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GENERALISED EULER CONSTANTS
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Introduction

Let the Laurent expansion of the Riemann zeta function £(s) about J = I be
written in the form

It has been discovered independently by many authors that, in terms of this notation,
the coefficient

g'*1

in particular, -y0 >s the well known Euler constant y = 0.57721... (see for example
Briggs and Chowla (6), or van Veen (15)).

A generalisation of this conclusion covering ordinary Dirichlet series /(s) =
2"=1 h(n)n~s subject to a certain condition has been obtained by Briggs and Busch-
man (5), and Berndt (2) derived a similar result for the Hurwitz zeta function £(s, a),
0< a =£ 1. The theorem of Briggs and Buschman applies to various special series of
interest besides the particular examples listed by them. For example, by invoking a
theorem of Weber, one sees that it applies to the Dedekind zeta function of an
algebraic number field; this is discussed further below. Unfortunately, though, the
theorem of Briggs and Buschman does not cover Berndt's theorem about the Hurwitz
zeta function, and in general it is not applicable to the zeta functions of quadratic
forms, or of generalised prime number systems, or of arithmetical semigroups and
formations (as discussed respectively by Siegel (14), Bateman and Diamond (1), and
the present author (8,9), for example).

The first purpose of this note is to prove a theorem about certain Laplace
transforms, which does cover all the above cases, and in addition gives error
estimates for the limit relations of Briggs and Buschman, and Berndt. Then there is a
discussion of various further applications to special functions of interest. Lastly, there
are some remarks on a few special properties of the generalised Euler constants
y,(r, k) corresponding to the arithmetical progression of positive integers r, r + k,
r + 2k,...(r^k); the particular constant yo(r, k) was studied previously by Briggs (4),
and Lehmer (13).
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26 J. KNOPFMACHER

1. Laurent expansions of Laplace transforms

Although our present interest lies mainly with Corollary 1.2 below, we begin with a
more general result:

Theorem 1.1. Let f(s) = Jo e's'dF(t), where F(t) is a real-valued function of
bounded variation in every finite interval 0 ̂  t«£ y, with the property that there exist
constants C?4 0 and a, (i with 0 =£ fi < a such that

F(t) = Cea> + O(eet) ast^oo.

Then the abscissa of convergence of f(s) is a, and f(s) can be extended to an analytic
function of s for all complex s with Re s > /3, s^ a, in such a way that, about s = a,
f(s) has a Laurent expansion of the form

where

f e~a'dFU) ~ aCy + F(0) + O(eip-")y) if i = 0,
Jo

tie-a'dF(t)--^T yi+l + O(y'e(^")y) / / is* 1.
o i + l

Proof. The asymptotic hypothesis on F(r) implies that

,• log|F(Q|
hm sup &l ' = a,

and so a standard theorem (Widder (16), page 42) implies that f(s) has abscissa of
convergence a. Thus f(s) is analytic for Re s > a, and in this region /(s) =
-F(0) + s fo e~s'F(t)dt.

Now let R(t) = F(r) - Ce"'. Then, for Re$>o,

f(s) = -^=- + C + s \ e~s'
s — a Jo R(t)dt.

Since R(t) = O(ee'), a convenient analytical lemma stated by Bateman and Diamond
(1), page 205, shows easily that g(s) = s J*o°° e'"R(t)dt is an analytic function of s for
Re s > /3. Thus f(s) can be extended as stated, and about s = a it has a Laurent
expansion of the form

y

where yo(F) = C + g(a) and yi(F) = (-l)'g(i)(o) for / * 1.
Now, integration by parts and the asymptotic hypothesis on F{t) gives

T e-aldF(t) = F(y)e~ay - F(0) + aCy + a {' e-"'R(t)dt
Jo Jo
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ip' aCy+g(a)-a ( e-"'R(t)dt

= aCy + yo(F) - F(0)

Similarly, for / > 1,

t'e-aldF(t) = F(y)y'e-ay - [ F(t)d(tle~M)
Jo

= -^ryi+1 + O(yieip-"}y)- \
/ + 1 Jo

+ o([ e"d(t'e-"))

= ^7 yi+' + f t'e'-'dRU) + O(y'e(p-a)y).

1+1 Jo
But, for Res> p and / ^ 0,

g(1)(s) = ( - l ) ' f t'e-sldR(t).
Jo

Therefore

f" t'e-"dF(t) = ^fr yi+l + (-l)'gH)(
Jo ' + I
f

Jo
and so the theorem follows.

