical air pollution levels
that became of major concern for researchers and environmental
organisations [55–57]. Due to its heavy dependence on the com-
bustion of fossil fuels (i.e. for industrial and power generation
purposes), the Chinese economy has driven the release of toxic
polluting substances into the atmosphere for decades.

A wide range of empirical studies claims evidence that metro-
politan cities in China significantly contribute to higher mortality
rates in China. According to Aunan et al. [58], it has been esti-
mated that polluting particles might be responsible for the yearly
premature death of about a million people in this country (9% of
the non-communicable diseases reported), concentrated in the
most vulnerable population (elderly and/or displaying cardiovas-
cular and respiratory issues). Being highly dependent on fossils
fuels, the population around transport and industrialised areas
might be more likely to contract respiratory issues including can-
cer (especially in locations where coal mining takes place) [59].
Accordingly, people with underlying health conditions and
weak immune systems are more likely to present a higher risk
of contracting the virus than those without health conditions or
more robust immune systems.

Hover, as a result of the shutdown of economic and transport
activities used to control Covid-19, Mountford [60] measured a
15% emissions reduction in the Chinese industrial sector, which
remains lower than the worldwide average estimated at −26%
by Le Quéré et al. [61]. This might explain the gradual decrease
in the rates of deaths reported across cities like Wuhan,
Shangai, Beijing and other provinces [59].

Far from being a coincidence, this highlights the possibility
that reaching lower premature deaths levels can be achieved
through reduced economic activities. More so, this underlines
that the combustion of fuel creates new health externalities (i.e.
the potential susceptibility of human immune systems to a virus
contagion), recently revealed by the COVID-19 pandemic.

Literature review

Notwithstanding its novelty, the determinants and consequences
of COVID-19 have been the subject of extensive assessments.
Within this literature, a strand has emerged assessing the environ-
mental determinants of COVID-19 spread. Atmospheric factors
and the concentration of harmful pollutants, in particular, have
concentrated intensive discussions. However, despite sharing a
common research question, one will see that approaches contrast

(i.e. mathematical modelling, virus diffusion simulation, econo-
metric regressions, ML experiments) and the case studies differ
(cities, regions, single-country, multi-locations). In the first part,
we outline the papers which examined the air pollution-
COVID-19-related deaths nexus for regions located in various
countries, except China (2.1.). Then, we summarise the main
assessments on the single case of Chinese cities (2.2).

General assessments of the air pollution-COVID-19 nexus

Coccia [62] collected data on 55 Italian cities which are provincial
capitals and suggested that the diffusion of COVID-19 in cities
with high levels of air pollution generated higher numbers of
COVID-19 related infected individuals and deaths. More specific-
ally, results reveal that the number of infected people is signifi-
cantly higher in cities where the limits of PM10 or ozone are
exceeded over 100 days per year and the average wind speed
and temperature level are lower. In Magazzino et al. [63], the
authors used ANNs experiments in an ML framework on
Brazilian series. They showed that more intensive use of renewable
energy could generate a positive GDP acceleration, which in turn,
could offset the harmful pollution-COVID-19 association. Using
a slightly different approach, Magazzino et al. [39] inspected
the case of New York state using city-level daily data and two
ML experiments. PM2.5 and NO2 were found to be the most sig-
nificant pollutant agents responsible for facilitating COVID-19
attributed death rates. Going one step further, Mele et al. [38] esti-
mated that the threshold values of NO2 connected to COVID-19
range between 15.8 μg/m3 for Lyon, 21.08 μg/m3 for Marseille and
22.9 μg/m3 for Paris. Finally, these results are in line with those of
Travaglio et al. [36] for England; Bashir et al. [34] for California
and a set of Italian examinations: Zoran et al. [64] for the city of
Milan; Setti et al. [35] for eight Italian regions; Conticini et al. [65]
for northern Italy; Fattorini and Regoli [66] for 71 Italian pro-
vinces; and Frontera et al. [67] for the major Italian regions.
On a more global scale, this corroborates the findings of Razzaq
et al. [68] for the top 10 affected states of the U.S., but also
Vasquez-Apestegui et al. [69] for 24 districts of Lima (Perù).
Finally, Sarkodie and Owusu [70] demonstrated that high tem-
perature and high relative humidity reduce COVID-19 cases,
deaths and improve recovery using series covering 20 countries.
Reciprocally, low temperature, wind speed, dew/frost point, pre-
cipitation and surface pressure prolong the activation and infect-
ivity of the virus. At the city level, Sasidharan et al. [71] designed a
preliminary assessment on the linkage between short-term NO2

