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Thermal vortex ring: vortex-dynamics analysis
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A high-resolution simulation of a thermal vortex ring is analysed from the point of
view of the vortex dynamics. A power-spectrum analysis of vortex-ring sections suggests
that the simulated flows are overall ‘two dimensional’ in the large-scale limit, being
dominated by axisymmetric components, but with a substantial contribution from the
non-axisymmetric component at small scales. Contribution of the non-axisymmetric
components is negligible in budgets of volume integrals of the vorticity and potential
vorticity as well as the impulse (moments of the vorticity weighted by sn with n = −1, 0,
1, where s is the distance from the vertical axis of the vortex ring). A concise description
of the dynamics is obtained as a function of geometrical factors together with these three
integral variables. Analysis shows that the geometrical factors are fairly close to constant
with time, and thus, a redundant closed description of the system is obtained in the
similarity regime after spin up of the vortex ring. This redundancy leads to a constraint
on the geometrical factors, which is reasonably satisfied by the simulation. A closed
description is also obtained over the initial spin-up period of the vortex ring by adding
a phenomenologically derived prognostic equation for the source for the volume integral
of the potential vorticity (with n = −1). Analysis of the budget supports this description.

Key words: vortex dynamics

1. Introduction

Convective cumulus clouds in the atmosphere tend to have a structure resembling
cauliflower. This impression naturally leads to an interpretation that these convective
clouds consist of many quasi-spherical thermal bubbles, as proposed by Scorer & Ludlam
(1953). For this reason, extensive studies of thermal bubbles were performed over the
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period of the 1950s to 1960s with the goal of understanding atmospheric convection
better, as reviewed by Ludlam & Scorer (1953) and Yano (2014). An idealized thermal can
be experimentally generated by releasing an isolated buoyancy anomaly from a surface.
Because it develops into a vortex ring, such a thermal may be more precisely called
a thermal vortex ring; the present study adopts this terminology. Recently, there are
substantial numbers of numerical studies on these idealized isolated thermals both for the
dry (Tarshish, Jeevanjee & Lecoanet 2018; Lecoanet & Jeevanjee 2019; McKim, Jeevanjee
& Lecoanet 2020; Morrison, Jeevanjee & Yano 2022; Morrison et al. 2023) and moist
cases (Morrison 2016a,b; Morrison & Peters 2018; Morrison, Peters & Sherwood 2021;
Vybhav & Ravichandran 2022) thanks to increased computational power. Here, moist
cases behave qualitatively differently from dry counterparts due to the latent heating and
cooling associated with condensation and evaporation of cloud condensate.

From a theoretical perspective, studies of thermal vortex rings can be considered
a natural extension of ‘inertial’ vortex rings, that is, vortex rings without buoyancy
forcing. Various theoretical solutions of steadily propagating ‘inertial’ vortex rings were
identified by Hill (1894), Hick (1884), Fraenkel (1972), Norbury (1972, 1973) and Sullivan
et al. (2008). However, these existing theoretical solutions can only describe steadily
propagating states. Recently, Yano & Flierl (2024) attempted to generalize the Hill’s vortex
solution by including buoyancy in the system, and to describe analytically the regime
traditionally presented by a similarity solution (Scorer 1957). However, the similarity
solution is not applicable to the initial spin-up stage.

Even today, the main theoretical bases for interpreting the dynamics of thermal vortex
rings remain classical studies by Scorer (1957) and Turner (1957) in terms of dimensional
analysis and impulse dynamics. Yano (2023) recently revisited these studies from the point
of view of the vortex dynamics, and derived Scorer’s similarity solution in a self-consistent
manner from this perspective. Yano (2023) also derived theoretical constraints to be
satisfied over the similarity regime, which can be used to test the consistency of numerical
simulations.

Yano (2023) further suggested a general formulation for describing the evolution
of a thermal vortex ring in terms of volume integrals of various vorticity moments
(e.g. circulation, impulse), which is applicable to both the similarity regime as well as
an initial vortex-ring spin-up stage. Due to unspecified geometrical factors involved in this
formulation, however, it does not provide a closed description. Nevertheless, it provides a
consistent framework to interpret the evolution of a thermal vortex ring from the point
of view of the vortex dynamics. The proposed analysis formulation therein provides
an alternative framework to momentum budget analysis for describing the dynamics of
convective cloud elements, as pursued by, e.g. Morrison (2016a, 2017), and Morrison &
Peters (2018), and complements the latter.

The purpose of the present study is to apply the formulation proposed by Yano (2023)
based on the vortex dynamics for interpreting a high-resolution simulation of a thermal
vortex ring recently described by Morrison et al. (2022). It was shown by Turner (1957)
that the impulse dynamics can lead to a similarity solution of a thermal vortex ring, as
suggested by Scorer (1957) following a dimensional analysis. The present study extends
this description to the initial spin up by adding the volume integrals of vorticity and
potential vorticity as prognostic variables of the system. In this manner, the present study
adopts the theoretical framework for describing the thermal vortex ring developed by Yano
(2023), and applies this framework to analyse a thermal vortex-ring numerical simulation.

After briefly reviewing the numerical simulation described by Morrison et al. (2022) in
the next section, the vortex dynamics is introduced in § 3, and the simulation is analysed

991 A18-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.485


Thermal vortex ring: vortex-dynamics analysis

under a framework of the volume-integrated bulk vorticity budgets in § 4 by following
Yano (2023). The main conclusion from the analysis is that the non-axisymmetric
component of the flow, though non-negligible, has only a limited impact on the bulk
vorticity budgets. This further suggests that the simulated thermal vortex-ring dynamics
can be interpreted as a type of two-dimensional, axisymmetric flow. This possibility is
explored further in § 5. The paper is closed by a summary and additional discussion
in § 6.

