TOTALLY COMPLEX SUBMANIFOLDS OF THE CAYLEY PROJECTIVE PLANE

by LIU XIMIN

(Received 30 July, 1996)

Abstract

Let h be the second fundamental form of a compact submanifold M of the Cayley projective plane $C a P^{2}$. We determine all compact totally complex submanifolds of complex dimension n in $C a P^{2}$ satisfying $|h|^{2} \leq n$.

1. Introduction. Let M be an n-dimensional compact Kaehler submanifold of the complex projective space $C P^{m}(1)$. Denote by h the second fundamental form of M and $U M$ the unit tangent bundle over M. Ros showed in [5] that if $f(u)=|h(u, u)|^{2}<\frac{1}{4}$ for any $u \in U M$, then M is totally geodesic. Moreover in [6], Ros gave a complete list of compact Kaehler submanifolds of $C P^{m}(1)$ satisfying the condition $\max _{u \in U M} f(u)=\frac{1}{4}$. The same type results for totally complex submanifolds of the quaternion projective space $H P^{m}(1)$ were obtained by Coulton and Gauchman [3]. In [4], Coulton and Glazebrook proved the analogous results in the case of totally complex submanifolds of the Cayley projective place CaP ${ }^{2}$. In the present paper, we proved the following pinching theorem for the square of the norm of the second fundamental form.

Theorem. Let M be a compact complex submanifold of complex dimension n immersed in Cayley projective plane CaP ${ }^{2}$. If the square of the norm of the second fundamental form of M satisfies $|h|^{2} \leq n$, then either (i) or (ii) holds.
(i) $|h|^{2}=0, M$ is totally geodesic in $C a P^{2}$, and M is $C P^{1}(1)$ or $C P^{2}(1)$.
(ii) $|h|^{2}=n$ and M is $C P^{1}\left(\frac{1}{2}\right)$.
2. Cayley projective plane. In this section, we review the fundamental results about the Cayley projective plane; for details see [4].

Let us denote by Ca the set of Cayley numbers, It possesses a multiplicative identity 1 and a positive definite bilinear form $<,>$ with norm $\|a\|=<a, a>$ satisfying $\|a b\|=\|a\| \bullet\|b\|$, for $a, b \in C a$. Every element $a \in C a$ can be expressed in the form $a=a_{0} 1+a_{1}$ with $a_{0} \in R$ and $\left\langle a_{1}, 1\right\rangle=0$. The conjugation map $a \rightarrow a^{*}=a_{0} 1-a_{1}$ is an anti-automorphism $(a b)^{*}=b^{*} a^{*}$.

A canonical basis for $C a$ is any basis of the form $\left\{1, e_{0}, e_{1}, \ldots, e_{6}\right\}$ satisfying: (i) $\left\langle e_{1}, 1\right\rangle=0$; (ii) $\left\langle e_{i}, e_{j}\right\rangle=\{0$ for $i \neq j$, and 1 otherwise $\} ;$ (iii) $e_{i}^{2}=-1 ; \quad e_{i} e_{j}+e_{j} e_{i}=0(i \neq j)$; (iv) $e_{i} e_{i+1}=e_{i+3}$ for $i \in Z_{7}$.

Let V be a vector space of real dimension 16 with automorphism group $\operatorname{Spin}(9)$. The splitting

$$
\begin{gathered}
V=C a \oplus C a \\
\text { Glasgow Math. J. } 40(1998) 161-166 .
\end{gathered}
$$

together with the above canonical basis on each summand, endows V with what we refer to as a Cayley structure. We know that the Cayley projective plane $C a P^{2}$ is a 16 -dimensional Riemannian symmetric space whose tangent space admits the Cayley structure pointwise. In the following, Let $\left\{I_{0}, \ldots, I_{6}\right\}$ be the Cayley structure on CaP ${ }^{2}$.

The curvature tensor \bar{R} of $C a P^{2}$ is given in [2] as follows

$$
\begin{align*}
\bar{R}((a, b),(c, d))(e, f)= & \frac{1}{4}\left(\left(<c, e>a-4<a, e>c+(e d) b^{*}-(e b) d^{*}\right.\right. \\
& \left.+(a d-c b) f^{*}\right),(4<d, f>b-4<b, f>d \tag{1}\\
& \left.\left.+a^{*}(c f)-c^{*}(a f)+e^{*}(a d-c b)\right)\right)
\end{align*}
$$

On $C a \oplus C a$ we have the positive definite bilinear form $<,>$ given by

$$
\begin{equation*}
\langle(a, b),(c, d)\rangle=\langle a, c\rangle+\langle b, d\rangle \tag{2}
\end{equation*}
$$

3. Totally complex submanifolds. Let $V \subset T_{x} C a P^{2}$ be a real vector subspace, we say that V is a totally complex subspace if there exists an I such that there is a basis with $I=I_{0}$ and (i) $I_{0} \subset V$, and (ii) $I_{k} V$ is perpendicular to V for $1 \leq k \leq 6$. Clearly, if V is a maximal subspace of this kind, then $\operatorname{dim}_{R} V=4$.

