RECTIFIABLY AMBIGUOUS POINTS OF PLANAR SETS

FREDERICK BAGEMIHL and PAUL D. HUMKE

(Received 10 August 1973)
Communicated by G. Szekeres

Denote by P the Euclidean plane with a rectangular Cartesian coordinate system where the x-axis is horizontal and the y-axis is vertical. An arc in P shall mean a simple continuous curve $\Lambda:\{t: 0 \leqq t<1\} \rightarrow P$ having the properties that $\operatorname{limit}_{t \rightarrow 1} \Lambda(t)$ exists and $\operatorname{limit}_{t \rightarrow 1} \Lambda(t) \neq \Lambda\left(t_{0}\right)$ for $0 \leqq t_{0}<1$. An arc at a point ζ in P shall be an arc Λ where $\lim _{t \rightarrow 1} \Lambda(t)=\zeta$. If S is an arbitrary subset of the plane, ζ is termed an ambiguous point relative to S provided there are arcs Λ and Γ at ζ with $\Lambda \subseteq S$ and $\Gamma \subseteq P-S$; such arcs are referred to as arcs of ambiguity at ζ. If A is a set of arcs we say a point ζ in P is accessible via A provided there is an arc at ζ which is an element of A. If B is also a collection of arcs, then A and B are said to be pointwise disjoint if whenever $\alpha \in A$ and $\beta \in B$, $\alpha \cap \beta=\varnothing$. The collections A and B are said to be terminally arcwise disjoint if whenever $\alpha \in A$ and $\beta \in B$ and both α and β are arcs at a point ζ in P, then $\alpha \cap \beta$ contains no arc at ζ. If S is a planar set, we let $\mathscr{A}(S)$ denote the set of all arcs contained in S. Note that if $S \cap T=\varnothing$ then $\mathscr{A}(S)$ and $\mathscr{A}(T)$ are pointwise disjoint collections of arcs.

In this paper we deal with accessibility of points via sets of rectifiable arcs and sets of totally nonrectifiable arcs, and related questions in ambiguous point theory. (An arc α is totally nonrectifiable if $\alpha /\left[t_{1}, t_{2}\right]$ is nonrectifiable for $0 \leqq t_{1}<t_{2} \leqq 1$.) Let \mathscr{R} denote the set of all planar rectifiable arcs, and let \mathscr{N} denote the set of all planar totally nonrectifiable arcs. Bagemihl (1966) showed that there is a set S_{1} such that every point of the plane is an ambiguous point relative to S_{1} and the arcs of ambiguity may be chosen to be rectifiable. In the first part of this paper we strengthen this result by showing that both

1. $\mathscr{A}\left(S_{1}\right) \subset \mathscr{R}$,
2. $\mathscr{A}\left(P-S_{1}\right) \subset \mathscr{R}$.

Secondly, we use S_{1} to define a set $S_{2} \subseteq P$ such that every point of the plane is an ambiguous point relative to S_{2} and both

1. $\mathscr{A}\left(S_{2}\right) \subset \mathscr{N}$,
2. $\mathscr{A}\left(P-S_{2}\right) \subset \mathscr{N}$.

An example of a set S_{3} is then presented such that every point of the plane is an ambiguous point relative to S_{3} and yet

1. $\mathscr{A}\left(S_{3}\right) \subset \mathscr{R}$,
2. $\mathscr{A}\left(P-S_{3}\right) \subset \mathscr{N}$.

The final portion of the paper is devoted to proving a general theorem which shows that these three examples are, in a sense, extreme cases.

1. The Set S_{1}

The first part of this paper is devoted to the investigation of the set S_{1} which was presented by Bagemihl (1966). We state this result as Theorem B below, and describe the construction of S_{1} for completeness. (We also take this occasion to point out that Figures 5 and 6 in Bagemihl (1966) should be rotated through 90°.)

Theorem B. There exists a set $S_{1} \subset P$ such that every point of P is a rectifiably ambiguous point relative to S_{1}.

We shall introduce only the construction of S_{1}; for verification that S_{1} has the stated properties, see Bagemihl (1966).

We construct S_{1} and its complement $P-S_{1}=T_{1}$ in the following manner. We first construct what we call a maze M. This consists of a certain number of horizontal and vertical rectilinear segments, some of which we put into S_{1}, the rest into T_{1}. The remaining points of P are then put into S_{1} or T_{1} in any way whatsoever, whereupon S_{1} becomes completely defined. The maze itself is constructed in enumerably many stages: we first construct a submaze M_{1}, then add certain segments to M_{1} to obtain a submaze M_{2}, and so on; and finally we set $M=\bigcup_{n=1}^{\infty} M_{n}$. Each submaze M_{n} in turn is constructed in four steps in a certain order. The procedure for constructing M_{1} is different from that for the remaining submazes: we describe M_{1} first, then give the procedure for constructing M_{2} from M_{1}, this procedure is then repeated with M_{2} to obtain M_{3}, and so on. Thus, from the second stage on, the procedure is essentially the same.

To construct M_{1} :
$\left(a_{1}\right)$ put the vertical lines $x=2 n(n=0, \pm 1, \pm 2, \cdots)$ into S_{1},
(b_{1}) put the vertical lines $x=2 n+1(n=0, \pm 1, \pm 2, \cdots)$ into T_{1},
$\left(c_{1}\right)$ put those points of the horizontal lines $y=2 n(n=0, \pm 1, \pm 2, \cdots)$ that have not already been accounted for into S_{1},
$\left(\mathrm{d}_{1}\right)$ put those points of the horizontal lines $y=2 n+1(n=0, \pm 1, \pm 2, \cdots)$ that have not already been accounted for into T_{1}.

The resulting configuration of enumerably many vertical and horizontal straight lines constitutes the submaze M_{1}. Each point on these lines has been assigned unambiguously to one of the sets S_{1}, T_{1}. A portion of M_{1} is illustrated in Figure 1. Here the heavy lines belong to S_{1}, the light lines to T_{1}. The point of intersection of a heavy line and a light line is marked with a black or a white
dot according as this point belongs to S_{1}, or to T_{1}. The point of intersection of a heavy horizontal line and a heavy vertical line will be called an S_{1}-node, of a light horizontal line and a light vertical line a T_{1}-node. Observe that M_{1} divides the plane into enumerably many squares of side length one, which will be called the squares of the first stage. For each of one of these squares, one vertex is an S_{1}-node and the opposite vertex is a T_{1}-node. This is the procedure for constructing M_{2} :

Figure 1.
$\left(\mathrm{a}_{2}\right)$ from every S_{1}-node of M_{1}, proceed in either direction horizontally a distance of $2 / 3$, and at each of the two points reached erect an open vertical segment of length 2 with said point as midpoint; put these vertical segments into S_{1}, making the aforementioned two points new S_{1}-nodes;
$\left(\mathrm{b}_{2}\right)$ from every T_{1}-node of M_{1} proceed as in (a_{2}), except put the resulting vertical segments into T_{1}, thus creating two new T_{1}-nodes;
$\left(c_{2}\right)$ from every $S_{1}-$ node of M_{1} as well as those newly created by $\left(a_{2}\right)$, proceed in either direction vertically a distance of $2 / 3$, and at each of the two points
reached erect an open horizontal segment of length $2 / 3$ with the said point as midpoint; put these horizontal segments into S_{1}, making the aforementioned two points new S_{1}-nodes;
$\left(\mathrm{d}_{2}\right)$ from every T_{1}-node of M_{1} as well as those newly created by $\left(\mathrm{b}_{2}\right)$, proceed as in $\left(c_{2}\right)$, except put the resulting horizontal segments into T_{1}, thus creating two new T_{1}-nodes.

Figure 2.
The resulting configuration of M_{1} and the newly added vertical and horizontal segments constitutes the submaze M_{2}. Each point on the enumerably many vertical and horizontal straight lines contained in M_{2} has been assigned unambiguously to one of the two sets S_{1}, T_{1}. The portion of M_{2} that arises from the portion of M_{1} illustrated in Figure 1 is shown in Figure 2. Observe that M_{2} divides the plane into enumerably many squares of side length $1 / 3$, called the squares of the second stage. And again, for each one of these squares, one vertex is an S_{1}-node and the opposite vertex is a T_{1}-node.

Now to construct M_{3}, proceed as in the construction of M_{2}, except that
in $\left(a_{3}\right)$ and $\left(b_{3}\right)$ the distance is $2 / 9$ instead of $2 / 3$ and the length is $2 / 3$ instead of 2 ; and in $\left(c_{3}\right)$ and $\left(d_{3}\right)$ the distance is $2 / 9$ instead of $2 / 3$, and the length is also $2 / 9$ instead of $2 / 3$.

Proceeding successively in this fashion, we construct the submaze M_{n} for every natural number n. It divides the plane into enumerably many squares of side length $1 / 3^{n-1}$.

Finally, define M and S_{1} as was indicated at the beginning.
As was noticed in Bagemihl (1966) at the conclusion of the proof of this Theorem B, if $\zeta \in P$ there are arcs at ζ of arbitrarily large diameter which are contained in S_{1} and, likewise, there are arcs of arbitrarily large diameter which are contained in T_{1}. From this and the fact that $S_{1} \cap T_{1}=\varnothing$ we conclude that neither S_{1} nor T_{1} contains a loop. Let $\Lambda \in \mathscr{A}\left(S_{1}\right)$. Through a series of lemmas we shall show that Λ is a rectifiable arc.

Lemma 1. Suppose $\zeta \in S_{1} \cup(P-M)$ and ζ is an interior point of a square Q_{n} of the nth stage. Suppose further that α and β are arcs at ζ such that

1. $\alpha(0)$ and $\beta(0)$ are in $P-\operatorname{Int}\left(Q_{n}\right)$, [Int \equiv interior $]$
2. $\alpha(t)$ and $\beta(t)$ are in S_{1} for $0 \leqq t<1$.