2. Simulation

We analyse the high-resolution simulation case (HIGHRES) in Morrison et al. (2022,
hereafter MJY). This simulation uses 560 × 560 grid points in the horizontal and
800 in the vertical with a grid spacing of �x = 0.02 in non-dimensional units. The
initial condition consists of a spatially uniform spherical buoyancy anomaly with
a unit non-dimensional radius and a unit non-dimensional value for the buoyancy,
with weak random perturbations (±0.1) to the buoyancy superposed. In MJY, four
additional runs were performed with different initial perturbations (using different
random number seeds) to ensure that the overall evolution does not sensitively depend
on the particular initial perturbations applied. The intention of this simulation is,
within the limit of available resolution, to reproduce the evolution of a thermal vortex
ring in high-Reynolds-number flow as accurately as possible. Thus, here a large-eddy
simulation (cf. Sagaut 2002) is performed with a subgrid-scale (SGS) mixing scheme
by Stevens, Moeng & Sullivan (1999), which effectively works as a weak dissipation
term.

A basic principle of large-eddy simulation is to model a flow under the asymptotic limit
of a large Reynolds number (Re → ∞), yet the unresolved small eddies are implicitly
represented by the SGS scheme (with additional dissipation from numerical diffusion).
Thus, results are sensitive to the adopted model resolution as shown in MJY. Also, keep in
mind that no background stratification is introduced in this simulation, implying a Froude
number (based on the background stratification) of Fr → ∞. The Froude number can
be alternatively defined as a non-dimensional measure of the inverse of the vortex-ring
buoyancy anomaly (ratio of thermal inertia divided by buoyant forcing), as originally
introduced by Scorer (1957). This is defined by (6) in MJY and plotted in their figure 8(c)
for the present simulation. According to this plot, the Froude number is about 1.1–1.3
consistent with previous thermal studies (e.g. Scorer 1957; Turner 1964).

A thermal tracking algorithm to determine thermal boundaries and propagation speed is
similar to that used by Lecoanet & Jeevanjee (2019). We refer readers interested in details
of the simulations and thermal tracking algorithm to the original paper (MJY). In the
following, as in MJY, all results are presented in non-dimensional units.

Basic characteristics of the simulated thermal vortex ring are calculated by MJY and
shown in figure 1 for the full period of the simulation. Here, especially, the equivalent
radius is defined as a radius of a spherical thermal with the same volume as the simulation.
Note that the simulated thermal vortex ring is not perfectly spherical, as seen by a
discrepancy between the equivalent radius (solid) and the equatorial radius (long dash)
in figure 1(c). The evolutions of the vortex-ring height, z, and the propagation velocity, w̄,
are seen to follow the similarity solutions closely after an initial spin-up period (t = 0–3).
Here, the end of the spin-up period (t � 3) may be identified as the crossing point of the
numerically obtained w̄ with the similarity curve in figure 1(b). The fits to the similarity
solutions are made by following the methodology detailed in MJY.
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Figure 1. Basic characteristics of the simulated thermal vortex ring as a function of time: (a) centre position
of the vortex ring: x (long dash), y (short dash) and z (solid); (b) propagation velocity; (c) vortex-ring size:
equivalent radius (solid) and equatorial radius (long dash). Fits to the tendencies expected from the similarity
solutions are also added in (a,b) as chain-dashed curves.

3. Vortex dynamics

We adopt cylindrical coordinates, (s, ϕ, z), in the present study, in which s is a radial
distance of the vertical axis of the vortex ring, ϕ the azimuthal angle and z the vertical
coordinate. Following Yano (2023), we focus on the budget of the azimuthal component,
ζ , of the vorticity, because it plays a primary role in the vortex-ring dynamics. After
azimuthal averaging, its governing equation is given by

s
(

∂

∂t
+ ūs

∂

∂s
+ ūz

∂

∂z

)
ζ̄

s
= −∂ b̄

∂s
+ Ḡ. (3.1a)

Here, the overbar indicates an azimuthal average,

(∗) ≡ 1
2π

∫ 2π

0
(∗) dϕ, (3.1b)
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b is the buoyancy and the velocity is denoted by u with the corresponding components
designated by subscripts. Note that only the axisymmetric component of the buoyancy, b̄,
appears in (3.1a), yet the eddy component, b′, will be considered explicitly later in (4.18).
The forcing, Ḡ, due to the non-axisymmetric components on the right-hand side is defined
by

Ḡ = − ∂

∂s
u′

sζ
′ + 1

s
∂

∂s
su′

ϕζ ′
s + ∂

∂z

(
−u′

zζ
′ + u′

ϕζ ′
z + u′2

ϕ

2s

)
. (3.1c)

Notations for the variables are fairly standard: ζ , ζs and ζz are the vorticity components in
ϕ, s and z directions, defined by

ζ = ∂us

∂z
− ∂uz

∂s
, (3.2a)

ζs = 1
s

∂uz

∂ϕ
− ∂uϕ

∂z
, (3.2b)

ζz = 1
s

∂

∂s
suϕ − 1

s
∂us

∂ϕ
. (3.2c)

Note that the diffusion terms are neglected from the analysis and assumed to be small,
although the numerical simulation contains SGS mixing terms.

3.1. Coordinate transformation
To diagnose the terms in (3.1a,c) from the MYJ simulation, the output data natively on
Cartesian coordinates, (x, y, z), are linearly interpolated to the cylindrical coordinate grid,
(s, ϕ, z) at each vertical height, z. The radial grid, si (i = 1, . . . , n), is defined by taking
the same grid spacing, �s(= �x), as that of the original Cartesian coordinates with a
total grid number of n = 249, with i = 1 corresponding to the origin, s = 0. The origin
is defined as the centre point of the thermal following the thermal tracking algorithm of
MYJ. This number, n, is chosen for convenience of the fast Fourier transformation later.
The azimuthal coordinate, ϕ, is discretized by dividing the full circle into 8n points so as
to take full advantage of the original resolution. In the following analysis, the differentials
are evaluated by centred finite differences with the interpolated mesh sizes.