concentration and COVID-19 cases and fatality rates for the
case of London (UK). Based on data up to March 31st 2020, the
COVID-19 fatality rate was found positively correlated with short-
term NO2 pics. Nonetheless, Saez et al. [41] contrast with these
studies as they showed that, although some mechanisms may
explain this air pollution-COVID-19 dynamic, the spatial spread
in Catalonia (Spain) might be more attributed to population
interactions rather than a chronic immune sensitivity to this
virus. Finally, the latest evidence on this channel can be found
in Konstantinoudis et al. [72] for England; Liu et al. [73] for
California; Coccia [74] for Italian regions; Coccia [75] for a global
sample of 160 countries.

With a slightly different approach, Haque and Rahman [76]
relied on linear regression models and concluded that high tem-
perature and humidity are coupled with a significant reduce
COVID-19 transmission reduction in Bangladesh. Such evidence
is in line with those of Mele and Magazzino [40] who drew similar
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conclusions for India. Following this view, Rosario et al. [77]
highlighted that there is a substantial negative correlation between
solar radiation and COVID-19 incidence in the State of Rio de
Janeiro (Brazil), whereas negative inferences are indicated when
looking at temperature and wind speed. A review on the associ-
ation among meteorological factors, air pollution and
COVID-19 can also be found in Magazzino et al. or Srivastava
[78]. Table 1 summarises the main information of this novel
literature.

Studies On the air pollution-COVID-19 nexus in China

A few assessments have tackled the single case of China and asso-
ciated findings suggested that metropolitan cities in China con-
tribute significantly to higher mortality rates in China as many
develop respiratory-related issues from exposure to polluted air.
For instance, Shen et al. [79] argued that critical atmospheric pol-
lution events were frequently observed during the strictest lock-
down in Hubei. Zhang et al. [80] applied a mathematical model
with multiple datasets to estimate the transmissibility of the
COVID-19 virus and the severity of the illness associated with
the infection and how both were affected by unprecedented con-
trol measures. The analyses show that before 19th January 2020,
3.5% of infected people were detected; this percentage increased
to 36.6% thereafter.

Xu et al. [81] collected data on three cities in the Hubei prov-
ince and supported that during February 2020, when the epi-
demic prevention and control actions were taken, the average
concentrations of atmospheric PM2.5, PM10, SO2, CO and NO2

in the three cities were 46.1 μg m–3, 50.8 μg m–3, 2.56 ppb, 0.60
ppm and 6.70 ppb and were 30.1%, 40.5%, 33.4%, 27.9% and
61.4% lower than the levels in February 2017–2019, respectively.
Going one step further, Yongjian compiled data on 120 Chinese
cities ranging from 23rd January to 29th February 2020. A
Generalised Additive Model (GAM) is applied on a framework
and associated findings claimed evidence of a positive and signifi-
cant association between PM2.5, PM10, NO2 and O3 concentra-
tions with COVID-19 confirmed cases in this country, which is
in line with Yao et al. [82, 83] for the city of Wuhan (China).
Finally, Gupta et al. [84] collected data on nine cities in Asia
(including three in China) and provided evidence supporting
the existence of a correlating relationship between PM2.5 and
PM10 and COVID-19-related deaths. A neighbouring conclusion
can be found in Xie and Zhu [85] who indicated that temperature
has a positive linear relationship with the number of COVID-19
cases with a threshold of 3 °C in 122 cities from China.
Nonetheless, no evidence supporting that case counts of
COVID-19 could decline when the weather becomes warmer
was provided. Table 2 outlines the main information of this
Chinese-related literature.

Table 1. Previous air pollution-COVID-19 assessments, excluding the Chinese case

Author(s) Country Sample period Air pollution indicator(s)

Relationship between
air pollution on

COVID-related deaths

Bashir et al. [34] California (US) 4 March 2020–24 April 2020 CO, NO2, Pb, PM2.5,
PM10, SO2, VOC

Yes

Coccia [62] 55 Italian provinces March–May 2020 PM10 Yes

Conticini et al. [65] Northern Italy 15 March 2020 onward NO2, O3, PM2.5, PM10, SO2 Yes

Fattorini and Regoli [66] 71 Italian provinces Data up to 27 April 2020 NO2, PM2.5, PM10 Yes