Then $\alpha\left(t_{1}\right)=\beta\left(t_{2}\right)$ where

$$
\begin{aligned}
& t_{1}=\sup \left\{t: \alpha(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\}, \quad[\operatorname{Bd} \equiv \text { boundary }] \\
& t_{2}=\sup \left\{t: \beta(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\}
\end{aligned}
$$

Proof. The case when $n=1$ is typical, and we consider this case. In particular we let Q_{1} be the square whose vertices are $A(0,0), B(0,1), C(1,1)$, and $D(1,0)$ where A is the S_{1}-node of Q_{1} and C is the T_{1}-node of Q_{1}. Suppose that $\alpha\left(t_{1}\right) \neq \beta\left(t_{2}\right)$. Then as Q_{1} is a square of the first stage and both $\alpha\left(t_{1}\right)$ and $\beta\left(t_{2}\right)$ lie on the boundary of Q_{1}, there is an arc Γ contained in $\operatorname{Bd}\left(Q_{1}\right) \cap S_{1}$ such that $\Gamma(0)=\alpha\left(t_{1}\right)$ and $\Gamma(1)=\beta\left(t_{2}\right)$. Hence, if there existed t_{3} and t_{4} such that

1. $t_{1}<t_{3}<1$ and $t_{2}<t_{4}<1$,
2. $\alpha\left(t_{3}\right)=\beta\left(t_{4}\right)$
then the arcs α, β, Γ would determine a loop, and as each of these arcs is in S_{1} a contradiction would arise. The remainder of the proof is devoted to verifying the existence of t_{3} and t_{4}.

If ζ_{1} and ζ_{2} are in P, for notational convenience we denote the closed line segment between ζ_{1} and ζ_{2} by $\left[\zeta_{1}, \zeta_{2}\right]$, and the open line segment between ζ_{1} and ζ_{2} by $\left(\zeta_{1}, \zeta_{2}\right)$. At stage two of the construction the following points of Q_{1} are assigned to either S_{1} or T_{1}. Refer to Figure 3.
$\left(a_{2}\right)$ The open segment $((2 / 3,0),(2 / 3,1))$ is assigned to S_{1}.
$\left(\mathrm{b}_{2}\right)$ The open segment $((1 / 3,0),(1 / 3,1))$ is assigned to T_{1}.
$\left(c_{2}\right)$ The open horizontal segments $((0,2 / 3),(1 / 3,2 / 3))$ and $((1 / 3,2 / 3),(1,2 / 3))$ are placed into S_{1}.
$\left(d_{2}\right)$ The open horizontal segments $((0,1 / 3),(2 / 3,1 / 3))$ and $((2 / 3,1 / 3),(1,1 / 3))$ are placed into T_{1}.

Let R_{1}^{*} be that subsquare of Q_{1} whose vertices are $(1 / 3,1 / 3),(1 / 3,1),(1,1 / 3)$, and $(1,1)$. The boundary of R_{1}^{*} is contained in T_{1} except for the point $z(2 / 3,1 / 3)$ which resides in S_{1}. Hence, if ζ is in the interior of R_{1}^{*}, then both α and β contain z, but this would imply the existence of t_{3} and t_{4} such that $t_{1}<t_{3}<1, t_{2}<t_{4}<1$, and $\alpha\left(t_{3}\right)=\beta\left(t_{4}\right)=z$, and that is impossible. Thus, if $\zeta \in R_{1}^{*}$ the lemma is valid.

Figure 3.
Secondly, we show that if ζ is an interior point of the square region R_{2}^{*}, having vertices $(1 / 9,1 / 9),(1,1 / 9),(1 / 9,1)$, and $(1,1)$ the lemma is also valid. An inductive argument then provides that if ζ is in the interior of the square region R_{n}^{*}, whose vertices are $\left(1 / 3^{n}, 1 / 3^{n}\right),\left(1,1 / 3^{n}\right),\left(1 / 3^{n}, 1\right)$, and $(1,1)$ then the lemma is true. But, as ζ is an interior point of $Q_{1}, \zeta \in \bigcup_{n=1}^{\infty} \operatorname{Int} R_{n}^{*}$ and hence, the result follows. We exhibit the third stage of the construction within $Q_{1}-R_{1}^{*}$ and consider the seven closed square subregions of R_{2}^{*} which border R_{1}^{*}. See Figure 3 where R_{2}^{1} is shaded.

1. R_{2}^{1} having vertices $(7 / 9,1 / 9),(7 / 9,1 / 3),(1,1 / 3)$, and $(1,1 / 9)$.
2. R_{2}^{2} having vertices $(7 / 9,1 / 9),(7 / 9,1 / 3),(5 / 9,1 / 9)$, and $(5 / 9,1 / 3)$.
3. R_{2}^{3} with vertices $(5 / 9,1 / 9),(5 / 9,1 / 3),(1 / 3,1 / 9)$, and $(1 / 3,1 / 3)$.
4. R_{2}^{4} with vertices $(1 / 3,1 / 9),(1 / 3,1 / 3),(1 / 9,1 / 9)$, and $(1 / 9,1 / 3)$.
5. R_{2}^{5} with vertices $(1 / 9,1 / 3),(1 / 3,1 / 3),(1 / 9,5 / 9)$, and $(1 / 3,5 / 9)$.
6. R_{2}^{6} having vertices $(1 / 9,5 / 9),(1 / 3,5 / 9),(1 / 9,7 / 9)$, and $(1 / 3,7 / 9)$.
7. R_{2}^{7} having vertices $(1 / 9,7 / 9),(1 / 3,7 / 9),(1 / 9,1)$, and $(1 / 3,1)$.

Squares R_{2}^{1}, R_{2}^{3}, and R_{2}^{4} have exactly one point of S_{1} on their respective boundaries, and hence if both α and β intersect the interior of one of these three squares then both α and β must contain that point. That is, there is but one S_{1}-entrance to each one of these squares. It follows that if ζ is interior to one of R_{2}, R_{2}^{3}, or R_{2}^{4} the lemma obtains. The remaining square which lies below R_{1}^{*} is R_{2}^{2}. Now, $R_{2}^{2} \cup R_{1}^{*}$ has but one point of its boundary in S_{1}, and again, if both α and β intersect the interior of $R_{2}^{2} \cup R_{1}^{*}$ then both α and β contain that point, and the lemma is valid.

The remaining squares are those to the left of R_{1}^{*}, and their union $R_{2}^{5} \cup R_{2}^{6} \cup R_{2}^{7}$ once more has exactly one point of its boundary in S_{1}. Hence, as before, if ζ is an interior point of $R_{2}^{5} \cup R_{2}^{6} \cup R_{2}^{7}$ the lemma is true. But,
$\operatorname{Int} R_{2}^{*}-\left[\left(\operatorname{Int} R_{2}^{1}\right) \cup\left(\operatorname{Int} R_{2}^{3}\right) \cup \operatorname{Int}\left(R_{2}^{4}\right) \cup \operatorname{Int}\left(R_{2}^{2} \cup R_{1}^{*}\right) \cup \operatorname{Int}\left(R_{2}^{5} \cup R_{2}^{6} \cup R_{2}^{7}\right)\right]$

$$
\subset T_{1} \cap M .
$$

Consequently, if $\zeta \in \operatorname{Int} R_{2}^{*}$ then ζ is an interior point of one of the sets $R_{2}^{1}, R_{2}^{3}, R_{2}^{4}, R_{2}^{2} \cup R_{1}^{*}$, or $R_{2}^{5} \cup R_{2}^{6} \cup R_{2}^{7}$, as ζ is in $S_{1} \cup(P-M)$, and thus the lemma obtains. An inductive argument now completes the proof.

Lemma 2. If α is an arc such that $\alpha(t) \in S_{1}$ for $0 \leqq t<1$, then $\alpha(t) \in S_{1} \cap M$ for $0<t<1$.

Proof. Suppose, to the contrary, that there exists a number $s^{*}, 0<s^{*}<1$, such that $\alpha\left(s^{*}\right) \notin M$. Consider the following two arcs at $\alpha\left(s^{*}\right)$:

1. $\alpha_{1}(t)=\alpha\left(s^{*} t\right)$ for $0 \leqq t<1$,
2. $\alpha_{2}(t)=\alpha\left(\frac{s^{*}-1}{1} t+\frac{s^{*}+1}{2}\right)$ for $0 \leqq t<1$.

As $\alpha\left(s^{*}\right) \notin M$ there exists a nested sequence of squares $\left\{Q_{n}: n=1,2, \cdots\right\}$, where Q_{n} is a square of the nth stage, such that $\bigcap_{n=1}^{\infty} Q_{n}=\alpha\left(s^{*}\right)$, and $\alpha\left(s^{*}\right)$ is an interior point of each $Q_{n} ; n=1,2, \cdots$. Consequently, there is a natural number $N>0$ such that both $\alpha_{1}(0)$ and $\alpha_{2}(0)$ are exterior to Q_{N}. As α_{1} and α_{2} are arcs at $\alpha\left(s^{*}\right)$ we may apply Lemma 1 to obtain numbers t_{1} and t_{2} such that
$\alpha_{1}\left(t_{1}\right)=\alpha_{2}\left(t_{2}\right)$. It follows that $\alpha\left(s^{*} t_{1}\right)=\alpha\left(\frac{s^{*}-1}{2} t_{2}+\frac{s^{*}+1}{2}\right)$ where

$$
s^{*} t_{1}<s^{*}<\frac{s^{*}-1}{2} t_{2}+\frac{s^{*}+1}{2}<1 .
$$

This, however, is impossible as α is an arc. One can easily verify that there are arcs in S_{1} such that the initial points of those arcs do not lie on M (if $S_{1} \nsubseteq M$). Hence, in this sense, Lemma 2 is a best possible result.

We will now need to refer to points of S_{1} which were admitted to S_{1} at a particular stage of the construction. For this reason we define
$S_{1}(n)=\left\{\zeta \in S_{1}: \zeta\right.$ was placed into S_{1} during the nth stage of the construction and not before $\}$.