Corollary 1.2. Let £G(s) — 2"=i G(qn)q'n
s, where \^ q\<qi<- • • and qn->°° as

n-»oo, a/i</ where the G(qn) are real coefficients with the property that there exist
constants C^ 0 and a, j8 with 0 «£ /3 < a such that

Then the abscissa of convergence of (a(s) is a, and £a(s) can be extended to an
analytic function of s for all complex s with Re s > /3, s ^ a, in such a way that, about
s = a, £G(s) has a Laurent expansion of the form

where

?£]gi+t
y,(G)= 2 G(qn)q-" log'< qn--?£r]ogi+t x + Oix"-* log' x).

t,(i i + I

Proof. Let F(0) = 0, and F(t) = No(e') for / > 0. Then F(t) is a step function with
jumps G(qn) at the points f = log qn. Hence, for a continuous function iff(t),

Then the asymptotic hypothesis on NG(x) implies that (G(s) = JT e~s'dF(t) for Re 5 >
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28 J. KNOPFMACHER

a, and so the corollary follows immediately from Theorem 1.1, the present asymptotic
formula for y,(G) = y,(F) following from that of Theorem 1.1 upon substitution of
t'e'"' for ip(t) in the equation above.

The main theorem of Briggs and Buschman (5) follows from Corollary 1.2, in the
special case when qn = n for n = 1,2,.. . . so that £G(S) becomes an ordinary Dirichlet
series; Briggs and Buschman did not provide an error estimate in their limit relation
for y,(G).

2. Examples and applications

Consider the Hurwitz zeta function f(s, a) = 2"=0(n + a)~s, 0 < a * £ l . Here the
function NG(x) of Corollary 1.2 is asymptotically x + O(\) as x -»«. Hence application
of Corollary 1.2 yields Theorem 1 of Berndt (2), together with an additional error
estimate in the limit relation for the generalised Euler constants.

Another example of interest is the zeta function

&(*) = 2'(?(»«.«)"'

of a positive definite real quadratic form Q(x, y) = ax2 + bxy + cy2 of negative dis-
criminant b2 — 4ac = — A. A result of Gauss (see for example Landau (10), page 166)
implies that the function corresponding to Nc(x) in Corollary 1.2 is asymptotically
Cx + O(xm), where C = 2TT/VA. Thus Corollary 1.2 may be applied to this function.
The resulting conclusions for the constant yo(Q) and their relation with the Kronecker
limit formula (see also Siegel (14), pages 5-6) were discussed by Landau (10), page
168. Those for the higher constants y,(Q), though certainly not comparable in depth
with the Kronecker formula, seem at least worth mentioning, since they do not seem
to appear in the literature.

A quite comprehensive class of examples is covered by the cases in which the
function (G(s) of Corollary 1.2 is the zeta function of an arithmetical semigroup
satisfying Axiom A, or of a class in an arithmetical formation satisfying Axiom A*, as
defined and discussed by the author ((8), Parts II, V, and (9), Chapter 9). Here, the first
constant yo(G) was discussed previously by this author (loc. cit.), but rather than
elaborate upon details concerning the higher constants y,(G) in full generality we shall
now restrict attention to a selection of specific functions of interest:

First consider the Dedekind zeta function (K(s) = 2"=i K(n)n~s of an algebraic
number field K, where K(n) denotes the number of integral ideals of norm n in K. By
a theorem of Weber (see Landau (12), page 135),

2 K(n) = AKx + O(x") asjc-*oo,

where AK and TJ are explicitly definable positive constants depending on K. Landau
(10,11) gave limit relations with error estimates for the resulting Euler constants y,(K)
of K, but without reference to the interpretation of y,{K) ( i > l ) in the Laurent
expansion of £K(s) about s = 1.

A different type of example arises from consideration of the arithmetical function
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a(n) defined by the total number of non-isomorphic abelian groups of order n
(n = l ,2, . . . ) . In the terminology used in (8,9), the corresponding Dirichlet series
f«(s) = 2°=i a(n)n's is the zeta function of the arithmetical semigroup 21 of all
isomorphism classes of finite abelian groups.