3.2. Diagnosis of the vorticity
The azimuthally averaged azimuthal component of vorticity, ζ̄ , whose budget is our major
concern here, is diagnosed by two methods. First, the vorticity, ζ , is diagnosed from
the three-dimensional velocity field, (us, uϕ, uz), based on the definition (3.2a), then its
azimuthal average is performed to obtain ζ̄ . Second, the azimuthally averaged ζ̄ is directly
diagnosed from the azimuthally averaged velocity field, (ūs, ūz). Both evaluation methods
lead to mutually consistent results in terms of the volume-integrated moments of the
vorticity, which are the primary quantities examined in the following analysis. Results
presented in the following are based on the second method.

Evolution of ζ̄ over the initial spin-up period is shown in figure 2. A vorticity sheet
is rapidly generated along the initial buoyancy anomaly edge owing to the differential
buoyancy force on the right-hand side of (3.1a) (a); this vortex sheet deforms and wraps
into itself with time: from t = 2.5 (b) to t = 4 (c), leading to a vortex-ring core by
t = 5 (d).
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Figure 2. Initial evolution of the azimuthally averaged azimuthal component of the vorticity, ζ̄ , over the period
of t = 1–5.5. Results are presented in coordinates moving upward following the vortex ring with the ring centre
set to z = 0. (a) t = 1, (b) t = 2.5, (c) t = 4 and (d) t = 5.5.

A snapshot of the vorticity-budget analysis based on (3.1a) at t = 3.4 is shown in
figure 3. The system begins to evolve axisymmetrically initially, and the non-axisymmetric
forcing, Ḡ in figure 3(d), only develops gradually. As already remarked by commenting on
figure 1(b), a steady vortex-ring form becomes established at roughly t � 3, after which
the system is considered to be in the similarity regime. This time when spin up is achieved
is also later in section 4.2 identified as a crossing point of the simulated value of ṽz with
the final equilibrium value, ṽz � 0.085, in figure 5 later. Nevertheless, the spin-up time is
only approximate since it cannot be defined precisely, as suggested by figure 4 below.

With the similarity regime established by t = 3.4, the relative contribution of Ḡ (d) to
the ζ̄ budget, is about 1/3 of the magnitude of both the local tendency, ∂ζ̄/∂t (a), and the
advection, sv̄ · ∇(ζ̄ /s) (b), as seen by comparing the three fields in figure 3(a,b,d). On the
other hand, the buoyancy forcing, −∂ b̄/∂s (c), is characterized by a sharp gradient along
the thermal boundary during the early stages of evolution by initiating the simulation with
a spherically homogeneous buoyant bubble. This sharp gradient gradually decreases with
time due to SGS mixing, as seen in figure 3(c).

At a later stage (say, t � 10), Ḡ becomes as large as the other terms, apart from the
buoyancy forcing, which is less than 1 % of other terms in magnitude. This result suggests
that in the later stage of the simulation, the three-dimensionality of the dynamics plays a
crucial role in the local dynamics. In summary, the contribution of the non-axisymmetric
forcing, Ḡ, to the vorticity budget is fairly significant, although the forcing is dominated by
small-scale structures (much smaller than the scale of the thermal) as seen in figure 3(d).
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Figure 3. The vorticity budget, as defined by (3.1a) at t = 3.4: (a) local tendency, ∂ζ̄/∂t; (b) advection, sv̄ ·
∇(ζ̄ /s); (c) buoyancy forcing, −∂ b̄/∂s; and (d) non-axisymmetric forcing, Ḡ. The analysis is performed on the
system moving with the vortex ring by its propagation speed.

However, as will be demonstrated in the following, these structures contribute little to the
volume-integrated budgets of the azimuthal vorticity.

4. Vortex-dynamics based analysis

4.1. Volume-integrated equations
To examine the vorticity dynamics of the thermal vortex ring in a concise manner,
following Yano (2023), we focus on volume integrals of the vorticity with weights, sn,
where n is an integer exponent factor; here n = 0, −1, 1. The first two correspond to the
volume integrals, Γ and Q, of the vorticity, ζ , and the potential vorticity, ζ/s, respectively,
and the third is the impulse, P. We perform the integrals over the full domain of the
system. Noting that the volume element in axisymmetric cylindrical coordinates is given
by d3r = s ds dz, these volume integral quantities are defined by

Γ = 2π

∫ +∞

−∞

∫ +∞

0
ζ s ds dz, (4.1a)

Q = 2π

∫ +∞

−∞

∫ +∞

0

ζ

s
s ds dz, (4.1b)

P = π

∫ +∞

−∞

∫ +∞

0
(sζ )s ds dz. (4.1c)
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Figure 4. The integrated budgets of (a) the vorticity, Γ , (b) the potential vorticity, Q, and (c) the impulse
budget, P. The total tendency (solid) and the axisymmetric (long dash) and non-axisymmetric (short dash)
forcings are shown. For clarity, the signs for the two forcing terms are flipped so that the sum of the curves
should vanish.

Keep in mind that these integrals are replaced by those over the simulation domain in the
actual analysis.

These volume-integrated variables are governed by

dΓ

dt
= 2π

∫ +∞

−∞

∫ +∞

0
(b̄ + ūsζ̄ )s ds dz + 2π

∫ +∞

−∞

∫ +∞

0
u′

sζ
′s ds dz, (4.2a)

dQ
dt

= 2π

∫ +∞

−∞
b
∣∣∣∣
s=0

dz + 2π

∫ +∞

−∞

∫ +∞

0

u′
sζ

′
s

s
s ds dz, (4.2b)

dP
dt

= 2π

∫ +∞

−∞

∫ +∞

0
b̄s ds dz + π

∫ +∞

−∞

∫ +∞

0
(2su′

sζ
′ − u′

ϕζ ′
s) ds dz. (4.2c)
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Here, on the right-hand side of (4.2a–c), the first and second integrals are, respectively,
contributions of the axisymmetric and non-axisymmetric components to the tendency.