Lemma 3. Let α be an arc in S_{1} with $\alpha(0) \in S_{1}(N)$ and $\alpha(t) \in \bigcup_{n=N}^{\infty} S_{1}(n)$ for $0<t<1$. Let $0 \leqq t_{1}<t_{2}<1$ be such that $\alpha\left(t_{1}\right) \in S_{1}(m)$ and $\alpha\left(t_{2}\right) \in S_{1}(k)$. Then $m \leqq k$.

Proof. Suppose that $m>k$ and denote by Q_{k} a particular square of the k th stage containing $\alpha\left(t_{1}\right)$. We note that as $m>k$ and $k \geqq N, m>N$ and consequently $t_{1}>0$. The boundary of Q_{k} is part of the maze, M_{k}, of the k th stage of the construction and as such does not contain $\alpha\left(t_{1}\right) \in S_{1}(m)$. It follows then that $\alpha\left(t_{1}\right)$ is an interior point of Q_{k}. Define

1. $\gamma(t)=\alpha\left(t_{1} t\right)$ for $0 \leqq t<1$,
2. $\beta(t)=\alpha\left(\left[t_{1}-t_{2}\right] t+t_{2}\right)$ for $0 \leqq t<1$.

Now, both γ and β are arcs at $\alpha\left(t_{1}\right)$, and $\alpha\left(t_{1}\right)$ is an interior point of Q_{k}. Further, $\alpha(0)=\gamma(0)$ and $\alpha\left(t_{2}\right)=\beta(0)$, and as $\alpha(0) \in S_{1}(N) \subset M_{k}$ and $\alpha\left(t_{2}\right) \in S_{1}(k) \subset M_{k}$, each of $\gamma(0)$ and $\beta(0)$ is a noninterior point of Q_{k}. We may therefore apply Lemma 1 to obtain numbers s_{1} and s_{2} such that $\gamma\left(s_{1}\right)=\beta\left(s_{2}\right)$. It follows that

$$
\alpha\left(t_{1} s_{1}\right)=\alpha\left(\left[t_{1}-t_{2}\right] s_{2}+t_{2}\right)
$$

where

$$
0 \leqq t_{1} s_{1}<t_{1}<\left[t_{1}-t_{2}\right] s_{2}+t_{2} \leqq t_{2}
$$

This, however, contradicts the fact that α is an arc.
A consequence of this lemma is that if α is an arc satisfying the hypothesis of Lemma 3 and if t_{1} and t_{2} are numbers such that $0 \leqq t_{1}<t_{2}<1$, with both $\alpha\left(t_{1}\right)$ and $\alpha\left(t_{2}\right)$ in $S_{1}(m)$ for some $m \geqq N$, then $\alpha(t) \in S_{1}(m)$ for $t_{1} \leqq t \leqq t_{2}$.

Lemma 4. Let α be an arc in S_{1} such that $\alpha(0) \in S_{1}(N)$ for some $N>0$ and $\alpha(t) \in \bigcup_{n=N}^{\infty} S_{1}(n)$ for $0<t<1$. Then α is rectifiable.

Proof. Define $I_{n}=\left\{t \in[0,1): \alpha(t) \in S_{1}(n)\right\}$. As N is the least number such that $\alpha \cup S_{1}(N) \neq \varnothing, I_{k}=\varnothing$ for $k<N$. Further, as $\alpha(0) \in S_{1}(N)$ and $\alpha(t) \in \bigcup_{n=N}^{\infty}$
$S_{1}(n)$, the consequence we mentioned of Lemma 3 above guarantees that I_{n} is either an interval, a point, or empty, for $n \geqq N$. Also, Lemma 3 insures that if $m<k$ then I_{m} lies to the left of I_{k} (i.e., if $x \in I_{m}$ and $y \in I_{k}$ then $x<y$). Hence in order to prove that α is rectifiable, it is sufficient to prove that α / I_{n} is rectifiable with length say L_{n} for $n=1,2, \cdots$, and in addition, that $\sum_{n=1}^{\infty} L_{n}<\infty$.

Evidently α / I_{1} is of finite length. It is possible, however, to define arcs α in such a manner that α / I_{1} is as long as any predetermined length. This is a unique property, though, not had by α / I_{n} for $n>1$; in fact, in general, α / I_{n} has length less than $2 / 3^{n-1}$. To show that this is the case, we first notice that if Q_{n} is a square of the nth stage, then a side of Q_{n} has length $1 / 3^{n-1}$ for $n=1,2, \cdots$. Now, let $t \in I_{n}$ for $n>1$ (if $I_{n}=\varnothing$ then the length of $\alpha / I_{n}=0$) and let Q_{n-1} be a square of the $n-1$ st stage which contains $\alpha(t)$. The boundary of Q_{n-1} lies in $T_{1} \cup\left(\bigcup_{k=1}^{n-1} S_{1}(k)\right)$ and consequently does not meet $S_{1}(n)$. As I_{n} is an interval and α / I_{n} is connected, it follows that α / I_{n} does not meet the exterior of Q_{n-1}. But $\alpha(t) \in Q_{n-1}$, and hence Q_{n-1} contains α / I_{n}. The maximum length of an arc in $S_{1}(n) \cap Q_{n-1}$ is $1 / 3^{n-2}$.

Consequently, α is a rectifiable arc and the length of α does not exceed $\left|\alpha / I_{1}\right|+\sum_{t=2}^{\infty} 1 / 3^{i-2}=\left|\alpha / I_{1}\right|+3 / 2$.

The following lemma completes our work concerning S_{1}.
Lemma 5. If $\Lambda \in \mathscr{A}\left(S_{1}\right)$, then Λ is rectifiable.
Proof. As $\Lambda(t) \in S_{1}$ for $0 \leqq t<1$, we may apply Lemma 2 to obtain that $\Lambda(t) \in S_{1} \cup M$ for $0<t<1$. It follows that $\Lambda(t) \in \cup_{n=1}^{\infty} S_{1}(n)$ for $0<t<1$. Denote by N the smallest integer n such $\Lambda \cap S_{1}(n) \neq \varnothing$, and let t^{*} be such that $\Lambda\left(t^{*}\right) \in S_{1}(N)$. Define

1. $\Lambda_{1}(t)=\Lambda\left(\left[1-t^{*}\right] t+t^{*}\right)$ for $0 \leqq t<1$,
2. $\Lambda_{2}(t)=\Lambda\left(-t^{*} t+t^{*}\right)$ for $0 \leqq t<1$.

It is evident that a necessary and sufficient condition for Λ to be rectifiable is that both Λ_{1} and Λ_{2} be rectifiable. But each of Λ_{1} and Λ_{2} satisfies the hypothesis of Lemma 4, and as such is rectifiable. This completes the proof of Lemma 5.

As S_{1} and T_{1} were constructed in similar fashion, we can verify the analogues of Lemmas 1 through 4 for T_{1}, and hence can establish the following result.

Lemma 5*. If $\Gamma \in \mathscr{A}\left(T_{1}\right)$, then Γ is rectifiable.
Thus, we have shown that not only is every point of the plane a rectifiably ambiguous point relative to S_{1}, but the only arcs contained wholly in either S_{1} or in T_{1} are rectifiable arcs. The results of this section are collected in Theorem 6.

Theorem 6. There exists a set $S_{1} \subset P$ such that every point of P is an ambiguous point relative to S_{1}, and both $\mathscr{A}\left(S_{1}\right) \subset \mathscr{R}$ and $\mathscr{A}\left(P-S_{1}\right) \subset \mathscr{R}$.

2. The Sets $\boldsymbol{S}_{\mathbf{2}}$ and $\boldsymbol{S}_{\mathbf{3}}$

In this section we construct two other sets in P having the property that every point of P is an ambiguous point relative to that set. The first set we construct, S_{2}, has the additional property that both $\mathscr{A}\left(S_{2}\right) \subset \mathscr{N}$ and $\mathscr{A}\left(P-S_{2}\right) \subset \mathscr{N}$. The second construction provides a set S_{3} having the property that $\mathscr{A}\left(S_{3}\right) \subset \mathscr{R}$ while $\mathscr{A}\left(P-S_{3}\right) \subset \mathscr{N}$.

The set S_{2} is constructed as the image of S_{1} under a suitable homeomorphism from P onto itself. Let Ψ be a continuous function of a real variable which is of bounded variation in no subinterval of real numbers. For the existence of such a function, sa function, see Carathéodory (1948; page 190). Then the graph of Ψ over any interval is nonrectifiable. Further, if f is a function of bounded variation on an interval $[a, b]$ then $\Psi+f$ is not of bounded variation on $[a, b]$ and its graph $\{(x, \Psi(x)+f(x)): x \in[a, b]\}$, is also nonrectifiable.

We obtain S_{2} from S_{1} in two steps.

1. First rotate the set S_{1} of Bagemihl's construction 45° in the clockwise direction about the origin to obtain the set S_{2}^{\prime}.
2. Now, let Ψ be a function of a real variable which is continuous but of bounded variation in no interval of real numbers. Define $\Phi(x, y)=(x, y+\Psi(x))$. Then Φ is a homeomorphism from the plane onto itself, and we let S_{2} be the image of S_{2}^{\prime} under the mapping Φ. Denote by Γ the rotation about the origin through 45° followed by the mapping Φ. Then Γ is a homeomorphism from the plane onto itself such that

$$
S_{2}=\left\{\Gamma((x, y)):(x, y) \in S_{1}\right\}
$$

and we let

$$
T_{2}=\left\{\Gamma((x, y)):(x, y) \in T_{1}\right\}
$$

If $\zeta \in P$, then $\zeta^{\prime}=\Gamma^{-1}(\zeta)$ is an ambiguous point relative to S_{1}. Hence, there are arcs $\Lambda_{1}\left(\zeta^{\prime}\right)$ and $\Lambda_{2}\left(\zeta^{\prime}\right)$ at ζ^{\prime} where $\Lambda_{1}\left(\zeta^{\prime}\right) \subset S_{1}$ and $\Lambda_{2}\left(\zeta^{\prime}\right) \subset T_{1}$. As Γ is a homeomorphism, $\Gamma \circ{ }^{\prime} \Lambda_{1}\left(\zeta^{\prime}\right)$ and $\Gamma \circ \Lambda_{2}\left(\zeta^{\prime}\right)$ are arcs at ζ such that $\Gamma \circ \Lambda_{1}\left(\zeta^{\prime}\right) \subset S_{2}$ and $\Gamma \circ \Lambda_{2}\left(\zeta^{\prime}\right) \subset T_{2}$, and consequently ζ is an ambiguous point relative to S_{2}.