Theorem 2.1. The zeta function £«(s) possesses generalised Euler constants 7,(21)
satisfying the relations

7,(21) = T ^ { ZJS+1'(1) + 2 (- 1)'

= 2 a(n) ^ - T ^ r l o g ' * 1 N + O(N""2 log'N),

Z*(.s) = 117=2 £(")> £(s) /s f/ie Riemann zeta function, the y, are the generalised
Euler constants of £(s), and A = Za(l) = 2-294

Proof. For the case i = 0 of this theorem, see also Cohen (7) and the author (8),
Part II. For the proof, we note that theorems of Erdos and Szekeres and of Kendall
and Rankin (see for example (9), Chapter 5) imply that fa(s) = £(s)Z«(s) for Re 5 > 0,
and that 2.n*x a(n) = Ax + O(x"2) as x-»oo. Hence Corollary 1.2 is applicable, and
yields the limit relation for 7,(21). The other relation for 7,(21) may then be obtained by
calculating the Laurent expansion about s = 1 of

Another example arising from abstract algebra may be obtained by considering the
arithmetical function S(n), which is defined by the total number of non-isomorphic
semisimple finite rings of order n (n = 1,2, 3,...). In the terminology used in (8,9),
£s(s) = S"=i S(n)n's is the zeta function of the arithmetical semigroup (5 of all
isomorphism classes of semisimple finite rings.

Theorem 2.2. The zeta function fs(s) possesses generalised Euler constants 7/(<2>)
satisfying the relations

where Z©(s) = FT £(mi2s), and B = Z®(1) = 2-

j=0

--—rlog'+l N + O(N~in]og' N),
i + 1

= 2-499....

Proof. This theorem follows in the same way as Theorem 2.1, upon applying
Corollary 1.2 to a result of the author (8), Part I, which states that 2n«AS(«) =
Bx + O(xm) as x -+oo, and f@(s) = £(s)Zs(s) for Re s >{.

Without going into further details, it may be remarked that generalisations of
Theorems 2.1 and 2.2, concerning molecules of finite cardinal or semisimple finite
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30 J. KNOPFMACHER

algebras over the ring of all algebraic integers in an algebraic number field K, can be
derived similarly with the aid of theorems of the author (8), Part III. In these
generalisations, the role of the constants y, is taken by the constants y,(K) of K that
were mentioned above.

3. Constants of arithmetical progressions

Consider the arithmetical progression H = H(r, k) consisting of positive integers r,
r + k, r + 2k,... (r^k). For the corresponding Dirichlet series £H(s) = Sn e H n~s, one
has Snsj.neH 1 = (\lk)x + O(\) as x-*°o. Therefore Corollary 1.2 implies that there
exists a sequence of generalised Euler constants y,(r, k) corresponding to H. The first
of these constants yo(r, k) was studied previously by Briggs (4) and Lehmer (13), and
as supplements to the results of these authors we mention here a few corresponding
ones about the higher constants.

Firstly, it is clear that

2y/(r,fc)=y,(l,l)=y,,

where y, corresponds to £(s) as before. Further, one has:

Proposition 3.1. For r = r'd, k = k'd,

y,(r, k) = -; X I . I "Vi-Kr, k) log' d - -rr-—TX\' dfro\]/ ' & k(i +1)

in particular,

Proof. Let H' denote the progression r\ r' + k', r' + 2k' Then, by Corollary
1.2,

/ ^ i- / V log' n log'+'y,(r, k) = hm 2, „ *./; .
X-K» inttnSH n k(l + 1

i- ! / V 1 V (i\ i J A i ••-/ log'+l x ]

Hence the proposition follows from the relations:

For the case i = 0 of the above and following conclusions, see Briggs (4) and
Lehmer (13).

Proposition 3.2. Let g(n) denote an arithmetical function which is periodic in n.
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GENERALISED EULER CONSTANTS 31

of period k>0. Then the series 2"=i g(«)(log'n/n) is convergent, and has the sum
2j-i g(r)y,(r, k), if and only if 2"r=l g(r) = 0.

Proof. This is a direct consequence of the identity:

'°g'" S V log' n log'*'xl
2) ~z k(i + n

Corollary 3.3. For any non-principal Dirchlet character x modulo k > 1, f/ie
o/ f/ie i-th derivative of L(s, x) - 2"=) x(n)n * at s = \ is

For the case / = 0 of this corollary, see Berndt (3) as well as Lehmer (13).
Lastly, consider the constant

this may be regarded as the ;'-th generalised Euler constant of the multiplicative
semigroup of all positive integers coprime to the given integer k > 0. This semigroup
has the zeta function

{(*;*)= 2 «"' = £(«) FI 0-P~s)
n»l.(n.it)=l prime p\k

This last equation implies:

Proposition 3.4. The constant y,(fc) satisfies:

(—\V
7 r fli+i 2 7 T w i '
I • / = 0 J•

where, for co(p) = 1 - p'1 and c,-(p) = ( - 1 ) 1 + V log'p (i > 1),

I!
prime p\k
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