Frontera et al. [67] Italian regions Data up to 31 March 2020 PM2.5 Yes

Magazzino et al. [39] New York state (U.S.) 3 March –26 June 2020 NO2, PM2.5 Yes

Magazzino et al. [37] Paris, Marseille, Lyon 18 March 2020–27 April 2020 PM2.5, PM10 Yes

Mele et al. [38] Paris, Marseille, Lyon 18 March 2020–27 April 2020 NO2 Yes

Mele and Magazzino [40] 25 major Indian cities 29 January –18 May 2020 CO2, NO2, PM2.5 Yes

Razzaq et al. [68] 10 US States 29 February 2020–10 July 2020 O3 Yes

Saez et al. [41] Catalonia (Spain) 25 February 2020–16 May 2020 NO2, PM10 No

Sasidharan et al. [71] London (UK) data up to 31 March 2020 NO2, PM2.5 Yes

Setti et al. [35] 8 Italian regions 10 February 2020–29 February 2020 PM10 Yes

Travaglio et al. [36] 120 sites in England 1 February 2020–8 April 2020 NO2, NOx, O3 Yes

Vasquez-Apestegui et al. [69] 24 districts of Lima (Perù) Data up to 12 June 2020 PM2.5 Yes

Zoran et al. [64] Milan (Italy) January 2020–April 2020 NO2, O3 Yes

Konstantinoudis et al. [72] England Up to 30 June 2020 NO2, PM2.5 Yes

Liu et al. [73] California 26 January 2020–7 May 2020 NO2 Yes

Coccia [74] Italian regions Up to 23 June 2020 O3, PM2.5, PM10 Yes

Coccia [75] 160 countries Up to 2021 PM2.5 Yes

Source: our elaborations.
Notes: ‘Yes’ means that the existence of a significant association between air pollution levels and COVID-19 cases/mortality was established. ‘No’ indicates that no significant relationship was
supported among indicators.
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Lastly, Kucharski et al. [86] provided specific analysis of the
city of Wuhan but excluded pollution series from their frame-
work. Instead, they fitted a stochastic transmission dynamic
model to four datasets and underlined that in locations with simi-
lar transmission potential to Wuhan in early January 2020, the
likelihood that the infection spreads within the population
reached 50% if at least four independent COVID-19 cases are
introduced within the total sample. In Sarkodie and Owusu
[87], the authors revealed that the effect of confirmed cases on
the novel coronavirus attributable deaths is heterogeneous across
the 31 Provinces/States in China. More specifically, an increase in
confirmed cases by 1% increases coronavirus attributable deaths
by ∼0.10%–∼1.71% (95% CI). All in all, further neighbouring
COVID-19-related investigations can be found in Balsalobre-
Lorente et al. [88] who examined the effects of economic and
social isolation as dimensions of globalisation and brought fresh
evidence on the effect of the isolation phenomenon due to the
COVID-19 outbreak on the Chinese economic performance. In
the same vein, Alola et al. [89] employed the empirical Markov
switching regression approach to identify the first causal channels
among the US financial stress situation resulting from the effects
of COVID-19 daily deaths, COVID-19 daily recovery and the glo-
bal economic policy uncertainty.

Data and methodology

Data Collection and empirical strategy

To assess the relationship among COVID-19 deaths, air pollution
and economic growth in China (Hubei area), we collected daily
data at a city level for the period from 20 January to 31 July 2020.

The study here focuses on a case study of the Chinese province
of Hubei, the first area in the world to experience a rapid increase
in confirmed cases of COVID-19 and related deaths. Sources of
data are the Chinese Center for Disease Control and Prevention
(http://www.chinacdc.cn/) for numbers of infected people and
deaths; the Hubei Environmental Protection Agency (http://
sthjt.hubei.gov.cn/) for levels of air pollution; and the institutional
website of the three main cities of Hubei province for per capita
economic growth series (en.yichang.gov.cn; en.xiangyang.gov.cn;
en.whuan.gov.cn).

To generate a daily time-series relating to the variable of eco-
nomic growth, we used the monthly and standardised data for the
number of days. This procedure is suitable for an ML process. In
fact, the machine interprets the data not as a time series, but as an

aggregate of data. Each variable was transformed into logarithms
(ln), first differences (d), squared (s) and logarithmic differences
(d.ln). Thus, we have a dataset with 8100 observations. The large
number of observations justify the choice of an experiment in DL.