In order to verify that $\mathscr{A}\left(S_{2}\right) \subset \mathscr{N}$ it is sufficient to show that if Λ is an arc contained in S_{2} then Λ is nonrectifiable. However, as Λ is contained in S_{2} it follows that $\Gamma^{-1} \circ \Lambda$ is an arc contained in S_{1}, and by Lemma 2 we obtain that $\Gamma^{-1} \circ \Lambda(t) \in M$ except possibly when $t=0$.

Let N denote the least integer such that $\left(\Gamma^{-1} \circ \Lambda\right) \cap S_{1}(N) \neq \varnothing$, and let t_{1} be such that $\Gamma^{-1} \circ \Lambda\left(t_{1}\right) \in S_{1}(N)$. Define

$$
\lambda(t)=\Gamma^{-1} \circ \Lambda\left(\left[1-t_{1}\right] t+t_{1}\right) \text { for } 0 \leqq t<1
$$

and

$$
I_{n}=\left\{t \in[0,1) ; \lambda(t) \in S_{1}(n)\right\} \text { for } n=N, N+1, \cdots
$$

In the course of the proof of Lemma 4 we showed that I_{n} was an interval (possibly degenerate) for $n=N, N+1, \cdots$ and Lemma 2 insures that $\bigcup_{n=N}^{\infty} I_{n}=[0,1)$. It follows that there is an index $m \geqq N$ such that I_{m} is a nondegenerate interval, and as $\lambda / I_{m} \subset S_{1}(m), \lambda / I_{m}$ contains either a vertical or a horizontal line segment. As λ is a subarc of $\Gamma^{-1} \circ \Lambda, \Gamma^{-1} \circ \Lambda$ contains that same line segment, and consequently Λ is a nonrectifiable arc. Hence $\mathscr{A}\left(S_{2}\right) \subset \mathscr{N}$.

In a wholly analogous manner one can easily verify that $\mathscr{A}\left(T_{2}\right) \subset \mathscr{N}$. Our results concerning S_{2} are contained in Theorem 7.

Theorem 7. There exists a set $S_{2} \subset P$ such that every point of P is an ambiguous point relative to S_{2}, and both $\mathscr{A}\left(S_{2}\right) \subset \mathscr{N}$ and $\mathscr{A}\left(P-S_{2}\right) \subset \mathscr{N}$.

The second set we construct in this section is a set S_{3} having the following properties:

1. every point of P is ambiguous relative to S_{3},
2. $\mathscr{A}\left(S_{3}\right) \subset \mathscr{R}$,
3. $\mathscr{A}\left(P-S_{3}\right) \subset \mathscr{N}$.

In order to construct S_{3} we resort to a construction technique similar to that which Bagemihl used to define the set S_{1}. One preliminary construction is required.

Insertion of a Graph into an Are

Let L_{1} be a line in the plane, and let α be an arc in the plane such that $\alpha \cap L_{1}=\varnothing$ and each line which is perpendicular to L_{1} meets α in at most one point. Denote by L_{2} a particular line which is perpendicular to L_{1} and assume that $L_{2} \cap \alpha \neq \varnothing$. Let $A=L_{1} \cap L_{2}$ and $B=L_{2} \cap \alpha$. Suppose further that $\varepsilon>0$ is given, and that $g(x)$ is a continuous function defined for $0 \leqq x \leqq 1$ such that $g(0)=g(1)=0$ and $-1<g(x)<1$ for $0 \leqq x \leqq 1$. We shall define what it means to ε-insert g into α along $[A, B]$, where $[A, B]$ denotes the closed line segment extending from A to B.

The general case is analogous to that where L_{1} is the x-axis, $A=(1 / 2,0)$, α is the graph of a continuous function $f(x)$ defined for $0 \leqq x \leqq 1$, and $f(1 / 2)>0$. In this instance, $B=(1 / 2, f(1 / 2))$. Further assume that $0<\varepsilon<1 / 2$, and define the fluctuation of a function $h(x)$ defined on a closed interval $[a, b]$ as

$$
\max \{h(x): x \in[a, b]\}-\frac{8}{-} \min \{h(x): x \in[a, b]\} .
$$

We define a "pyramid" consisting of an infinite sequence of closed rectangular regions, each of which is symmetric about the line segment $[A, B]$, has edges which are parallel to the coordinate axes, and lies between the graph of f and the x-axis, in the following manner.
i. Let $1 / 10>\delta_{1}>0$ be such that both $\delta_{1}<\varepsilon$ and the fluctuation of $f(x)$ on the closed interval $\left[1 / 2-\delta_{1}, 1 / 2+\delta_{1}\right]$ is less than $\left[1 / 10^{2}\right] f(1 / 2)$. Denote by R_{1} the closed rectangular region having vertices
$\left(1 / 2-\delta_{1}, 0\right),\left(1 / 2+\delta_{1}, 0\right),\left(1 / 2-\delta_{1},[9 / 10] f(1 / 2)\right)$, and $\left(1 / 2+\delta_{1},[9 / 10] f(1 / 2)\right)$.
The number δ_{1} will be referred to as the width of the insertion and the choice of δ_{1} precludes the possibility of the graph of f intersecting R_{1}.
ii. In general, let $1 / 10^{n}>\delta_{n}>0$ be such that $\delta_{n}<\varepsilon$ and the fluctuation of $f(x)$ on the closed interval $\left[1 / 2-\delta_{n}, 1 / 2+\delta_{n}\right]$ is less than $\left[1 / 10^{n+1}\right] f(1 / 2)$. Denote by R_{n} the closed rectangular region having vertices

$$
\begin{aligned}
& \left(1 / 2-\delta_{n},\left(\left[10^{n-1}-1\right] /\left[10^{n-1}\right]\right) f(1 / 2)\right),\left(1 / 2+\delta_{n},\left(\left[10^{n-1}-1\right] /\left[10^{n-1}\right]\right) f(1 / 2)\right), \\
& \quad\left(1 / 2-\delta_{n},\left(\left[10^{n}-1\right] / 10^{n}\right) f(1 / 2)\right), \text { and }\left(1 / 2-\delta_{n},\left(\left[10^{n}-1\right] / 10^{n}\right) f(1 / 2)\right) .
\end{aligned}
$$

We now place a copy of the graph of g into each of these rectangular regions, using the segment $[A, B]$ as an axis. The restriction that $g(0)=g(1)=0$ insures that the inserted copies link in such a fashion that their union is an arc at B. Specifically, we define the graph of g placed into $R_{n}(n=1,2, \cdots)$ to be

$$
\begin{aligned}
& G_{n}=\left\{\left(1 / 2+\delta_{n} g\left[\left(10^{n} / 9\right)(y / f(1 / 2))-10^{n} / 9+10 / 9\right], y\right):\right. \\
& \left.\left(\left[10^{n-1}-1\right] / 10^{n-1}\right) f(1 / 2) \leqq y \leqq\left(\left[10^{n}-1\right] / 10^{n}\right) f(1 / 2)\right\}
\end{aligned}
$$

The ε-insertion of g into f along $[A, B]$ is then $\bigcup_{n=1}^{\infty} G_{n}$. The insertion itself is the graph of a continuous function $g^{*}(y)=x$ defined for $0<y<f(1 / 2)$. Suppose $0<y_{1}<f(1 / 2)$, and n is such that $\left(\left[10^{n-1}-1\right] / 10^{n-1}\right) f(1 / 2) \leqq y_{1}$. Then the construction provides that the fluctuation of g^{*} on $\left[y_{1}, f(1 / 2)\right]$ is at most $2 \delta_{n}$. This completes our preliminary construction, and we are now able to proceed to the first stage of the construction of the set S_{3}.

We construct the set S_{3}, and its complementary set T_{3}, in a manner quite analogous to the way Bagemihl constructed the set S_{1}. Again a maze is constructed in an inductive fashion, and again this maze, M, will carry every arc of ambiguity. The difference is that $T_{3} \cap M$ consists not of vertical and horizontal line segments as does $T_{1} \cap M$, but rather of arcs which are totally nonrectifiable. These arcs are, however, graphs of functions inserted along either vertical or horizontal line segments. In particular, let $f(x)$ be a continuous function defined for $0 \leqq x \leqq 1$ such that $f(x)$ has the following properties:

1. f is of bounded variation in no subinterval of $[0,1]$,
2. $-1 / 10<f(x)<1 / 10$ for $0 \leqq x \leqq 1$,
3. $f(0)=f(1)=0$.

As f is of bounded variation in no subinterval of $[0,1]$, its graph, F, is totally nonrectifiable. Stage 1 of the construction for M occurs in four parts.
$\left(a_{1}\right)$ Put the vertical lines $x=2 n(n=0, \pm 1, \pm 2, \cdots)$ into S_{3}.
$\left(\mathrm{b}_{1}\right)$ Define $f^{*}(x)=f(x-[[x]])$ where $[[x]]$ is the greatest integer less than or equal to x. Denote the graph of f^{*} by F^{*}. Now, rotate F^{*} about the origin using $\pi / 2$ as the angle of rotation, and translate the rotated set $2 n+1$ units horizontally to obtain the set $F_{2 n+1}^{*}$ where $n=0, \pm 1, \pm 2, \cdots$. Place the
sets $F_{2 n+1}^{*}$ into T_{3}. Each set $F_{2 n+1}^{*}$ is termed a vertical T_{3}-set of stage 1 and is said to have the line $x=2 n+1$ as an axis.
$\left(c_{1}\right)$ The plane has now been divided into enumerably many unbounded vertical "columns", and in this part we subdivide each column into bounded regions by introducing horizontal T_{3}-sets. As the construction in this third part is carried out similarly within each column, we shall restrict our attention to the column bounded by the y-axis and the vertical T_{3}-set F_{1}^{*}. From each of the points $(0,2 n+1)(n=0, \pm 1, \pm 2, \cdots) 1 / 10$-insert the function f into F_{1}^{*} along the horizontal line segment extending from $(0,2 n+1)$ to the set F_{1}^{*}, and place the points of these insertions, with the exception of their initial points on the y-axis which already belong to S_{3}, into T_{3}. Denote the width of this insertion by δ_{1}. These inserted sets are termed horizontal T_{3}-sets of stage 1 , and their axes, which are the horizontal line segments along with the insertions occur, are at odd integer heights.
$\left(\mathrm{d}_{1}\right)$ The points of the horizontal lines $y=2 n(n=0, \pm 1, \pm 2, \cdots)$ which have not as yet been assigned, are now assigned to S_{3}.