Let M be a compact Riemannian manifold isometrically immersed in $C a P^{2}$ by $j: M \rightarrow C a P^{2}$. Denote by h and A the second fundamental form of j and the Weingarten endomorphism respectively. Then we have

$$
\begin{equation*}
<h(X, Y), N>=<X, A_{N} Y> \tag{3}
\end{equation*}
$$

where $X, Y \in T M, N \in T M^{\perp}$. We take $\bar{\nabla}, \nabla$ and ∇^{\perp} to be respectively the Riemannian connections on $C a P^{2}, M$ and the normal connection on M. The corresponding curvature tensors are denoted by \bar{R}, R, and R^{\perp}, respectively. The first and second covariant derivatives of h are given by

$$
\begin{align*}
(\bar{\nabla} h)(X, Y, Z)= & \nabla \frac{1}{Z}\left(h(X, Y)-h\left(\nabla_{Z} X, Y\right)-h\left(X, \nabla_{Z} Y\right),\right. \tag{4}\\
\left(\bar{\nabla}^{2} h\right)(X, Y, Z, W)= & \nabla \stackrel{\perp}{W}(\bar{\nabla} h)(X, Y, Z)-(\bar{\nabla} h)(\nabla w X, Y, Z) \tag{5}\\
& -(\bar{\nabla} h)\left(X, \nabla_{W} Y, Z\right)-(\bar{\nabla} h)\left(X, Y, \nabla_{W} Z\right),
\end{align*}
$$

where $X, Y, Z, W \in T M$. The Codazzi equation takes the following form

$$
\begin{equation*}
(\bar{\nabla} h)\left(X_{r(1)}, X_{r(2)}, X_{r(3)}\right)=(\bar{\nabla} h)\left(X_{1}, X_{2}, X_{3}\right), \tag{6}
\end{equation*}
$$

where $r \in S_{3}$, the permutation group, and the arguments are in the tangent space of M. Recalling that h and $\bar{\nabla} h$ are symmetric, we have the Ricci identity

$$
\begin{align*}
\left(\bar{\nabla}^{2} h\right)(X, Y, Z, W)-\left(\bar{\nabla}^{2} h\right)(X, Y, W, Z)= & -R^{\perp}(Z, W) h(X, Y) \tag{7}\\
& +h(R(Z, W) X, Y)+h(X, R(Z, W) Y)
\end{align*}
$$

We say that $j: M \rightarrow C a P^{2}$ is a totally complex immersion if $W=j_{*}(T M)$ is a totally complex subspace for each point of M. Observe that every totally complex submanifold of $C a P^{2}$ has a Kaehler structure. We set $I=I_{0}$, and consequently we have
(a) $\bar{\nabla}_{X} I=0$,
(b) $h(I X, Y)=\operatorname{Ih}(X, Y)$,
(c) $A_{I N}=I A_{N}=-A_{N} I$,
(d) $I R(X, I X) X=R(X, I X) I X$,
where $X, Y \in T_{x} M$ and $N \in T_{x} M^{\perp}$.
Define $f(u)=|h(u, u)|^{2}$, where $u \in U M$, the unit tangent bundle over M. Assume f attains its maximum at some vector $v \in U M_{p}$, then by [5] we have

$$
\begin{equation*}
A_{h(v, v)} v=|h(v, v)|^{2} v . \tag{9}
\end{equation*}
$$

Lemma 3.1. Let M_{n} be a compact totally complex submanifold in CaP ${ }^{2}$. Assume f attains its maximum at $v \in U M_{p}$, then

$$
\begin{equation*}
\left.3|h(v, v)|^{2}\left(1-4|h(v, v)|^{2}+\sum_{i=1}^{6}\left\langle h(v, v), I_{i} v\right\rangle^{2}+4 \mid \bar{\nabla} h\right) v, v, v\right)\left.\right|^{2} \leq 0 . \tag{10}
\end{equation*}
$$

Proof. Fix v in $U M_{p}$. For any $u \in U M_{p}$, let $r_{u}(t)$ be the geodesic in M satisfying the initial conditions $r_{u}(0)=p, r_{u}^{\prime}(0)=u$. Parallel translating along $r_{u}(t)$ gives rise to a vector field $V_{u}(t)$. Put $f_{u}(t)=f\left(V_{u}(t)\right)$, then