The total tendency on the left-hand side as well as the axisymmetric and
non-axisymmtric tendency components on the right-hand side are plotted in figure 4 for the
integrated vorticity and potential vorticity, Γ (a), Q (b), and the impulse, P (c). The total
tendency (left-hand side of (4.2a–c), solid curves) is well balanced with the tendency due
to the axisymmetric components (first term on the right-hand side of (4.2a–c), long-dashed
curves). Note that the term involving ūsζ̄ in the mean forcing of Γ is negligible compared
with that of the buoyancy, as later explicitly demonstrated in section 4.3 by the small
magnitude of parameter K in figure 6(c) later.

The contribution of the non-axisymmetric components (second term on the right-hand
side of (4.2a–c), short-dashed curves) is fairly small. Here, the terms on the right-hand
side are shown with signs reversed so that the sum of these three curves would vanish
if the balance was exact. The total tendency, directly diagnosed by the left-hand side of
the equation, is slightly noisier than the diagnosed right-hand side terms due to the fact
that it is diagnosed by a centred difference from the output data stored at a frequency of
�t = 0.1715, rather than being an instantaneous tendency.

Over the last stage of the simulation, say t > 15, the estimated total forcings (right-hand
side) tend to be larger than the actual tendencies (left-hand side). We suspect that the
imbalance increases with time owing to an increasing role of SGS mixing at a later stage
of the simulation, as also suggested by fine-broken spatial structures of the vorticity-budget
terms seen in the later stage of the simulation (not shown).

4.2. Propagation efficiency factor
Based on the fact that contributions of the non-axisymmetric terms are small for all three
integrated variables, Γ , Q and P, we will neglect those contributions in the following and
instead focus on the axisymmetric dynamics of the system. From now on, we will also
refer to the azimuthally averaged azimuthal vorticity, ζ̄ , and buoyancy, b̄, as simply the
vorticity and buoyancy, respectively.

To describe the time evolution of the system (4.2a–c) in a more concise manner,
following Yano (2023), we separate the evolution of the vorticity, ζ , into the components,
ζ0, measuring the intensity of the vorticity, and, ζ̃ , representing its spatial structure. Thus,

ζ̄ (s, z) = ζ0

R2 ζ̃ (ξ, η), (4.3a)

in which the intensity, ζ0, is defined in units of the circulation and rescaled by a measure,
R, of the size of the vortex ring. We also separate the buoyancy, b̄, in the same manner
with equivalent notations:

b̄(s, z) = b0b̃(ξ, η). (4.3b)

The vortex and buoyancy distributions are normalized by

2π

∫ +∞

−∞

∫ +∞

0
ζ̃ (ξ, η)ξ dξ dη = 1, (4.4a)

2π

∫ +∞

−∞

∫ +∞

0
b̃(ξ, η)ξ dξ dη = 1. (4.4b)

Here, (ξ, η) = (s/R, z/R) are the rescaled coordinates. As a result of the normalizations
(4.4a,b), the axisymmetric generation rate of the potential tendency (first term on the
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Figure 5. Time series of the propagation efficiency factor, ṽz, diagnosed from (4.7).

right-hand side of (4.2c)) becomes

F ≡ 2π

∫ +∞

−∞

∫ +∞

0
b̄s ds dz = R3b0. (4.5)

Recall that the simulation of MJY was initialized with a homogeneous buoyant bubble
with b0 = 1 in a sphere with a unit radius, R0 = 1, and the evolution of the equivalent
radius, R0, giving the same volume as the simulated thermal, is tracked. Note that the
equivalent radius defined in this manner is related to the vortex-ring size, R, introduced
here by

R3 = 4π

3
R3

0, (4.6)

and thus, the initial vortex-ring size is R = (4π/3)1/3 � 1.6. Also note that with the lack
of a buoyancy source in this simulation, the volume-integrated buoyancy is conserved
with time, and F = 4π/3. Here, it may be worthwhile to note that the assumption of
constant forcing also relies on the assumption that the buoyancy remains confined within
the vortex ring, i.e. buoyancy is not detrained into the environment. The assumption of
little detrainment for dry thermal vortex rings is well supported by previous numerical
simulations (e.g. Lecoanet & Jeevanjee 2019).

As explicitly shown by Yano (2023), it follows from the normalization (4.3a) that the
propagation speed, w̄, of a vortex ring is

w̄ = ζ0

R
ṽz, (4.7)

where ζ0 and R are measures of the vortex-ring intensity and size introduced in (4.3a), and
ṽz is a propagation efficiency factor defined solely in terms of the vorticity distribution,
as seen by (30a) of Yano (2023). Thus, the parameter, ṽz, becomes constant with time in
the similarity regime, because the vorticity distribution, after normalizing by the scale, R,
must be constant with time in this regime. Thus, the similarity regime in the simulation of
MJY can be identified by plotting ṽz, diagnosed from (4.7), as in figure 5; ṽz is fairly close
to a constant after the initial spin-up period of t = 0–3.
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4.3. Analysis under the axisymmetric assumption
By substituting (4.4a,b) into (4.1a–c), we find that

Γ = Rζ0, (4.8a)

Q = Zζ0, (4.8b)

P = γ ζ0R2, (4.8c)

where Z and γ are geometrical factors defined by

Z = 2π

∫ +∞

−∞

∫ +∞

0

ζ̃

ξ
ξ dξ dη, (4.9a)

γ = π

∫ +∞

−∞

∫ +∞

0
(ξ ζ̃ )ξ dξ dη. (4.9b)

An advantage of this reduction is that the problem of the time evolution of the three
integrated variables, Γ , Q and P, is reduced to that of a single variable, the vortex-intensity
measure, ζ0, when the evolution of the vortex-ring size, R, as well as that of the geometrical
factors, Z and γ , can be obtained by separate considerations.