This completes stage 1 of the construction of M. See Figure 4.
Stage 1 of the construction divides the plane into enumerably many regions which are called "grid squares" of the first stage. The intersection of a vertical T_{3}-arc with a horizontal T_{3}-arc is called a T_{3}-node, while an S_{3}-node is the intersection of a horizontal line segment in S_{3} with a vertical line segment in S_{3}. Every grid square contains exactly one S_{3}-node and one T_{3}-node.

Stage 2 of the construction of M is typical of the construction at future stages, and occurs within the grid squares of stage 1 . As the construction at this stage is carried out analogously within each grid square, we restrict our attention to the one having vertices $(0,0),(1,0),(0,1)$, and $(1,1)$. The S_{3}-node of this grid square is $(0,0)$, and the horizontal T_{3}-set has been inserted into the vertical T_{3}-set. The horizontal T_{3}-set bounding this grid square is the graph of a continuous function, $h(x)$, defined for $0<x<1$. We proceed as follows:
$\left(a_{2}\right)$ Partition the interval [$\left.0,9 / 10\right]$ into an even number of subintervals $\left[x_{0}, x_{1}\right]=\left[0, x_{1}\right],\left[x_{1}, x_{2}\right], \cdots,\left[x_{2 n-1}, x_{2 n}\right]=\left[x_{2 n-1}, 9 / 10\right]$ such that

1. $\left|x_{k}-x_{k-1}\right|<1 / 10$ for $k=1,2, \cdots, 2 n$.
2. All the partitioning intervals are of the same length, denoted by d.
3. The fluctuation of $h(x)$ on $\left[x_{k-1}, x_{k}\right]$ for $k=1,2, \cdots, 2 n$ is less than $1 / 10^{2}$.

Erect a vertical line segment from the point $\left(x_{2 k}, 0\right)$ to the point $\left(x_{2 k}, h\left(x_{2 k}\right)\right)$ for $k=1,2, \cdots, n$, and place the points of these open segments into S_{3}. For notational convenience we denote the interval $[9 / 10,1]$ by $\left[x_{2 n}, x_{2 n+1}\right]$.
$\left(b_{2}\right)$ From the line $y=0$, and along the vertical segments $\left[\left(x_{2 k-1}, 0\right)\right.$, $\left.\left(x_{2 k-1}, h\left(x_{2 k-1}\right)\right)\right]$ for $k=1,2, \cdots, n, \varepsilon_{2}$-insert the function $f(x)$ into the graph of $h(x)$, where

$$
\varepsilon_{2}=\min \left\{1 / 10^{2}, d / 10\right\}
$$

Place the points of these insertions not already assigned into T_{3}. These newly inserted sets are called vertical T_{3}-sets of the second stage.
$\left(\mathrm{c}_{2}\right)$ Denote the vertical T_{3}-set inserted along the line segment $\left[\left(x_{2 k-1}, 0\right)\right.$, $\left.\left(x_{2 k-1}, h\left(x_{2 k-1}\right)\right)\right]$ by $V_{2 k-1}$ where $k=1,2, \cdots, n$. Denote by $V_{2 n+1}$ that portion of the vertical T_{3}-set of stage 1 which has the line $x=x_{2 n+1}=1$ as an axis, and lies on the boundary of the grid square under consideration. The original grid square of stage 1 can now be considered as having been divided into columns

Figure 4.
determined by the original boundary of the grid square and by the newly inserted vertical T_{3}-sets. All save one of these columns are bounded vertically by an adjacent pair of vertical T_{3}-sets, while the other column is bounded on the right by a vertical T_{3}-set V_{1} and on the left by the vertical S_{3}-set consisting of the segment $[(0,0),(0,1)]$. The construction continues within these columns. Each column of the former type has a vertical line segment separating the vertical T_{3}-sets which border it. If $V_{2 k-3}$ and $V_{2 k-1}(k=2,3, \cdots, n+1)$ form the vertical borders of this column, then the central segment (which is a vertical S_{3}-set) for
that column is $\left[\left(x_{2 k-2}, 0\right),\left(x_{2 k-2}, h\left(x_{2 k-2}\right)\right)\right]$. Denote $h\left(x_{2 k-2}\right)-\delta_{1}$ by C where δ_{1} is the width of the horizontal insertion of $\left(\mathrm{c}_{1}\right)$. Also, $V_{2 k-3}$ and $V_{2 k-1}$ are graphs of continuous functions defined on the open intervals ($0, h\left(x_{2 k-3}\right)$) and $\left(0, h\left(x_{2 k-1}\right)\right)$, and we denote those functions by $g_{2 k-3}(y)=x$ and $g_{2 k-1}(y)=x$, respectively. Partition the interval $[0, C]$ into an even number of subintervals, $\left[y_{0}, y_{1}\right]=\left[0, y_{1}\right],\left[y_{1}, y_{2}\right], \cdots,\left[y_{2 m-1}, y_{2 m}\right]=\left[y_{2 m-1}, C\right]$ such that

1. $\left|y_{q}-y_{q-1}\right|<1 / 10$ for $q=1,2, \cdots, 2 m$.
2. All of the partitioning intervals are of the same length, denoted by d_{1}.
3. The fluctuation of $g_{2 k-3}(y)$ and of $g_{2 k-1}(y)$ on $\left[y_{q-1}, y_{q}\right]$ is less than $1 / 10^{2}$ for $q=1,2, \cdots, 2 m$.

Now, along the horizontal segments $\left[\left(x_{2 k-2}, y_{2 q-1}\right),\left(g_{2 k-3}\left(y_{2 q-1}\right), y_{2 q-1}\right)\right]$ and $\left[\left(x_{2 k-2}, y_{2 q-1}\right),\left(g_{2 k-1}\left(y_{2 q-1}\right), y_{2 q-1}\right)\right]$ and from the point $\left(x_{2 k-2}, y_{2 q-1}\right)$ ε_{3}-insert the function $f(x)$ into $V_{2 k-3}$ and $V_{2 k-1}$, respectively, where $\varepsilon_{3}=\min \left\{d_{1} / 10,1 / 10^{2}\right\}$. The points of these insertions not as yet assigned are now placed into T_{3}. The column of the remaining type is handled similarly; however, horizontal insertions are into V_{1} only, and hence in only one direction.
$\left(d_{2}\right)$ For columns of the initial type, horizontal segments are now constructed which extend from $V_{2 k-3}$ to $V_{2 k-1}$ and which pass through the points $\left(x_{2 k-2}, y_{2 q}\right)$ for $q=1,2, \cdots, m$, and these horizontal segments are placed into S_{3}. For the remaining column, horizontal segments spanning the gap between $[(0,0),(0,1)]$ and V_{1} are constructed and placed into S_{3}.

The maze M_{2}, then, consists of the maze M_{1} described in the first stage of the construction together with the newly added points. See Figure 5. The plane has once again been subdivided into regions, which are termed grid squares of the second stage. Each grid square consists of its interior, which does not meet M_{2}, two line segments, one horizontal and one vertical meeting at a common endpoint (the S_{3}-node of this second-stage grid square), and the graphs of two continuous functions, each of which is of bounded variation in no subinterval on which it is defined. One of these graphs has been inserted into the other. Further, one graph has a horizontal axis and the other has a vertical axis. If we assume that for a particular grid square of stage two the horizontal T_{3}-arc has been inserted into the vertical T_{3}-arc, then the fluctuation of the horizontal T_{3}-arc is less than $2 / 10^{2}$, while the fluctuation of the vertical T_{3}-arc is less than $1 / 10^{2}$. The construction of M_{3} is carried out within the grid squares of stage two and is analogous to that completed for M_{2}.

Proceeding inductively we obtain a maze M_{n} for each $n=1,2, \cdots$. Define $M=\bigcup_{n=1}^{\infty} M_{n}$. Finally, let S_{3} consist exactly of those points which have been entered into S_{3} during the course of the construction of M, and let $T_{3}=P-S_{3}$. This completes the construction, and we now proceed to verify that S_{3} has the properties we initially claimed it would have.

First we must show that every point of the plane is an ambiguous point relative to S_{3}. To this end we let $\zeta \in P$, and define an arc at ζ in the following way. It is evident that there is a nested sequence of grid squares, $\left\{Q_{n}: n=1,2, \cdots\right\}$, such that Q_{n} is a grid square of the nth stage and $\bigcap_{n=1}^{\infty} Q_{n}=\{\zeta\}$. Let σ_{n} be the S_{3}-node of Q_{n}. The construction of M_{n+1} from M_{n} provides that if $\sigma_{n} \neq \sigma_{n+1}$ then there is an arc Γ_{n} lying in $S_{3} \cap M_{n+1}$ such that $\Gamma_{n}(0)=\sigma_{n}$ and $\Gamma_{n}(1)=\sigma_{n+1}$. We define $\Gamma_{n}=\sigma_{n}$ if $\sigma_{n}=\sigma_{n+1}$. Letting $\Lambda_{1}^{*}=\bigcup_{n=1}^{\infty} \Gamma_{n}$ we find that Λ_{1}^{*}

Figure 5.
provides a path (possibly not an arc) from σ_{1} to ζ which lies entirely in S_{3}. It follows then that there is an $\operatorname{arc} \Lambda_{1} \subseteq \Lambda_{1}^{*}$ at ζ which lies entirely within S_{3}. Furthermore, due to the fact that σ_{1} lies on a vertical straight line contained in S_{3} (see stage one of the construction of S_{3}), it is possible to obtain such arcs at ζ of arbitrarily large diameter. In an analogous manner, arcs at ζ of arbitrarily large diameter which are contained in T_{3} can be exhibited.