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} f_{u}(0)=2<\left(\bar{\nabla}^{2} h\right)(u, u, v, v), h(v, v)>+2|(\bar{\nabla} h)(u, v, v)|^{2} \tag{11}
\end{equation*}
$$

Using (6), (7) and (8), we have

$$
\begin{align*}
<\left(\bar{\nabla}^{2} h\right)(I v, I v, v, v), h(v, v)>= & <\left(\bar{\nabla}^{2} h\right)(I v, v, I v, v), h(v, v)> \\
= & -<\left(\bar{\nabla}^{2} h\right)(v, v, v, v), h(v, v)>+<R^{\perp}(I v, v) h(I v, v), h(v, v)> \\
& -2<R(I v, v) I v, A_{h(v, v)} v> \tag{12}
\end{align*}
$$

From the Ricci equation, (1), (2) and (8), we obtain

$$
\begin{align*}
\left.<R^{\perp}(I v, v) h(I v, v), h(v, v)\right\rangle & =\langle\bar{R}(I v, v) h(I v, v), h(v, v)\rangle+\left\langle\left[A_{h(I v, v}, A_{h(v, v)}\right] I v, v\right\rangle \\
& =-\frac{1}{2}|h(v, v)|^{2}-\left.2_{h(v, v)} v\right|^{2}+\frac{1}{2} \sum_{i=1}^{6}\left\langle h(v, v), I_{i} v\right\rangle^{2} . \tag{13}
\end{align*}
$$

Now, by the Gauss equation and using (1), (2) and (8), we have

$$
\begin{equation*}
<R(I v, v) I v, A_{h(v, v)} v>=-|h(v, v)|^{2}+2\left|A_{h(v, v)} v\right|^{2} . \tag{14}
\end{equation*}
$$

Since f attains its maximum at v, we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} f_{v}(0)+\frac{d^{2}}{d t^{2}} f_{l v}(0) \leq 0 . \tag{15}
\end{equation*}
$$

Combining (11)-(15) and noticing (9), we get (10).
Lemma 3.2. Let M be a compact totally complex submanifold in CaP ${ }^{2}$. Assume f attains its maximum at $v \in U M_{p}$, then for any $u \in U M_{p}$ with $\langle u, v\rangle=\langle u, I v\rangle=0$, we have

$$
\begin{equation*}
|h(v, v)|^{2}\left(1-8|h(u, v)|^{2}\right)-\left|A_{h(v, v)} u\right|^{2}+\sum_{i=1}^{6}\left\langle h(v, v), I_{i} u\right\rangle^{2}+4|(\bar{\nabla} h)(u, v, v)|^{2} \leq 0 . \tag{16}
\end{equation*}
$$

Proof. Suppose $u \in U M_{p}$ such that $\langle u, v\rangle=\langle u, I v\rangle=0$. From (7), (8), (11) and the fact that f attains its maximum at v, we have

$$
\begin{aligned}
0 \geq \frac{1}{2}\left(\frac{d^{2}}{d t^{2}} f_{u}(0)+\frac{d^{2}}{d t^{2}} f_{l u}(0)\right)= & \left(\bar{\nabla}^{2} h\right)(u, u, v, v), h(v, v)> \\
& +\left.\left\langle\left(\bar{\nabla}^{2} h\right)(I u, I u, v, v), h(v, v)>+2\right|(\bar{\nabla} h)(u, v, v)\right|^{2} \\
= & <R^{\perp}(I u, u) h(I v, v), h(v, v)>-2<R(I u, u) I v, A_{h(v, v)} v> \\
& +2|(\bar{\nabla} h)(u, v, v)|^{2} .
\end{aligned}
$$

Using the Ricci equation, (1), (2), (8) and (9), we get

$$
\left.<R^{\perp}(I u, u) h(I v, v), h(v, v)>=-\frac{1}{2}|h(v, v)|^{2}-\left|A_{h(v, v)} u\right|^{2}+\sum_{i=1}^{6}<h(v, v), I_{i} u\right\rangle^{2}
$$

From the Gauss equation, (1), (2), (8) and (9), we have

$$
-2<R(I u, u) I v, A_{h(v, v)} v>=|h(v, v)|^{2}-4|h(v, v)|^{2}|h(u, v)|^{2} .
$$