Substitution of (4.4a,b) into the right-hand sides of (4.2a–c) leads to

dΓ

dt
= R2Bb0 + K

R
ζ 2

0 , (4.10a)

dQ
dt

= Rb0S, (4.10b)

dP
dt

= R3b0, (4.10c)

where

B = 2π

∫ +∞

−∞

∫ +∞

0
b̃ dξ dη, (4.11a)

K = 2π

∫ +∞

−∞

∫ +∞

0
ũsζ̃ dξ dη (4.11b)

are additional geometrical factors, and

S = 2π

∫ +∞

−∞
b̃
∣∣∣∣
ξ=0

dη (4.11c)

is an efficiency factor for the generation of integrated potential vorticity, Q. Note that K
measures the deviation of the vorticity distribution from symmetry around the vortex-ring
equatorial plane, z = 0.

By further substituting (4.8a–c) into the left-hand sides of (4.10a–c), we obtain

Rζ̇0 + Ṙζ0 = FB
R

+ Kζ 2
0

R
, (4.12a)

Zζ̇0 + Żζ0 = F
R2 S, (4.12b)

γ ζ̇0R2 + γ̇ ζ0R2 + 2γ ζ0RṘ = F. (4.12c)

Here, we have also used the relation F = R3b0 to eliminate the buoyancy intensity, b0,
from the equations.
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Figure 6. Time series of: (a) Γ (solid), Q (long dash) and P (short dash), as defined by (4.1a–c); (b) the
same as (a), but with the normalizations of these quantities to give Γ/R = ζ0 (solid), Q = Zζ0 (long dash)
and P/R2γ ζ0 (short dash); (c) geometrical factors, Z (solid), γ (long dash), K (short dash) and B (chain dash);
(d) ζ0 (solid) and S (long dash).

Equations (4.12a–c) form a set of prognostic equations for the vorticity intensity,
ζ0, vortex-ring size, R, and the geometrical factors, Z and γ , under given forcings
characterized by the parameters F and S, along with the additional geometrical factors
B and K. However, the number of equations (three) is less than the number of variables to
be predicted (four). Furthermore, to close the system, the time evolution of the forcing
parameters, S, B and K, must also be prescribed. Recall that the volume-integrated
buoyancy forcing, F, is constant in time since there is no diabatic heating in the simulation.

In seeking insight to proceed further, we first examine the time evolution of these
variables and parameters in the numerical simulation (figure 6). Thus, we analyse (a) the
time series of Γ (solid), Q (long dash) and P (short dash); (b) the same as (a), but
normalized by the vortex-ring size, R, Γ/R = ζ0 (solid), Q = Zζ0 (long dash) and
P/R2γ ζ0 (short dash). We also analyse the time series of the geometrical factors, Z (solid,
(4.9a)), γ (long dash, (4.9b)), B (chain dash, (4.11a)) and K (short dash, (4.11b)), which
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are shown in (c), and those of the vorticity intensity (solid), ζ0, as introduced in (4.8a–c),
and the buoyancy source, S (long dash, (4.11c)) in (d).

It is seen in figure 6(c) that the two geometrical factors, Z and γ , remain approximately
constant throughout the simulation, apart from a sudden decrease of Z by about 1/4 at the
end of the initial spin-up period, t = 0–3. Constancies of these two factors are also inferred
from the fact that the normalized volume-integral measures of the vorticity, Γ/R, Q and
P/R2, shown in figure 6(b), overall evolve in parallel and, thus, ratios of these quantities
are approximately constant. Thus, the time derivatives of Z and γ may be neglected
in (4.12b,c). The measure of asymmetry, K, remains small (i.e. |K| � Z) for the whole
period so that it may also be dropped in (4.12a). After these approximations, (4.12a–c)
reduce to

Rζ̇0 + Ṙζ0 = FB
R

, (4.13a)

Zζ̇0 = F
R2 S, (4.13b)

γ ζ̇0R2 + 2γ ζ0RṘ = F. (4.13c)

4.4. Initial spin-up evolution
As already noted, the present system evolves through two regimes: the initial spin-up
period (t = 0–3) and the similarity regime (t > 3). In time series of the normalized
volume-integrated measures, Γ/R, Q and P/R2 (figure 6b), the initial spin-up period
is characterized by their increase with time. The dynamics of the similarity regime are
already relatively well understood (Scorer 1957; Turner 1957; Yano 2023), and have also
been closely examined for the present simulation in MJY. Thus, the following will focus
on the evolution during the initial spin-up period.

The main feature of the initial spin-up period is that the vortex circulation develops
(i.e. ζ̇0 > 0), which is dictated by the buoyancy (S > 0) along the vortex-ring axis (s = 0),
as shown in figure 6(d); (4.13b) describes this process. Thus, a closed description of the
initial spin-up period becomes possible in the phase space of (S, ζ0) (cf. figure 7a) with an
additional prognostic equation for the buoyancy source along the vortex-ring axis, s = 0.
This equation is introduced heuristically in the following manner.

Here, the buoyancy source along the vortex-ring axis (s = 0) is ventilated by advection
associated with the vortex-ring circulation. This process is most simply described as a
damping process with a characteristic time scale, τ :

Ṡ = −S
τ
. (4.14a)

Here, the damping time scale, τ , is expected to be controlled by advection, thus,

τ ∼ R
u0

= R2

ζ0
. (4.14b)

The second equality is obtained by setting the velocity scale to be u0 = ζ0/R. Note that
as a result, the characteristic time scale, τ , introduced in (4.14a), becomes time dependent
based on the more explicit definition given by (4.14b). By substituting (4.14b) into (4.14a),
we obtain

Ṡ = −αζ0

R2 S, (4.15)

where α is a constant.
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Figure 7. Evolution of the system in phase space of (a) (S, ζ0) and (b) (S, αZζ 2
0 /2F). The positions at t = 1.5

and 2.5 are marked by a circle and + sign, respectively. A theoretical prediction based on (4.18) is also added
as a dashed straight line.