The existence of these arcs at ζ emanating from distant points allows us to conclude that neither S_{3} nor T_{3} contains a loop. The fact that neither S_{3} nor
T_{3} contains a loop, together with the similarity of construction between S_{3} and S_{1}, allows us to prove the analogue of Lemma 1 for each of the sets S_{3} and T_{3}. These results are listed below as Lemma 8 a and Lemma 8 b . The proof of each of these lemmas follows the proof of Lemma 1 closely and therefore is not given.

Lemma 8a. Suppose $\zeta \in S_{3} \cup(P-M)$ and ζ is an interior point of a grid square Q_{n} of the nth stage. Suppose further that α and β are arcs at ζ such that

1. $\alpha(0)$ and $\beta(0)$ are in $P-\operatorname{Int}\left(Q_{n}\right)$,
2. $\alpha(t)$ and $\beta(t)$ are in S_{3} for $0 \leqq t<1$.

Then $\alpha\left(t_{1}\right)=\beta\left(t_{2}\right)$ where

$$
\begin{aligned}
& t_{1}=\sup \left\{t: \alpha(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\}, \\
& t_{2}=\sup \left\{t: \beta(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\} .
\end{aligned}
$$

Lemma 8b. Suppose $\zeta \in T_{3} \cup(P-M)$ and ζ is an interior point of a grid square Q_{n} of the nth stage. Suppose further that α and β are arcs at ζ such that

1. $\alpha(0)$ and $\beta(0)$ are in $P-\operatorname{Int}\left(Q_{n}\right)$,
2. $\alpha(t)$ and $\beta(t)$ are in T_{3} for $0 \leqq t<1$.

Then $\alpha\left(t_{1}\right)=\beta\left(t_{2}\right)$ where

$$
\begin{aligned}
t_{1} & =\sup \left\{t: \alpha(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\} \\
t_{2} & =\sup \left\{t: \beta(t) \in \operatorname{Bd}\left(Q_{n}\right)\right\}
\end{aligned}
$$

We are now able to use Lemmas 8 a and 8 b to prove the analogues of Lemmas 2 and 3 for this new construction. Only the following two analogues are needed, however, and we list them without further verification.

Lemma 9. If α is an arc such that $\alpha(t) \in T_{3}$ for $0 \leqq t<1$, then $\alpha(t) \in T_{3} \cap M$ for $0<t<1$.

Define $S_{3}(n)=\left\{\zeta \in S_{3}: \zeta\right.$ was entered into S_{3} during the nth stage of the construction and not before $\}$.

Lemma 10. Let α be an arc in S_{3} with $\alpha(0) \in S_{3}(N)$ and $\alpha(t) \in \bigcup_{n=N}^{\infty} S_{3}(n)$ for $0<t<1$. Let $0 \leqq t_{1}<t_{2}<1$ be such that $\alpha\left(t_{1}\right) \in S_{3}(m)$ and $\alpha\left(t_{2}\right) \in S_{3}(k)$. Then $m \leqq k$.

Lemma 9 guarantees that if α is an arc such that $\alpha(t) \in T_{3}$ for $0 \leqq t<1$ then α is nonrectifiable, for it is clear that if α contains a subarc which is imbedded in the maze M, then that subarc is totally nonrectifiable, and consequently α is nonrectifiable. Lemma 10 is important, for it enables us to prove the rectifiability of arcs that are subsets of S_{3}. We prove this in the spirit of Lemmas 4 and 5.

Lemma 11. Let α be an arc in S_{3} such that $\alpha(0) \in S_{3}(N)$ for some $N>0$ and $\alpha(t) \in \bigcup_{n=N}^{\infty} S_{3}(n)$ for $0<t<1$. Then α is rectifiable.

Proof. Again as in Lemma 4, define

$$
I_{n}=\left\{t \in[0,1]: \alpha(t) \in S_{3}(n)\right\}
$$

As N is the least integer such that $\alpha \cap S_{3}(n) \neq \varnothing$ we have $I_{k}=\varnothing$ for $k<N$. Further, as $\alpha(0) \in S_{3}(N)$ and $\alpha(t) \in \bigcup_{n=N}^{\infty} S_{3}(n)$, Lemma 10 guarantees that I_{n} is either an interval, a point, or \varnothing for $n \geqq N$. Lemma 10 also entails that if $x \in I_{m}$ and $y \in I_{k}$ and $m>k$ then $x>y$. Thus, in order to prove that α is rectifiable, it is sufficient to prove that both

1. α / I_{n} is rectifiable for $n=1,2, \cdots$
and
2. $\sum_{n=N}^{\infty}\left|\alpha / I_{n}\right|<\infty$.

As in Lemma 4, the case where $n=1$ does not fit the pattern of the other cases. However, α / I_{1} is of finite length. In general (i.e., for $n=2,3, \cdots$) we find the length of α / I_{n} to be less than $11 / 10^{n-1}$. It follows, then, that α is rectifiable and that the length of α does not exceed $|\alpha| I_{1} \mid+11 / 9$.

Lemma 12. If $\alpha \in \mathscr{A}\left(S_{3}\right)$, then α is rectifiable.
Proof. The proof of Lemma 12 is identical with the proof of Lemma 5.
We collect the results of the previous lemmas concerning S_{3} in the following theorem.

Theorem 13. There exists a set $S_{3} \subset P$ such that every point of P is an ambiguous point relative to S_{3}, and $\mathscr{A}\left(S_{3}\right) \subset \mathscr{R}$ but $\mathscr{A}\left(P-S_{3}\right) \subset \mathscr{N}$.

In view of the previous theorems one might conjecture that it is possible to define a set $S_{4} \subset P$ such that every point of P is both rectifiably ambiguous relative to S_{4}, and nonrectifiably ambiguous relative to S_{4}. Indeed this is the case, and an example is constructed by letting S_{4} be the image of S_{1} under the function $\Psi: P \rightarrow P$ where

$$
\Psi((x, y))=(x+\psi(y), y)
$$

and

$$
\psi(y)=\left\{\begin{array}{l}
y \sin (1 / y) \text { for } 0<y \\
0 \text { for } y \leqq 0
\end{array}\right.
$$

If $\zeta \in P$ and ζ is not on the x-axis, then an arc α at ζ which lies in S_{4} may be extended or shortened so as to include or exclude a nonrectifiable portion, and hence may be chosen to be either rectifiable or nonrectifiable. The same is true for an arc at ζ which lies in $P-S_{4}$. For every point ζ on the x-axis there is a nonrectifiable arc at ζ which is contained in the upper half-plane intersected with S_{4}, and a rectifiable arc at ζ contained in the lower half-plane intersected with S_{4}. Similar arcs lying in $P-S_{4}$ can also be found.

The question of whether terminally different arcs of approach can exist in both a set S and its complement for a large set of points is answered in the next, and concluding, section.

3. A General Theorem

This section is devoted to proving a general theorem which entails that if S is a planar set, the set of points which are both rectifiably ambiguous relative to S and totally nonrectifiably ambiguous relative to S is of first Baire category.

Theorem 14. Suppose that A_{1}, A_{2}, B_{1}, and B_{2} are sets of planar arcs, and let $A=A_{1} \cup A_{2}$ and $B=B_{1} \cup B_{2}$. Further, assume that

1. A_{1} and A_{2} are terminally arcwise disjoint,
2. B_{1} and B_{2} are terminally arcwise disjoint,
3. A and B are pointwise disjoint.

Then the set of points which are accessible via each of the sets A_{1}, A_{2}, B_{1}, and B_{2} is of first Baire category.

Proof. Suppose to the contrary that the set of points of P which are accessible via each of the sets A_{1}, A_{2}, B_{1}, and B_{2} is a set of second Baire category, Q. That is, if $\zeta \in Q$ there are arcs $\alpha_{1}^{\prime}(\zeta), \alpha_{2}^{\prime}(\zeta), \beta_{1}^{\prime}(\zeta)$, and $\beta_{2}^{\prime}(\zeta)$ at ζ where $\alpha_{1}^{\prime}(\zeta) \in A_{1}$, $\alpha_{2}^{\prime}(\zeta) \in A_{2}, \beta_{1}^{\prime}(\zeta) \in B_{1}$, and $\beta_{2}^{\prime}(\zeta) \in B_{2}$. We shall assign an ordered sextuple of rational numbers to ζ in the following manner using a technique developed by Bagemihl (1966).

1. Let $\Delta(\zeta)$ be a rational disc (i.e., a planar dise with a rational center and radius) which contains ζ and is such that the four arcs of accessibility meet the boundary of $\Delta(\zeta)$. Assign $\Delta(\zeta)$ to ζ and let
a. $\quad t_{1}^{*}=\max \left\{t: \alpha_{1}^{\prime}(\zeta ; t) \in \operatorname{Bd}(\Delta(\zeta))\right\}$,
b. $\quad t_{2}^{*}=\max \left\{t: \alpha_{2}^{\prime}(\zeta ; t) \in \operatorname{Bd}(\Delta(\zeta))\right\}$,
c. $\quad t_{3}^{*}=\max \left\{t ; \beta_{1}^{\prime}(\zeta ; t) \in \operatorname{Bd}(\Delta(\zeta))\right\}$,
d. $\quad t_{4}^{*}=\max \left\{t: \beta_{2}^{\prime}(\zeta ; t) \in \operatorname{Bd}(\Delta(\zeta))\right\}$.