ML studies have been an exponential growth in the last years,
receiving interest from industry, academia and popular culture.
These are driven by breakthroughs in ANNs, a set of techniques
and algorithms that enable computers to discover complicated
patterns in large datasets. Feeding the breakthroughs is the
increased access to data (‘big data’), user-friendly software frame-
works and an explosion of the available computing power, enab-
ling the use of NN that is deeper than ever before [90].

Recently, due to the optimisation of algorithms, the improved
computational hardware and access to a large amount of imaging
data, DL has demonstrated indisputable superiority over the clas-
sic ML framework. DL is a class of ML algorithms that uses ANN
architectures that bear resemblance to the structure of human
cognitive functions. It is a type of representation learning in
which the algorithm learns a composition of features that reflect
a hierarchy of structures in the data [91].

Following Gardner and Dorling [92], Magazzino et al. [93–95]
and Mele and Magazzino [96] we performed a DL experiment.
NNs work in parallel and are, therefore, able to process a lot of
data simultaneously and autonomously.

On the contrary, in standard or econometric statistical pro-
cesses, each data is treated individually and/or in time series.
Even though each neuron is relatively slow, parallelism partly
explains the faster speed of the brain in performing tasks that
require the simultaneous processing of a large number of data.
In essence, it is a sophisticated statistical system with excellent
noise immunity; if some units of the system were to malfunction,
the network as a whole would have reduced performance but
would hardly encounter a system crash. To do so, we used
Oryx, a software that emerged as a power tool able to identify
and analyse causal linkages in a multivariate setting. Adequate
applications on neighbouring topics can be found in Didelez
et al. [97], Sparks et al. [98] and Gärdenfors and Lombard [99].

The features of an ANNs model are the following:

(a) the development of the ‘neuron system’ is distributed over many
elements. In other words, many neurons do the same thing;

(b) an address identifies each data of the algorithm used (a num-
ber), which is used to retrieve the knowledge necessary to
perform a certain task;

Table 2. Previous air pollution-COVID-19 assessments in China

Author(s) Country Sample period
Air pollution
indicator(s)

Relationship between
air pollution on

COVID-related deaths

Xu et al. [81] Three Chinese cities 2017–2019 PM2.5, PM10, NO2, O3 Yes

Yao et al. [82, 83] Wuhan (China) 19 January 2020–15
March 2020

PM2.5, PM10 Yes

Yongjian 120 Chinese cities 23 January 2020–29
February 2020

CO, NO2, O3, PM2.5, PM10, SO2, Yes

Gupta et al. [84] Nine cities from Asia (India, China,
Pakistan and Indonesia)

Up to 2 July 2020 PM2.5, PM10 Yes

Source: our elaborations.
Notes: ‘Yes’ means that the existence of a significant association between air pollution levels and COVID-19 cases/mortality was established. ‘No’ indicates that no significant relationship was
supported among indicators.
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(c) ANNs, unlike standard econometric models and their soft-
ware, do not have to be programmed to perform a task.
ANNs learn independently, based on experience or with
the help of an external instructor.

The use of ANNs, as a subset of the ML tools, follows a precise
implementation scheme for building the network and obtaining
results. In Figure 1 we synthesised the process.

Mathematical process on NNs

In what follows is described the theoretical process of the NNs
experiments.

input � x [ RD (1)

output � y [ RJ (2)

output vector in n levels � sl

[ RMl with each layer 1, 2 . . . , L (3)

weight matrix � WleRMl⊗Ml−1 withM0 = D; ML = K (4)

bias vector � ul [ RMl (5)

g = (WleRMl⊗Ml−1)+ ul [ RMl (6)

d(·):R � R (7)

Our NN can be written as:

f (x, g) = sl (8)

sl = d( al) = d(Wlsl−1 + ul) where al = Wlsl−1 + ul (9)

u0 = x (10)

The activation functions can be linear or nonlinear, with L = n.
In the first case:

f (x, (Wle RMl⊗Ml−1)+ ul [ RMl = sn = d(Wns1)

= d(Wnd(W1x)) (11)

Fig. 1. The ANNs process.
Source: our elaborations in YeD.
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If δ is a linear function → δ(ul) = klu
l where

f (x, g) = kn(Wnkx + q1)+ qn = Ŵx + û
If we choose, in an arbitrary way, to use a non-linear activation

function, we have:

d(x) = 1
1+ exp(−x)

(12)

d′ = d(x)(1− u(x)) (13)

tanhtanh (x) = ex − e−x

ex + e+x
(14)

tanh′(x) = 1− tanh2(x) (15)

Thus, with rectified linear unit, we have:

Relu(x) = {x for x . 0 0 for x ,= 0 (16)

In our NN, MSE will be:

MSE(t) = 1
2N

∑N

n=1

‖f (xn, t)− tn‖22 (17)

In (17):

‖f (xn, t)− tn‖22 = (l2,n)
2 � ‖V‖22 =

∑n

k=1 or n

V2
k (18)

Now, the Log-Likelihood (LL) will be:

LL[xn] = 1
N

∑N

n=1 or n=n

logP (xn) (19)

Therefore, after uploading the dataset in Oryx, we adapted the
data series to an ML process through logarithmic and differential
transformations. In fact, the higher the volume of data, the greater
the capacity of analysis of the automatic intelligence system. The
values are then normalised through the training selection proced-
ure, which also begins a first test phase. In this phase, we evaluate
the presence of omitted variables or outliers, which might cause
false values of the NN. Subsequently, starting from the results
obtained with the first test, we choose the suitable number of hid-
den neurons that are an integral part of the network. The next
step is to launch the algorithm to create the NN. The result
obtained is carefully analysed and we verify the precision and gen-
eralisation of the obtained network.

Then, we can proceed with the generation of a multivariate
NN by targeting the number of deaths caused by COVID-19.
We try to verify if the process of economic growth – connected
to the pollution levels – represents a random acceleration of
deaths from COVID-19. The following inputs are used: economic
growth (GDP_p, lnGDP_p, dGDP_p, sGDP_p and d.lnGDP_p);
pollution (PM2.5, lnPM2.5, dPM2.5, sPM2.5, d.lnPM2.5, PM10,
lnPM10, dPM10, sPM10, d.lnPM10, CO2, lnCO2, dCO2, sCO2,
d.lnCO2). The target are COVID-19 deaths (Deaths, lnDeaths,
dDeaths, sDeaths, d.lnDeaths).

Once the NN has been built and the levels of inputs vs. targets
calculated, we test the result through a model of relationships
between variables via the Adaptive moment estimation (Adam)
optimisation algorithm. In this way, two different estimation
models are tested.

Results and discussion

In the first experiment, we test the predictive capacity of 20 inputs
concerning 8100 combinations on 5 targets. We adapt the NNs
algorithm to predict the probability that each variable might
cause a variation among the same variables.

Figure 2 shows the result of the NN analysis. It contains a scal-
ing layer, a NN and an unscaling layer. The yellow circles
represent the scaling neurons, the blue circles the perceptron neu-
rons and the red circles the unscaling neurons. The number of
inputs is 20, while the number of outputs is 5. The complexity,
represented by the numbers of hidden neurons, is
12:10:8:6:12:5:5. The construction of the NN is validated through
two complex tests (Figs 3 and 4). The Incremental Order error
test hypothesises the presence of numerous better alternative
NN models than the selected one. In particular, this test defines
several errors (testing and training) generally lower than the
NN of the selected model. Thus, if there is a better model than
the estimated one, the test shows a high level of errors in both
training and testing. The second model is based on the
Minkowski error, concerning the Quasi-Newton method algo-
rithm. This method computes an approximation of the inverse
Hessian at each iteration of the algorithm, by only using the gra-
dient information.

As we can see from Figures 3 and 4, both tests confirm the
strength of the constructed NN. The test in Figure 3 shows the
absence of an alternative NN to the constructed one. The second
test in Figure 4 shows that the error in the transmission of the
NN, with the growth of the gradients descendent, is gradually
lower and tending towards zero.

Therefore, we can now generate the results of NN signal pre-
diction. This system represents a pure DL image model. In
other words, simulating an NN, the model shows how the signals
are interconnected with each other. This result represents a causal
link between thousands of combinations, which show the effect
towards one of the five targets, without the operator’s
intervention.

Figure 5 describes the results of the model. The NN has two
colours that describe the predictive causal relationship from
inputs to outputs. The first purple-coloured circle represents the
transmission of the NN from stationary inputs to a stationary tar-
get. In fact, we can observe that per capita GDP, PM2.5, PM10 and
CO2 meet in a top-level neuron layer. This situation suggests the
presence of interconnections among these variables. The joint sig-
nal of the inputs meets, after a higher neural level, the target
Deaths. In other words, the COVID-19 deaths in Hubei were
affected by the level of pollutants in the environment that
would have favoured the process of deaths in the area under
study. However, this result is enriched by the analysis of the
green circles. Usually, an NN model signalled by images does
not highlight joint processes. Instead, no further analysis elements
were generated in this case. The green circles represent a predic-
tion model in the NN. Input variables are all first differences. We
note how the variation in per capita GDP meets the variation of
fine particulates in an early neural stage. In this situation, CO2 is
absent. The fine particulates, inevitably generated by the process
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of economic growth and greater use of energy, generate the vari-
ation of deaths from COVID-19. This result is significant. We can
state that the continuous emission of fine particles increases the
probability of generating deaths from viral pandemics in the
future. In order to test the results obtained through a different
model, we use the image optimisation algorithm. In particular,
we investigate whether future variations of COVID-19 deaths in
Hubei province can be caused by a relationship between economic
growth and pollution (Fig. 6).