Thus, (4.13b) and (4.15) provide a closed description of the initial spin-up period. Noting
that the right-hand sides of both equations share the same factor, S/R2, we can write them
as

S
R2 = Z

F
ζ̇0 = − Ṡ

αζ0
, (4.16)

which can be rearranged to give

αZ
F

ζ0ζ̇0 + Ṡ = 0. (4.17)

Assuming that αZ/F is approximately constant, the last expression can be integrated to
give

αZ
2F

ζ 2
0 + S = const. (4.18)

To examine the validity of the solution (4.18), figure 7(b) plots the normalized enstrophy,
αZζ 2

0 /2F, against S; this relation is close to a straight line over t = 1.5–2.5, and to a lesser
extent over a longer time span. A good fit is found with α = 0.2, as marked by the dashed
straight line. More precisely, towards t = 3, the vorticity intensity, ζ0, shoots up briefly,
then decreases towards t = 4, as also seen in figure 6(d). Furthermore, by comparing
(a,b) in figure 7, it is apparent that the time dependence of the factor, Z/F, needs to be
retained in order to accurately describe the linear dependence of the normalized enstrophy,
Zζ 2

0 /2F, on the buoyancy source along the vortex-ring axis (s = 0) in a parametric manner,
although it is neglected in the derivation. Overall, we conclude that the agreement is
satisfactory considering the heuristic nature of this model.

4.5. Buoyancy equation
The consistency of the empirically derived buoyancy equation (4.15) can be directly
verified by analysing the buoyancy budget:

∂ b̄
∂t

= −∇ · bv. (4.19)
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Figure 8. The flux-divergence terms controlling the evolution of the buoyancy integrated along the z axis:
the term due to the axisymmetric flow (solid), and the contribution of the non-axisymmetric flow (long dash),
corresponding to the first and second terms on the right-hand side and the term on the left-hand side in (4.21).
Further added is the estimate based on the heuristic model, −(1/2π)F/R2Ṡ (short dash), in which Ṡ is estimated
by the right-hand side of (4.15).

Here, we retain contributions of the non-axisymmetric components on the right-hand side.
By vertically integrating this equation along the vortex-ring axis (s = 0), we obtain

∂

∂t

∫ +∞

−∞
b̄
∣∣∣∣
s=0

dz = −
∫ +∞

−∞

[
1
s

∂

∂s
sbus

]∣∣∣∣
s=0

dz. (4.20)

Comparing the left-hand side with the definition (4.11c) of S, we find that

− 1
2π

F
R2 Ṡ =

∫ +∞

−∞

[
1
s

∂

∂s
sb̄ūs

]∣∣∣∣
s=0

dz +
∫ +∞

−∞

[
1
s

∂

∂s
sb′u′

s

]∣∣∣∣
s=0

dz, (4.21)

where the right-hand side is divided into the contributions by axisymmetric and
non-axisymmetric components in the first and second terms, respectively. These two
terms of the heat-flux divergence are plotted in figure 8 as solid and long-dashed curves,
respectively; again, it is seen that the contribution (long dash) of the non-axisymmetric
components is overall small compared with that of the axisymmetric components (solid)
during the spin-up period. Furthermore, the estimate of the heat-flux divergence based on
the empirical prognostic equation (4.15) is shown by the short-dashed curve. It reproduces
the overall behaviour of the direct estimate (solid), with the remaining discrepancy
attributed to the SGS mixing in simulation of MJY.

4.6. Evolution over the similarity regime
At the end of the initial spin-up period, the buoyancy source along the vortex-ring axis,
s = 0, is fairly small, and it no longer increases the vorticity intensity, ζ0, in any substantial
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Figure 9. Time series of 2γ B (solid), which is expected to be unity following the consistency condition
(4.22), as well as two geometrical factors, 2γ (long dash) and B (short dash).

manner afterwards. This marks the beginning of the similarity regime (t > 4). In the
similarity regime, therefore, ζ̇0 can be dropped in (4.13a,c). As a result, they reduce to
prognostic equations for the vortex-ring size, R. Both equations lead to solutions with
tendencies, R ∼ t1/2, as expected from the similarity theory as shown in Yano (2023).

Furthermore, constant factors in solutions obtained from both equations must also be
identical, because these two equations must predict the same evolution in a mutually
consistent manner. This consistency condition is given by

2γ B = 1. (4.22)

This condition (4.22) is verified in figure 9; the condition is satisfied fairly well over t =
3–13 with the value of 2γ B fairly close to unity (solid curve). Before and after this period,
the constant is larger than unity, with an increasing tendency for t > 13. This deviation
tendency for both periods is explained by larger values of B (short dash) over those periods.
These larger values of B, in turn, are explained by the buoyancy being concentrated in
the vortex-ring core during the initial spin-up period as well as towards the end of the
simulation (cf. figure 6 of MJY). In contrast, the geometrical factor γ (long dash) remains
fairly constant over the whole simulation period.

5. Turbulent nature of the thermal vortex ring: two- vs three-dimensionality

The analysis so far suggests that the overall evolution of the thermal vortex ring simulated
by MJY, such as the vorticity intensity, ζ0, the size, R, as well as the buoyancy
distribution, b̄, can well be described in a closed form by the axisymmetric dynamics
of the vorticity, although the impact of the non-axisymmetric eddies at local scales is
non-negligible. These results further suggest that the dynamics of the thermal vortex
ring may be understood in analogy with two-dimensional turbulence in terms of the
axisymmetric flow. In the absence of non-axisymmetric flows, this analogy is valid apart
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from differences arising from the cylindrical geometry. In other words, axisymmetric flow
differs from the common view of two-dimensional flow on a flat planar surface, yet the
axisymmetric system here is described only by two coordinates, s and z. Thus, under
a standard terminology both in classical mechanics and dynamical-system studies, this
system is unambiguously two dimensional (since non-axisymmetric eddies contribute little
to overall evolution of the thermal vortex ring). Moreover, the governing equation system,
as presented by (3.1a), is a close analogue to that for the vorticity equation on the plane,
apart from some geometrical factors such as 1/s on the vorticity as well as the buoyancy
forcing on the right-hand side. Thus, it is reasonable to expect that this system might
behave like a two-dimensional flow to some extent, which is a key question posed in the
present section.