Then define
a. $\alpha_{1}(\zeta ; t)=\alpha_{1}^{\prime}\left(\zeta ;\left[1-t_{1}^{*}\right] t+t_{1}^{*}\right) ; 0 \leqq t<1$,
b. $\alpha_{2}(\zeta ; t)=\alpha_{2}^{\prime}\left(\zeta ;\left[1-t_{2}^{*}\right] t+t_{2}^{*}\right) ; 0 \leqq t<1$,
c. $\beta_{1}(\zeta ; t)=\beta_{1}^{\prime}\left(\zeta ;\left[1-t_{3}^{*}\right] t+t_{3}^{*}\right) ; 0 \leqq t<1$,
d. $\beta_{2}(\zeta ; t)=\beta_{2}^{\prime}\left(\zeta ;\left[1-t_{4}^{*}\right] t+t_{4}^{*}\right) ; 0 \leqq t<1$.
2. If ζ_{1} and ζ_{2} are in P we let $\left[\zeta_{1}, \zeta_{2}\right]$ denote the closed line segment extending from ζ_{1} to ζ_{2}. Let $\varepsilon(\zeta)$ be a rational number satisfying

$$
\begin{gathered}
0<\varepsilon(\zeta)<1 / 2 \min \left\{\left|\left[\alpha_{1}(\zeta ; 0), \beta_{1}(\zeta ; 0)\right]\right|,\left|\left[\alpha_{1}(\zeta ; 0), \beta_{2}(\zeta ; 0)\right]\right|,\left|\left[\alpha_{2}(\zeta ; 0), \beta_{1}(\zeta ; 0)\right]\right|,\right. \\
\left.\left|\left[\alpha_{2}(\zeta ; 0), \beta_{2}(\zeta ; 0)\right]\right|\right\}
\end{gathered}
$$

and assign $\varepsilon(\zeta)$ to ζ.
3. We now choose rational directions !which approximate the directions of the rays emanating from the center of $\Delta(\zeta)$ to the initial points of the shortened arcs of accessibility at ζ. For notational convenience let $r(\theta)$ denote the ray whose initial point is the center of $\Delta(\zeta)$ and whose direction is θ. We define these approximating directions as follows:
a. Let $\theta_{1}(\zeta)$ be a rational direction such that $\left.r\left(\theta_{1}(\zeta)\right) \cap \operatorname{Bd}\left(\Delta_{(} \zeta\right)\right)$ is within $(1 / 4)[\varepsilon(\zeta)]$ of $\alpha_{1}(\zeta ; 0)$.
b. Let $\theta_{2}(\zeta)$ be a rational direction such that $r\left(\theta_{2}(\zeta)\right) \cap \operatorname{Bd}(\Delta(\zeta))$ is within $(1 / 4)[\varepsilon(\zeta)]$ of $\alpha_{2}(\zeta ; 0)$.
c. Let $\phi_{1}(\zeta)$ be a rational direction such that $r\left(\phi_{1}(\zeta)\right) \cap \operatorname{Bd}(\Delta(\zeta))$ is within $(1 / 4)[\varepsilon(\zeta)]$ of $\beta_{1}(\zeta ; 0)$.
d. Finally, let $\phi_{2}(\zeta)$ be a rational direction such that $r\left(\phi_{2}(\zeta)\right) \cap \operatorname{Bd}(\Delta(\zeta))$ is within $(1 / 4)[\varepsilon(\zeta)]$ of $\beta_{2}(\zeta ; 0)$.
Assign these four directions to ζ.
The assigning is now completed and we define $Q\left(\Delta, \varepsilon, \theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)$ to be the set of all points in Q to which the ordered sextuple ($\Delta, \varepsilon, \theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}$) has been assigned. Evidently then $Q=\cup Q\left(\Delta, \varepsilon, \theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)$ where the union is taken over all admissible sextuples. As the set of indices over which the union is taken is an enumerable set, and as Q is of second Baire category, there is at least one index $\left(\Delta^{*}, \varepsilon^{*}, \theta_{1}^{*}, \theta_{2}^{*}, \phi_{1}^{*}, \phi_{2}^{*}\right)$ and a disc Δ_{0} such that $Q^{*}=Q\left(\Delta^{*}, \varepsilon^{*}, \theta_{1}^{*}, \theta_{2}^{*}, \phi_{1}^{*}, \phi_{2}^{*}\right)$ is dense in Δ_{0}. It is apparent that $\Delta_{0} \subset \Delta^{*}$. Once again, let $r(\theta)$ denote the ray whose initial point is at the center of Δ^{*} and whose direction is θ, and let
a. $\quad \xi_{1}=r\left(\theta_{1}^{*}\right) \cap \operatorname{Bd}\left(\Delta^{*}\right)$,
b. $\quad \xi_{2}=r\left(\theta_{2}^{*}\right) \cap \operatorname{Bd}\left(\Delta^{*}\right)$,
c. $\quad \xi_{1}^{\prime}=r\left(\phi_{1}^{*}\right) \cap \operatorname{Bd}\left(\Delta^{*}\right)$,
d. $\quad \xi_{2}^{\prime}=r\left(\phi_{2}^{*}\right) \cap \operatorname{Bd}\left(\Delta^{*}\right)$.

See Figure 6.

The disc Δ^{*} can now be classified according to the positions of the points ξ_{1} and ξ_{2} relative to the points ξ_{1}^{\prime} and ξ_{2}^{\prime}. In particular, we say Δ^{*} is of type 1 if the point pair $\left\{\xi_{1}, \xi_{2}\right\}$ does not separate the pair $\left\{\xi_{1}^{\prime}, \xi_{2}^{\prime}\right\}$ on the boundary of Δ^{*} or if either $\xi_{1}=\xi_{2}$ or $\xi_{1}^{\prime}=\xi_{2}^{\prime}$. We refer to Δ^{*} as of type 2 if the pair $\left\{\xi_{1}, \xi_{2}\right\}$ does separate the pair $\left\{\xi_{1}^{\prime}, \xi_{2}^{\prime}\right\}$ on the boundary of Δ^{*}. Consequently, we have two cases to consider depending on the type of Δ^{*}. Before entering into a discussion of these particular cases, however, we prove two results. The first
deals with the arcs $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$, the second with $\beta_{1}(\zeta)$ and $\beta_{2}(\zeta)$, for a point $\zeta \in Q^{*} \cap \Delta_{0}$:

1. If $t^{*}=\sup \left\{t: \alpha_{1}(\zeta ; t) \in \alpha_{2}(\zeta)\right\}$, then $t^{*} \neq 1$.
2. If $t^{* *}=\sup \left\{t: \beta_{1}(\zeta ; t) \in \beta_{2}(\zeta)\right\}$, then $t^{* *} \neq 1$.

As the proof of 2 . is analogous to the proof of 1 ., we prove only 1 . Suppose that $\sup \left\{t: \alpha_{1}(\zeta ; t) \in \alpha_{2}(\zeta)\right\}=1$. There exists a t_{1} such that $0<t_{1}<1$ and $\alpha_{1}(\zeta ; t) \in \Delta_{0}$ for $t_{1}<t<1$. Let

$$
\begin{aligned}
& G=\left\{t: t_{1}<t<1 \text { and } \alpha_{1}(\zeta ; t) \notin \alpha_{2}(\zeta)\right\} \text { and } \\
& F=\left\{t: t_{1}<t<1 \text { and } \alpha_{1}(\zeta ; t) \in \alpha_{2}(\zeta)\right\}
\end{aligned}
$$

Figure 6.

As $\alpha_{1}^{\prime}(\zeta) \in A_{1}$ and $\alpha_{2}^{\prime}(\zeta) \in A_{2}$ and both $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$ are arcs at ζ, it follows that $\alpha_{1}(\zeta) \cap \alpha_{2}(\zeta)$ contains no arc at ζ. We conclude that there exist two numbers t_{2} and t_{3} in F such that $t_{1}<t_{2}<t_{3}<1$ and $\left\{t: t_{2}<t<t_{3}\right\} \subset G$. That is, $\alpha_{1}\left(\zeta ; t_{2}\right) \in \alpha_{2}(\zeta)$ and $\alpha_{1}\left(\zeta ; t_{3}\right) \in \alpha_{2}(\zeta)$ but $\alpha_{1}(\zeta ; t) \notin \alpha_{2}(\zeta)$ for $t_{2}<t<t_{3}$. As $\alpha_{1}\left(\zeta ; t_{2}\right)$ $\in \alpha_{2}(\zeta)$, there is a t_{2}^{\prime} such that $\alpha_{1}\left(\zeta ; t_{2}\right)=\alpha_{2}\left(\zeta ; t_{2}^{\prime}\right)$; and as $\alpha_{1}\left(\zeta ; t_{3}\right) \in \alpha_{2}(\zeta)$, there
is a t_{3}^{\prime} such that $\alpha_{1}\left(\zeta ; t_{3}\right)=\alpha_{2}\left(\zeta ; t_{3}^{\prime}\right)$. Let R denote the region bounded by the $\operatorname{arcs} \alpha_{1}(\zeta) /\left[t_{2}, t_{3}\right]$ and $\alpha_{2}(\zeta) /\left[t_{2}^{\prime}, t_{3}^{\prime}\right]$. (We have made the tacit assumption that $t_{2}^{\prime}<t_{3}^{\prime}$, which may not be true. If $t_{3}^{\prime}<t_{2}^{\prime}$, an interchange of these two numbers in the definition of R is needed for notational correctness.) As $R \cap \Delta_{0} \neq \varnothing$, there exists a $\zeta^{*} \in R \cap \Delta_{0} \cap Q^{*}$. But $\beta_{1}\left(\zeta^{*} ; 0\right)$ is on the boundary of Δ^{*}, and hence exterior to R. Further,

$$
\operatorname{limit}_{t \rightarrow 1} \beta_{1}\left(\zeta^{*} ; t\right)=\zeta^{*} \in R
$$

It follows that $\beta_{1}\left(\zeta^{*}\right)$ meets the boundary of R. This, however, is impossible, as the boundary of R consists of subarcs of arcs in A, and A and B are pointwise disjoint. The proof of 2 . is similar.

