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Abstract. Let h be the second fundamental form of a compact submanifold M of the
Cayley projective plane CaP2. We determine all compact totally complex submanifolds of
complex dimension n in CaP2 satisfying \h\2 < n.

1. Introduction. Let M be an n-dimensional compact Kaehler submanifold of the com-
plex projective space CPm{\). Denote by It the second fundamental form of M and UM the
unit tangent bundle over M. Ros showed in [5] that \ff[u) = \h(u, w)|2 < | for any u e UM,
then M is totally geodesic. Moreover in [6], Ros gave a complete list of compact Kaehler
submanifolds of C7""(l) satisfying the condition l^MAu) = \- The same type results for
totally complex submanifolds of the quaternion projective space HP"\\) were obtained by
Coulton and Gauchman [3]. In [4], Coulton and Glazebrook proved the analogous results in
the case of totally complex submanifolds of the Cayley projective place CaP2. In the present
paper, we proved the following pinching theorem for the square of the norm of the second
fundamental form.

THEOREM. Let M be a compact complex submanifold of complex dimension n immersed in
Cayley projective plane CaP2. If the square of the norm of the second fundamental form of M
satisfies \h\2 < n, then either (i) or (ii) holds.

(i) \h\2 = 0, M is totally geodesic in CaP2, and M is CP\\) or CP2(l).
(ii) \h\2 = n and M is CPX (±).

2. Cayley projective plane. In this section, we review the fundamental results about the
Cayley projective plane; for details see [4].

Let us denote by Ca the set of Cayley numbers, It possesses a multiplicative identity 1
and a positive definite bilinear form <, > with norm \\a\\ = < a, a > satisfying \\ab\\ = \\a\\ • \\b\\,
for a,b e Ca. Every element a e Ca can be expressed in the form a = ao\ + a\ with ao e R
and < f l i , l > = 0 . The conjugation map a ->• a* = flol — «i is an anti-automorphism
(ab)* = b*a*.

A canonical basis for Ca is any basis of the form (1, eo, e\,..., e(,} satisfying: (i) < e\, 1 > = 0;
(ii) < e,-, ej > = {0 for i ^j, and 1 otherwise}; (iii) e2 = - 1 ; e,e,- + eye,- = 0(/ ^j); (iv)
e,-e,-+i = e,+3 for / e Z 7 .

Let V be a vector space of real dimension 16 with automorphism group Spin(9). The
splitting

V=Ca@Ca
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together with the above canonical basis on each summand, endows V with what we refer to
as a Cayley structure. We know that the Cayley projective plane CaP2 is a 16-dimensional
Riemannian symmetric space whose tangent space admits the Cayley structure pointwise. In
the following, Let {/o,..., h] be the Cayley structure on CaP2.

The curvature tensor R of CaP2 is given in [2] as follows

R((a, b), (c, d))(ej) =^((< c,e>a-4<a,e>c + (ed)b* - (eb)d*

+ (ad-cb)f*),(4<d,f>b-4<b,f>d ^

+ a*(cf) - c*(af) + e\ad - cb)))

On Ca © Ca we have the positive definite bilinear form <, > given by

< (a, b), (c, d) > = < a, c> + < b, d > (2)

3. Totally complex submanifolds. Let V c TxCaP2 be a real vector subspace, we say
that V is a totally complex subspace if there exists an / such that there is a basis with I — IQ
and (i) /o C V, and (ii) h V is perpendicular to V for 1 < k < 6. Clearly, if V is a maximal
subspace of this kind, then dimpV = 4.

Let M be a compact Riemannian manifold isometrically immersed in CaP2 by
j : M -*• CaP2. Denote by h and A the second fundamental form of j and the Weingarten
endomorphism respectively. Then we have

<h{X, Y),N> = < X, ANY> (3)

where X, Y e TM, N e TM1. We take v , V and v 1 to be respectively the Riemannian con-
nections on CaP2, M and the normal connection on M. The corresponding curvature tensors
are denoted by R, R, and RL, respectively. The first and second covariant derivatives of h are
given by

, Y, Z) = v$(h(X, Y) - h{yzX, Y) - h(X, Vz Y), (4)

, Y,Z,W) = V ^ m)(X, Y,Z)- (y/0(V wX, Y, Z)

, VwY,Z)- (vA)(* YyZ)

where X, Y,Z, We TM. The Codazzi equation takes the following form

), Xr{2), Xr{3)) = (vA)(JT,, X2, X3), (6)

where r e S3, the permutation group, and the arguments are in the tangent space of M.
Recalling that h and v^ are symmetric, we have the Ricci identity

2 , Y, Z, W) - (y2h){X, Y,W,Z) = - RX(Z, W)h(X, Y)

+ h(R(Z, W)X, Y) + h(X, R(Z, W) Y).
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We say that j : M -*• CaP2 is a totally complex immersion if W =j*(TM) is a totally
complex subspace for each point of M. Observe that every totally complex submanifold of
CaP2 has a Kaehler structure. We set I = IQ, and consequently we have