The purpose of this section is to infer the extent of which present system can
be interpreted as a two-dimensional flow. One may note that this perspective is
oversimplified, because as we have already seen (especially in figure 3), the contributions
of the non-axisymmetric components to the vorticity dynamics are not small locally.
However, we have also found that when the vorticity budget is analysed in terms of the
volume-integrated quantities, as in (4.2a–c), the nonlinear contributions of the symmetric
components in turn are negligible (cf. figure 4).

5.1. Gross features
We first examine simple volume averages to infer the degree that the simulated system is
two dimensional. In the following, we refer to the square of the velocity and buoyancy
collectively as powers with the velocity squared referred to as kinetic energy later. For
evaluating the velocity power, the velocity in the absolute space is used so that the mean
vertical velocity (equal to minus the thermal vortex-ring velocity) in the moving frame
that dominates at the far field is removed.

Naively, the simulated flow can be argued to be close to two dimensional if the flow is
overall dominated by the axisymmetric component. To see this possibility, figure 10 plots
the fractions of the total velocity and buoyancy powers explained by the axisymmetric
components. Initially (t = 0–2), both fractions are fairly close to unity. The relative
contribution from the axisymmetric component of velocity power even exceeds unity
during this period, presumably due to noise generated by interpolating to the cylindrical
coordinates. However, after the initial spin-up period (t = 0–4), the fraction of the
buoyancy power from the axisymmetric component rapidly drops below 0.75. On the other
hand, the decrease of the velocity–power fraction is relatively gradual, and it remains above
0.95 throughout the simulation. Thus, the flow associated with the simulated thermal
vortex is fairly axisymmetric in this respect.

We also comment on the sudden drops followed by recovery over t = 16–19 seen for
both variables in figure 10. A direct inspection identifies a transient, slight destabilization
of the vortex-ring core noticeable in both the vorticity and buoyancy fields. Nevertheless,
these dips are relatively weak in magnitude, with a slightly more prominent spike in
figure 4(b) compared with that in figure 4(a). This time, t � 17, is also when the deviation
from the consistency condition (4.22) is apparent in figure 9.

5.2. Spectra
Another manner of assessing two-dimensionality of the simulated flow is to examine the
power spectra of the velocity and buoyancy. In the following, we focus on the former,
which we refer to as the kinetic energy. Direct evaluations of the spectra in the full
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Figure 10. Fraction of the total power explained by the axisymmetric component for the velocity (solid) and
the buoyancy (long dash). Here, the velocity is defined in absolute space.

three-dimensional space, after an initial spin-up period, leads to a power spectrum with
an exponent close to −5/3 (figure 11). We are inclined to interpret this as a signature that
the simulated flow as a whole is consistent with three-dimensional turbulence. However,
we also need to keep in mind that the −5/3 slope of the spectrum does not necessarily
prove a system to be three-dimensional homogeneous turbulence. Two examples come to
mind. First, under the standard theories for the two-dimensional turbulence, a −5/3 kinetic
energy spectrum is expected for the inverse-cascade inertial subrange (Kraichnan 1967,
1971; Boffetta & Ecke 2012). Second, the atmospheric kinetic energy spectrum below a
scale of ∼700 km is known to take a slope of −5/3 (Gage & Nastrom 1986). However, the
flow of this scale, typically referred to as stratified turbulence, is still considered quasi-two
dimensional under hydrostatic balance (cf. Lindborg 2006).

When the same spectra are evaluated after the azimuthally averaging of the velocity
field, the slope of the spectra becomes much steeper and closer to a −3 slope as expected
for the forward enstrophy-cascade inertial subrange of two-dimensional turbulence.
However, this result is misleading to conclude as a signature of the axisymmetric
component to be two-dimensional turbulence; the obtained slope is more likely a
consequence of the azimuthal averaging, which works as a low-pass filter.

It follows to analyse the spectra along different planes without applying any averaging.
For this purpose, we evaluate the power spectra of velocity and buoyancy on the planes
perpendicular to the x, y and z axes in figures 12–14; these three planes are chosen to
intersect the diagnosed centre of the vortex ring. This choice makes the y–z and x–z
planes perpendicular to the azimuthal direction of the vortex ring, whereas the x–y plane
corresponds to the equatorial plane of the vortex ring. More specifically, the spectra shown
in figure 12 are obtained by considering only the two-dimensional field on the y–z plane,
then performing a two-dimensional Fourier transform on the whole section (i.e. the whole
domain). The total power is normalized to unity in the following presentation.

991 A18-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.485


Thermal vortex ring: vortex-dynamics analysis

10–2
10–6

10–5

10–4

10–3

10–2

10–1

100

101

10–1 100 101

–5/3

Wavenumber

S
p
ec

tr
a

102

Figure 11. Power spectra of the kinetic energy of the system plotted from t = 2.58 to 20.1 with a step of 2.58
with the varying curves. The total power of spectra is normalized to unity. A slope for the power exponent of
−5/3 is also marked in blue.

In all three plots, spectra are shown for t = 3.4 (a), 10.3 (b), 15.4 (c) and 19.7 (d),
approximately corresponding to the times of the vertical cross-section plots shown in
figure 6 of MJY. However, the spectrum shapes are rather surprisingly similar at all
four times, although they correspond to qualitatively different phases in the vortex-ring
evolution.

Spectra on the y–z and x–z planes (figures 12–13) are distinguishably different from
those on the x–y plane (figure 14). In the former, moving to wavenumbers smaller
than around k = 1–3, the spectrum slope suddenly shifts from −5/3 at the smaller
scales to −3 at the larger scales, which could be considered a signature of the forward
enstrophy-cascade inertial subrange. This tendency is most prominent with the vertical
velocity component, and to a lesser extent with the horizontal velocity component parallel
to a given plane, i.e. y and x components in figures 12 and 13, respectively. The spectra
of the velocity component perpendicular to the plane, on the other hand, decrease
dramatically below this wavenumber range, suggesting that the flow at larger scales with
k < 1–3 is quasi-two dimensional.