As we can see from Figure 6, the results partially confirm those
of the NN. In fact, we can see that, by targeting dDeaths, PM2.5

and PM10 are closely linked to the change in economic growth.
As per capita income grows, we notice an increase in the variation
of both PM2.5 and PM10 particulates and in turn, these variables
generate the variance of dDeaths. On the contrary, this predictive
situation does not exist in the figure concerning dCO2. In fact, as
per capita income increases, CO2 growth is evident only in the
initial phase of the optimisation process. This result underlines,
however, how pollutants are generated by economic growth and
as a whole (see Figure A and Figure B in the Appendix).

In sum, the DL outcomes slightly connect with the most recent
literature on this topic. One will see that some disparities arise

Fig. 2. NNs model.
Source: our elaborations in Oryx 2.0.8.

Fig. 3. Incremental Order error test.
Source: our elaborations in Oryx 2.0.8.
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Fig. 4. Quasi-Newton method algorithm.
Source: our elaborations in Oryx 2.0.8.

Fig. 5. DL image results.
Source: our elaborations in Oryx 2.0.8.
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from the literature, as a minor share of studies displays conflicting
conclusions, which may be caused by the heterogeneity of model-
ling methods employed so far. Our results extend the empirical
findings presented in Magazzino et al. [37, 39] and Mele et al.
[38], since both assessments, despite focusing on different case
studies, revealed the existence of a clear relationship among
economic activity, polluting particles and deaths due to the

COVID-19 pandemic using ANNs experiments and a Causal
Direction from Dependency Algorithm (D2C). In particular,
our findings echo those drawn from an Ecological Regression
Analysis in Wu et al. [100, 101]. The authors fitted a negative
binomial mixed model using COVID-19 mortality rates as the
outcome and long-term average PM2.5 as the exposure of interest,
adjusting for 20 county-level covariates. They suggested that one

Fig. 6. Image optimisation on GDP, PM2.5, PM10 and CO2 growth rates. (a) Relationship between GDP and PM2.5 (b) Relationship between GDP and PM10 (c)
Relationship between GDP and CO2.

Notes: dGDP_p: GDP growth rate; dPM2.5: PM2.5 growth rate; dPM10: PM10 growth rate; dCO2: dCO2 growth rate.
Source: our elaborations in Oryx 2.0.8 and BML.
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microgram per cubic metre of PM2.5 is associated with a 15%
increase in the mortality rate due to the COVID-19 in the US.
Such inferences are also in line with Becchetti et al. [102, 103]
who used econometric correlation methods to claim evidence of
a direct link between air quality and COVID-19 lethality, espe-
cially for people displaying predisposition to pulmonary patholo-
gies. Finally, our ML inferences extend the econometric evidence
revealed in Razzaq et al. [68] for 10 US states; Bashir et al. [34] for
California; Travaglio et al. [36] for 120 sites in England; and
Zoran et al. [64] for Milan. Finally, our results corroborate the lat-
est evidence on this channel supplied in Konstantinoudis et al.
[72] who used spatial Bayesian hierarchical models for England;
Liu et al. [73] who used a time-series analysis for California;
Coccia [74] who used linear estimation regression for Italian
regions; Coccia [75] who used Independence Sample Tests for
160 countries. However, our estimates conflict with Saez et al.
[41] who set up a mixed longitudinal ecological design with a
Generalised Linear Mixed (GLM) model for located areas in
Catalonia. They concluded that some biological mechanisms
may explain, at least partially, the association between long-term
exposure to air pollution and COVID-19 lethality, they argued
that the spatial diffusion of the virus should be linked to popula-
tion density, mobility across locations and age than atmospheric
factors. Congruent with our conclusions, Ogen reviewed data
from the ESA Sentinel 5P satellite and mapped the distribution
of nitrogen dioxide in Europe in the months leading up to the
pandemic. The author collected the information supplied by a sat-
ellite TROPOspheric Monitoring Instrument (TROPOMI) and
compared the mean deaths cases and the percentage of deaths
in each NO2 concentration range. Results demonstrated that
78% of the deaths from COVID-19 were concentrated in highly
Nitrogen polluted Italian and Spanish areas. Looking at the
Chinese-related literature, the present findings do support those
of who collected daily atmospheric measures (PM2.5, PM10, SO2,
CO and O3) in 120 Chinese cities and concluded the existence
of a causal link between air pollution and COVID-19-related
deaths. Going one step further, Yao et al. [82, 83] exited from
the particulate matter-related inferences and brought a specific
focus on NO2. In final, they drew the same conclusion for 63
Chinese cities, which again, corroborates the previous literature
as well as our results and echo to the latest evidence supplied in
Gutpa et al. [84] for 9 Asian cities.