From above equations, we get (16).
4. Proof of the Theorem. When $n=1$, it follows easily from $|h| \leq 1$ that $f \leq \frac{1}{4}$, and the conclusion of Theorem is the consequence of Theorem 2.2 in [4]. So we need to consider the case $n>1$. Assume the function f attains its maximum at $v \in U M_{p}$. If $f(v)=0$, then M is totally geodesic. If $f(v) \neq 0$, we want to show that $f(v) \leq \frac{1}{4}$. To do this, let
$e_{1}, e_{2}=I e_{1}, \ldots, e_{2 n-1}, e_{2 n}=I e_{2 n-1}$ be an orthonormal basis of $T_{p} M$. By the assumption of Theorem, we have

$$
n \geq \sum_{i, j=1}^{2 n}\left|h\left(e_{i}, e_{j}\right)\right|^{2}=4|h(v, v)|^{2}+4 \sum_{i=3}^{2 n}\left|h\left(v, e_{i}\right)\right|^{2}+\sum_{i, j=3}^{2 n}\left|h\left(e_{i}, e_{j}\right)\right|^{2} .
$$

From (9), we know that $A_{h(v, v)} v \backslash v$ and $A_{h(v, v)} I v \backslash \backslash v$. Thus, for $i \geq 3$, we have

$$
<A_{h\left(e_{1}, e_{1}\right)} e_{i}, e_{1}>=<A_{h\left(e_{1}, e_{2}\right)} e_{2}, e_{i}>=0
$$

and so when $i \geq 3$,

$$
\begin{aligned}
& \left.\sum_{j=3}^{2 n}\left|h\left(e_{i}, e_{j}\right)\right|^{2} \geq \sum_{j=3}^{2 n}\left(<h\left(e_{i}, e_{j}\right), \frac{h(v, v)}{|h(v, v)|}\right\rangle^{2}+\left\langle h\left(e_{i}, e_{j}\right), \frac{I h(v, v)}{|h(v, v)|}\right\rangle^{2}\right) \\
& =\frac{2}{|h(v, v)|^{2}} \sum_{j=3}^{2 n}<h\left(e_{i}, e_{j}\right), h(v, v)>^{2}=\frac{2}{|h(v, v)|^{2}} \sum_{j=3}^{2 n}\left\langle A_{h(v, v)} e_{i}, e_{j}\right\rangle^{2} \\
& =\frac{2}{|h(v, v)|^{2}} \sum_{j=3}^{2 n}<A_{h(v, v)} e_{i}, e_{j}>^{2}=\frac{2}{|h(v, v)|^{2}} \sum_{j=3}^{2 n}\left|A_{h(v, v)} e_{i}\right|^{2} .
\end{aligned}
$$

Also, when $i \geq 3$, we have by Lemma 3.2

$$
1-8\left|h\left(v, e_{i}\right)\right|^{2}-\frac{4}{|h(v, v)|^{2}}\left|A_{h(v, v)} e_{i}\right|^{2} \leq 0 .
$$

From the above equations, we obtain

$$
\begin{aligned}
n & \geq 4|h(v, v)|^{2}+\sum_{j=3}^{2 n}\left(4\left|h\left(v, e_{i}\right)\right|^{2}+\frac{2}{|h(v, v)|^{2}}\left|A_{h(v, v)} e_{i}\right|^{2}\right) \\
& \geq 4|h(v, v)|^{2}+\frac{2 n-2}{2}
\end{aligned}
$$

Thus $f(u) \leq \frac{1}{4}$ for any $u \in U M$. The theorem follows from Theorem 2.2 in [4]. This completes the proof of the theorem.

Acknowledgement. The author would like to thank the referee for his helpful suggestions.

REFERENCES

1. A. L. Besse, Manifolds all of whose geodesics are closed (Springer-Verlag, Berlin, 1978).
2. R. Brown and A. Gray, Riemannian manifolds with holonomy group Spin (9), in Diff. Geom. in honor of K. Yano, 42-59 (Tokyo, 1972).
3. P. Coulton and H. Gauchman, Submanifolds of quaternion projective space with bounded second fundamental form, Kodai Math. J. 12 (1989), 296-307.
4. P. Coulton and J. Glazebrook, Submanifolds of Cayley projective plane with bounded second fundamental form, Geom. Dedi. 33 (1990), 265-272.
5. A. Ros, Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc. 93 (1985), 329-331.
6. A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math. 121 (1985), 377-382.
7. K. Tsukada, Parallel submanifolds in a quaternion projective space, Osaka J. Math. 22 (1985), 187-241.

Department of Mathematics
Nankai University
Tianjin 300071
P. R. China

Present address:
Department of Applied Mathematics
Dalian University of Technology
Dalian 116024
P. R. China