(a) 7*7 = 0,

(b) h{IX, Y) = Ih{X, Y),

(c) Am = IAN = -ANI,

(d) IR(X, IX)X = R(X,

where X,Ye TXM and N e TXMX.
Define f{u) — \h{u, u)\2, where w e UM, the unit tangent bundle over M. Assume /

attains its maximum at some vector v e UMP, then by [5] we have

AhMv = \h(v, v)|2v. (9)

LEMMA 3.1. Let Mn be a compact totally complex submanifold in CaP1. Assume f attains
its maximum at v e UMP, then

6

31%. *OI20 - 4\Kv, v)|2 + ^ < h(v, v), 7/v >2 +4|7/i)v, v, v)|2 < 0. (10)

Proof. Fix v in UMp. For any u e UMp, let /•„(/) be the geodesic in M satisfying the initial
conditions ru(0) = p, r'u{0) = u. Parallel translating along ru(t) gives rise to a vector field
Vu(t). Putfu(t)=f(Vu(t)), then

^ / u ( 0 ) = 2 < (v2//)(«, ii, v, v), A(v, v) > + 2 | ( V * ) ( K , v, v)|2. (11)

Using (6), (7) and (8), we have

< (v2h)(Iv, Iv, v, v), h(v, v)>= < (v2^)(/v, v, Iv, v), h(v, v) >

= - < (V2/O0. v, v, v), h(v, v) > + < /^( /v, v)/i(/v, v), h{y, v) >

- 2 < /?(/v, v)/v, y4A(VjV)v > .

(12)

From the Ricci equation, (1), (2) and (8), we obtain

< / t V v , v)h(Iv, v), h{v, v) >= < R(Iv, v)h(Iv, v), h(y, v) > + < [Ah(,ViV), Ah(ViV)]Iv, v >

1 1 6 (13)
= - x \h{v, v)|2 - 2/,(v,v)v|2 + - Y, < hiy, v), /,-v >2 •

1 l
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Now, by the Gauss equation and using (1), (2) and (8), we have

< R(Iv, v)/v, Ah{ViV)v > = -\h(v, v)|2 + 2M/,(v,v)v|2. (14)

Since /attains its maximum at v, we have

^ ^ / / v ( 0 ) < 0 . (15)

Combining (11)-(15) and noticing (9), we get (10).

LEMMA 3.2. Let M be a compact totally complex submanifold in CaP2. Assume/attains its
maximum at v e UMP, then for any u e UMp with < u, v > — < u, Iv > — 0, we have

6

\h(v, v)|2(l - S\h(u, v)|2) - | AhMu\2 + ] T < Kv, v), I,u >2 +4\(vh)(u, v, v)|2 < 0. (16)

Proof. Suppose u e UMP such that < u, v > = < u, Iv > — 0. From (7), (8), (11) and the
fact that/attains its maximum at v, we have

1 1' d2 d2 \
0 > - I —j/u(0) -I—j //«(0) I = (V2h)(u, u, v, v), h(v, v) >

+ < (v2h)(Iu, lu, v, v), h(v, v) > + 2|(V/I)(M, V, V)|2

= < i?X(/M, «)/!(/v, V), h(v, V) > - 2 < /?(/M, M)/V, /4A(V,V)V >

+ 2|(V/I)(M,V,V)|2.

Using the Ricci equation, (1), (2), (8) and (9), we get

1 6

< Rx(Iu, u)h(Iv, v), h(v, v) > = — - \h(v, v)|2 - \Auv v)"|2 + Y^ < h(y, v), /,•« >2.
2 ' £f

From the Gauss equation, (1), (2), (8) and (9), we have

- 2 < R(Iu, u)Iv, AhMv > = \h(v, v)|2 - 4\h(v, v)\2\h(u, v)|2.

From above equations, we get (16).

4. Proof of the Theorem. When n = 1, it follows easily from \h\ < 1 t h a t / < ,̂ and the
conclusion of Theorem is the consequence of Theorem 2.2 in [4]. So we need to consider the
case n > 1. Assume the function / attains its maximum at v e UMP. If/(v) = 0, then M is
totally geodesic. If /(v) ^ 0, we want to show that /(v) < 4. To do this, let
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ei,e2 = Ie\, ...,e2n-\,e2n = Iein-\ be an orthonormal basis of TpM. By the assumption of
Theorem, we have

In In In

n > ] T \h(eh ej)\2 = 4|/J(V, v)|2 + 4 ^ \h(v, e,)\2 + J2 \h{eh ej)\2.
ij=\ i'=3 ij=i

From (9), we know that /̂,(,>,V)V \\v and A^v,v)Iv \\/v. Thus, for / > 3, we have

< ^/i(ei,d)e;> e\ > = < Ah(etie2)e2, e,- > = 0,

and so when i > 3,

y=3 j=3

e,-, gy), /i(v, v) > 2 =
i

2n

2n 0 In
2_ L

Also, when / > 3, we have by Lemma 3.2

From the above equations, we obtain

2n

n > 4|A(v, v)|2 + V)(4|/i(v, e,)|

Thusy(w) < ^ for any u e UM. The theorem follows from Theorem 2.2 in [4]. This completes
the proof of the theorem.
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