The hypothesis that the dust suspended in the atmosphere can
convey the virus inside the respiratory tract is a plausible situation
but requires in-depth studies. We are convinced that it is a pos-
sible phenomenon, but unlikely due to airborne viruses’ concen-
tration levels in outdoor environments. On one hand, the nature
of the indoor environment (i.e. private housing) limits the num-
ber of contaminated droplets emitted by an infected person –
from 100 to 10 000 per litre of exhaled air, as they are rapidly dis-
persed into the ambient air. On the other hand, it is known that
prolonged exposure to high concentrations of pollutants, particu-
larly fine dust, causes respiratory and cardiovascular diseases,
which can likely aggravate the clinical picture of the infected. It
is yet known that COVID-19 determines a rapid and significant
increase in the inflammatory response, which can involve the
blood vessels and the heart. This situation increases the likelihood
of critical events, such as vasculitis and myocarditis, which in
turn, increases the likelihood of heart attack and death [104]. It
has been pointed out that the mortality from COVID-19 is larger
for people presenting vulnerable co-pathologies: cardiovascular
disease, hypertension, chronic breathing disorders and cancer.

We can, therefore, speak about a probable relationship between
pollution and marked mortality of COVID-19 infection.

Conclusions and policy recommendations

In this paper, we show that the combustion of fossil fuels for
transport and power purposes has health implications that go
beyond the well-established respiratory and cardiovascular issues.
While it is known that the generation of carbon-intensive energies
releases harmful particles in the atmosphere, much less is known
on the other side of the channel. Here, our underlying hypothesis
is that elevated concentrations may potentially render the human
immune system more susceptible to a virus contagion and thus
favour the spread of the epidemic [102, 103][37]. As a matter
of fact, clear channels have been highlighted in the medical litera-
ture for a wide range of infections [105], but the case of the severe
acute respiratory syndrome coronavirus 2 (SARS-Cov-2) remains
overlooked. Particle exposure has been pointed out to induce
heart or lung disease, non-fatal heart attacks, irregular heartbeat,
aggravated asthma, decreased lung function and increased respira-
tory symptoms such as irritation of the airways, coughing, or dif-
ficulty breathing [17, 18]). PM2.5 can be inhaled and reach the
deepest part of the lung and the circulatory system [19–21]. A
potential mechanism is that particulate matter passes into the
blood and attain the cells. They cause lung cell inflammation,
thereby increasing the sensitivity and damages of symptoms in
COVID-19 patients [22, 42].