The overall shape of spectra for these two cross-sections is, probably coincidentally,
strikingly similar to that observed for the atmosphere (Nastrom & Gage 1985; Gage &
Nastrom 1986) with k = 1–3 roughly corresponding to the transition scale between the
−3 and −5/3 slope regimes. Note that in the present system, k = 1 corresponds to
the initial radius of the buoyancy anomaly, which acts as a vorticity source throughout
the simulation. Thus, it is natural to expect that this forcing scale k ∼ 1 characterizes this
system. The identified transition over k = 1–3 is fairly close to this characteristic scale.

From these two sets of plots, we may conclude that the flows in directions perpendicular
to the azimuthal direction of the vortex ring can be considered quasi-two dimensional
for the scale range of, approximately, k = 0–3. This suggests that the evolution of the
vortex ring over this scale range may be interpreted in analogy with a two-dimensional
turbulence. On the other hand, over smaller scales (say, k > 3) the flows are three
dimensional, which is also suggested by nearly equal contributions of the three velocity
components to the spectrum over this scale range.
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Figure 12. Power spectra calculated on the y–z plane containing the centre position of the vortex ring for
the three velocity components: x (solid), y (long dash) and z (short dash) directions at the time (a) t = 3.4,
(b) t = 10.3, (c) t = 15.4 and (d) t = 19.7. Spectra are normalized the total power to be unity. Slopes for power
exponents of −3 (red) and −5/3 (blue) are also marked.

In contrast, for the spectra on the x–y plane, all the three components have close to
−5/3 slope for the full range of wavenumbers, although a gentle peak at k � 0.3 with a
noticeable deviation from this general tendency over k = 0–1 is seen (figure 14); thus, the
flow dissecting the equatorial plane of the vortex ring behaves more like three-dimensional
turbulence.

6. Summary and discussion

A high-resolution simulation of a thermal vortex ring performed by using the large-eddy
modelling set-up of Morrison et al. (2022) has been analysed from a point of
view of the vortex dynamics. The simulated thermal vortex-ring flow has substantial
contributions from the non-azimuthal components, especially at smaller scales, as seen
in the vorticity-budget analysis (figure 3). Moreover, the −5/3 power spectrum for the
kinetic energy obtained in full three-dimensional space (figure 11) as well as on planes
perpendicular to the azimuthal direction (figure 14) appear to suggest the nature of the
simulated flow as three-dimensional turbulence at smaller scales. Thus, one may also
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Figure 13. The same as figure 12 but on the x–z plane.

expect that the three-dimensional flow structure of the vortex ring plays a crucial role
in the dynamics. However, from a point of view of the volume-integrated budgets of the
vorticity and the potential vorticity as well as that of the impulse, the contributions of the
non-axisymmetric eddies are insignificant; the overall evolution of the thermal vortex ring,
including that of the vorticity intensity, ζ0, and the vortex-ring size, R, is well described
solely in terms of the axisymmetric components of the flow.

The initial spin up of the vortex ring is controlled by the buoyancy integrated along
the vertical axis of the ring. The buoyancy along the vertical-ring axis is ventilated
out by the vortex-ring circulation generated as a consequence of the buoyancy anomaly
itself. This ventilation rate is shown to be proportional to ζ0/R2 based on a simple
dimensional argument. This leads to a simple closed description of the initial spin-up
period of the vortex-ring evolution. This phenomenological description is supported by a
buoyancy-budget analysis of the simulation. The prediction from this phenomenological
model also agrees well with the numerically simulated evolution of the vortex spin up, as
quantified by the vorticity intensity, ζ0.

We may observe two complementary aspects in deriving this phenomenological model.
The first is the importance of directly examining the governing equations of the system
explicitly, in the present case, both the vorticity and buoyancy equations. The second is, at
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Figure 14. The same as figure 12 but on the x–y plane.

the same time, obtaining an expression for the ventilation rate by a dimensional argument.
In this manner, complementary use of these two approaches leads to a phenomenological
model.

Geometrical factors remain overall constant with time over the whole evolution of the
thermal vortex ring, including the initial spin-up period. Thus, one may interpret that these
geometrical factors are fairly well defined by the initial conditions, and the subsequent
evolution does not change the factors in any substantial manner. However, to reproduce
the simulated evolution of the vorticity intensity, ζ0, and the buoyancy source, S, at the
initial spin-up period by the above phenomenological model, it is crucial to retain their
time dependencies in a parametric manner (cf. § 4.4).

The dynamics of the thermal vortex ring may be overall interpreted in analogy of a
two-dimensional turbulence, by focusing on the components of the flow perpendicular
to the azimuthal direction. The −3 slope of the energy spectra on the planes containing
the vortex-ring axis supports this interpretation at larger scales. A remaining challenge
is the extent to which the thermal vortex-ring dynamics can be understood in analogy
with two-dimensional turbulence. Here, it is crucial to keep in mind that this analogy
is not perfect, because the geometry of axisymmetric flows is different from the
standard two-dimensional turbulence on a plane. For this reason, further investigations
of axisymmetric turbulent flows would be required.
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The present study has adopted a general framework for the analysis developed by Yano
(2023) for describing the thermal vortex ring in terms of the vorticity budget. To fully
close the formulation, additional equations for the geometrical factors are still required.
The present study demonstrates that, nevertheless, the formulation by Yano (2023) can
elucidate the dynamics of a thermal vortex-ring well, under the assumption that the
geometrical factors are constant with time. Furthermore, being guided by the analysis
results, a self-contained phenomenological description of the initial spin-up phase of
the vortex ring has been obtained, as remarked above. In this manner, the present work
showcases the combination of theory and numerical simulation for elucidating the fluid
mechanics of thermal vortex rings.
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