Based on this background, our paper tests the above hypoth-
esis for PM2.5 and PM10 and extend the experiment to CO2 ele-
ments. It tests whether fine particulates and carbon dioxide
derived from fuel combustion can be identified as effective contri-
butors to COVID-19 spread and lethality. To do so, we take the
Chinese Hubei Province, known as the epicentre of the pandemic,
as an illustrative case to assess the above complex nexus between
environmental and health indicators (i) and draw insights to
complement the global state of knowledge on this topic (ii).
Based on this original case study, a sophisticated ML approach
is adopted, applying an image NN model on newly available
daily time series. This includes economic activity, a range of
atmospheric pollutants and COVID-19 indicators (cases, resusci-
tations and deaths). Related empirical results are highly insightful.
The NNs model identified two significant pathways for the neural
signal. Above all, a first is found to operate from economic
growth, PM2.5 and PM10 to the level of COVID-19-related deaths.
Furthermore, a second linkage is depicted and highlights how the
variation in COVID-19-related deaths is significantly influenced
by changes in the growth rate of the economic activity on one
hand and pollutants’ concentrations, on the other hand. As a
robustness check, the conduction of an optimisation model algo-
rithm corroborated these causal inferences. It emphasises how
changes in economic growth affect the changes in fine particu-
lates, which, in turn, generate variations in the number of deaths
associated with COVID-19. But beyond corroborating the pollut-
ing particles-health outcome literature, our results suggest that the
COVID-19 crisis revealed an additional pollution-related cost,
underestimated so far in urban areas. In this study, we corroborate
the rising literature suggesting that the combustion of fossil fuels
affect health through an additional channel: the spread and lethal-
ity of COVID-19. Thus, our findings contribute to shed light on
the existence of non-negligible empirical connections among eco-
nomic activity, atmospheric pollution and COVID-19 lethality in
the Hubei Province, China.
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Such findings are highly applicable and display two main
implications. First of all, since numerous countries have tempor-
arily suspended the enforcement of air pollution regulations in
response to the economic shutdowns imposed by the pandemic,
severe concerns may arise regarding the indirect impact of stimu-
lus policy stance on the virus spread in highly polluted areas
[106]. Conversely, our results highlight the necessity to pursue
air quality enforcements to avoid counter-expected consequences
including the loss of the public health benefits drawn from the
recursive lockdowns and additional heart- and lung-related dis-
eases. Therefore, adequate environmental health measures aiming
at lowering the concentration of atmospheric pollutants in tar-
geted localities could slow down the diffusion of COVID-19
across the most vulnerable population. In second, going one
step further, the present inferences not only corroborate the pol-
luting particles-health status literature, but also underscore that
the COVID-19 crisis revealed an additional fossil fuel-related
cost, underestimated so far in urban areas. Linking this new health
externality (i.e. COVID-19 spread and lethality) to fossil fuels
externalities should help to estimate its effective cost borne by
society, prior to internalising it within future energy planning
and environmental schemes. Thus, there is a crucial need to
reconsider the nature of the energy used by power production,
urban planning and transport systems, in China and elsewhere.
They indeed generate major externalities on the overall society
with important economic and social costs on the short- and long-
runs, including the above-mentioned one, newly highlighted in
this study. In this paper, we are concerned with their influences
on health, as this effective cost remains largely excluded from cur-
rent cost-benefit analyses. Indeed, many sophisticated models do
exist to determine air quality, but they tend to be impractical
when it turns to assess the health impacts through a wide range
of different channels [1]. For instance, the National Resource
Council [107] pointed out that cost-benefit assessments con-
ducted by State Energy Offices do not include all market and non-
market impacts when dealing with a measurement of the health
impact of air pollution. Here, we claim that estimating the entire
costs (i.e. including those related to the COVID-19 outbreak) of
generating energy-based fossil fuels for transport and electricity
purposes is urgent as it could update the current state of knowl-
edge on the social cost of carbon. In doing so, unpriced conse-
quences could be monetised and better internalised into market
mechanisms, but also cost-benefit analyses conducted by public
entities. This step is crucial to design adequate climate, energy
and air quality action plans. More efficient economic and health
outcomes are likely to be reached and prevent major distortions in
the future.

The economic slowdown resulting from COVID-19 does not
replace climate action because the failure to mitigate climate
change and reduce air pollution could lead to a more significant
number of losses of human lives and economic costs in the next
decades. This is a lesson to keep in mind in the fight against
atmospheric pollution and the climate crisis.

Future research might involve the application of a more
advanced Deep Learning (DL) process on this topic. It is import-
ant to multiply the number of case studies worldwide, as it may
update the state of COVID-19 knowledge and enable researchers
to identify general trends across cities, regions and countries. If
data availability allows that, we suggest future authors to conduct
ANNs experiments using a larger set of variables, including
meteorological factors (temperature, wind speed, humidity, etc.),
health status (obesity, diabetes, cancer incidence) and socio-

economic groups (low, middle, high incomes). This may not
only confirm the present evidence, but also extend them with
finer estimations of the nexus between atmospheric pollution
and COVID-19-related-deaths.

Data

The data that support the findings of this study are available from
the Corresponding Author, upon reasonable request.
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Appendix

Fig. A. Graphs of data distribution and predicted distribution.
Source: our elaborations in Oryx 2.0.8 and BML.
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Fig. B. Values of data distribution and predicted distribution.
Notes: In our model the data distribution is the same as predicted in ML.
Source: our elaborations in Oryx 2.0.8 and BML.
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