We now proceed to discuss the two cases mentioned previously.
CASE 1. Suppose that Δ^{*} is of type 1. See Figure 7. We show that if $\zeta \in \Delta_{0} \cap Q^{*}$, then ζ lies on an arc contained in A, and also on an arc contained in B, thus contradicting the hypothesis that A and B are pointwise disjoint collections.

Let $\zeta \in \Delta_{0} \cap Q^{*}$. In order to show ζ lies on an arc in B, we consider two subcases which depend on whether or not $\left.\alpha_{1}, \zeta\right) \cap \alpha_{2}(\zeta)=\varnothing$.
a. $\alpha_{1}(\zeta) \cap \alpha_{2}(\zeta) \neq \varnothing$.

Let $t^{*}=\sup \left\{t: \alpha_{1}(\zeta ; t) \in \alpha_{2}(\zeta)\right\} ;$ then as was shown earlier, $t^{*}<1$. Let s^{*} be such that $\alpha_{2}\left(\zeta ; s^{*}\right)=\alpha_{1}\left(\zeta ; t^{*}\right)$, and denote by R_{1} the region bounded by the arcs $\alpha_{1}(\zeta) /\left[t^{*}, 1\right)$ and $\alpha_{2}(\zeta) /\left[s^{*}, 1\right)$, and by the point ζ. As $\zeta \in \Delta_{0}$, we conclude that $R_{1} \cap \Delta_{0} \neq \varnothing$, and hence there is a $\zeta^{*} \in Q^{*} \cap R_{1} \cap \Delta_{0}$. But $\beta_{1}\left(\zeta^{*} ; 0\right)$ is on $\operatorname{Bd}\left(\Delta^{*}\right)$, while $\operatorname{limit}_{t \rightarrow 1} \beta_{1}\left(\zeta^{*} ; t\right)=\zeta^{*}$, and consequently $\beta_{1}\left(\zeta^{*}\right)$ must intersect the boundary of R_{1}. As the sets of arcs A and B are pointwise disjoint, $\beta_{1}\left(\zeta^{*}\right) \cap \alpha_{1}(\zeta) /\left[t^{*}, 1\right)=\varnothing$ and $\beta_{1}\left(\zeta^{*}\right) \cap \alpha_{2}(\zeta) /\left[s^{*}, 1\right)=\varnothing$. It follows then that $\zeta \in \beta_{1}\left(\zeta^{*}\right)$, and hence $\zeta \in \beta_{1}^{\prime}\left(\zeta^{*}\right)$.
b. $\alpha_{1}(\zeta) \cap \alpha_{2}(\zeta)=\varnothing$.

As Δ^{*} is of type 1 , there is a path Γ on the boundary of Δ^{*} such that $\Gamma(0)=\xi_{1}$, $\Gamma(1)=\xi_{2}$, and neither ξ_{1}^{\prime} nor ξ_{2}^{\prime} is on Γ. Further, ξ_{1} is within $(1 / 4) \varepsilon^{*}$ of $\alpha_{1}(\zeta ; 0)$, ξ_{2} is within $(1 / 4) \varepsilon^{*}$ of $\alpha_{2}(\zeta ; 0), \xi_{1}^{\prime}$ is within $(1 / 4) \varepsilon^{*}$ of $\beta_{1}(\zeta ; 0)$, and ξ_{2}^{\prime} is within $(1 / 4) \varepsilon^{*}$ of $\beta_{2}(\zeta ; 0)$. Consequently, there is a path Γ^{*} on the boundary of Δ^{*} satisfying
i. $\quad \Gamma^{*}(0)=\alpha_{1}(\zeta ; 0)$,
ii. $\Gamma^{*}(1)=\alpha_{2}(\zeta ; 0)$,
iii. $\beta_{1}(\zeta ; 0) \notin \Gamma^{*}$ and $\beta_{2}(\zeta ; 0) \notin \Gamma^{*}$.

Denote by R_{2} the region bounded by the path Γ^{*}, the $\operatorname{arcs} \alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$, and the point ζ. Again $R_{2} \cap \Delta_{0} \neq \varnothing$, and we let $\zeta^{*} \in R_{2} \cap \Delta_{0} \cap Q^{*}$. Then ζ^{*} is an interior point of R_{2} while $\beta_{1}\left(\zeta^{*} ; 0\right)$ lies exterior to R_{2}, and hence $\beta_{1}\left(\zeta^{*}\right)$ must

meet the boundary of R_{2}. But $\beta_{1}\left(\zeta^{*} ; 0\right)$ is the only point of $\beta_{1}\left(\zeta^{*}\right)$ lying on the boundary of Δ^{*}, and $\beta_{1}\left(\zeta^{*} ; 0\right) \notin \Gamma^{*}$; hence $\beta_{1}\left(\zeta^{*}\right) \cap \Gamma^{*}=\varnothing$. Further, $\beta_{1}\left(\zeta^{*}\right)$ $\cap \alpha_{1}(\zeta)=\varnothing$ and $\beta_{1}\left(\zeta^{*}\right) \cap \alpha_{2}(\zeta)=\varnothing$, as the sets A and B are pointwise disjoint. We again conclude that $\zeta \in \beta_{1}\left(\zeta^{*}\right)$, and thus that $\zeta \in \beta_{1}^{\prime}\left(\zeta^{*}\right)$.

In either subcase, then, we find that ζ lies on an arc which is contained in the set B. In an analogous manner it can be shown that ζ also lies on an arc contained in A, and hence we reach the contradiction that the sets A and B are not pointwise disjoint. It must be, then, that Δ^{*} is of type 2.

Case 2. Suppose Δ^{*} is of type 2. See Figure 7. We again show that if $\zeta \in \Delta_{0} \cap Q^{*}$, then ζ lies both on an arc contained in B and on an arc contained in A, thus contradicting the hypothesis that A and B are pointwise disjoint. As before, we only show that ζ is on an arc contained in B, as this proof is wholly analogous to showing that ζ lies on an arc in A. We have the same two subcases to consider. Let $\zeta \in \Delta_{0} \cap Q^{*}$.
a. $\alpha_{1}(\zeta) \cap \alpha_{2}(\zeta) \neq \varnothing$.

This subcase cannot occur, as the arcs $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$ are separated by the union of the arcs $\beta_{1}(\zeta), \beta_{2}(\zeta)$, and the point ζ.
b. $\alpha_{1}(\zeta) \cap \alpha_{2}(\zeta)=\varnothing$.

As Δ^{*} is of type 2 , there exists an arc Γ on the boundary of Δ^{*} having the properties that $\Gamma(0)=\xi_{1}, \Gamma(1)=\xi_{2}$, and exactly one of ξ_{1}^{\prime} or ξ_{2}^{\prime} resides on Γ. Now $\alpha_{1}(\zeta ; 0), \alpha_{2}(\zeta ; 0), \beta_{1}(\zeta ; 0)$, and $\beta_{2}(\zeta ; 0)$ were chosen sufficiently close to (within $\varepsilon^{*} / 4$ of) $\xi_{1}, \xi_{2}, \xi_{1}^{\prime}$, and ξ_{2}^{\prime}, respectively, for there to exist an arc Γ^{*} on the boundary of Δ^{*} with the following properties:
i. $\quad \Gamma^{*}(0)=\alpha_{1}(\zeta ; 0)$,
ii. $\Gamma^{*}(1)=\alpha_{2}(\zeta ; 0)$,
iii. Γ^{*} contains exactly one of $\beta_{1}(\zeta ; 0)$ or $\beta_{2}(\zeta ; 0)$.

Suppose, for the sake of definiteness, that $\beta_{1}(\zeta ; 0) \in \Gamma^{*}$, and let R_{2} denote the region bounded by Γ^{*}, the arcs $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$, and the point ζ. Once again we find that $R_{2} \cap \Delta_{0} \neq \varnothing$, and consequently there is a $\zeta^{*} \in R_{2} \cap \Delta_{0} \cap Q^{*}$. But $\beta_{2}\left(\zeta^{*} ; 0\right)$ is within $\varepsilon^{*} / 4$ of ξ_{2}^{\prime}, and hence is not on Γ^{*}. It follows then, that $\beta_{2}\left(\zeta^{*} ; 0\right)$ lies exterior to R_{2}. However, ζ^{*} is an interior point of R_{2}, and hence $\beta_{2}\left(\zeta^{*}\right)$ must intersect the boundary of R_{2}. As A and B are pointwise disjoint collections, we infer that both $\alpha_{1}(\zeta)$ and $\alpha_{2}(\zeta)$ miss $\beta_{2}\left(\zeta^{*}\right)$. Also, $\beta_{2}\left(\zeta^{*} ; 0\right) \notin \Gamma^{*}$, and $\beta_{2}\left(\zeta^{*} ; 0\right)$ is the only point $\beta_{2}\left(\zeta^{*}\right)$ has in common with the boundary of Δ^{*}. It follows that $\beta_{2}\left(\zeta^{*}\right) \cap \Gamma^{*}=\varnothing$ and consequently $\zeta \in \beta_{2}\left(\zeta^{*}\right) \subset \beta_{2}{ }^{\prime}\left(\zeta^{*}\right)$.

A similar argument shows that ζ is also an element of an arc contained in A. This contradicts the fact that A and B are pointwise disjoint collections of arcs, and the supposition in case 2 has also proved untenable. Hence, our original assumption that Q is of second Baire category is false, and the theorem follows.

If α is an arc at a point $\zeta \in P, \alpha$ is said to be terminally nonrectifiable if
$\alpha /[t, 1)$ is nonrectifiable for $0 \leqq t<1$. If S is a planar set and $\zeta \in P, \zeta$ is termed a terminally nonrectifiably ambiguous point relative to S if the arcs of ambiguity may be chosen to be terminally nonrectifiable.

Corollary 15. Let S be a planar set. Then the set of points which are both rectifiably ambiguous points relative to S and terminally nonrectifiably ambiguous points relative to S is a set of first Baire category.

Proof. Let A_{1} denote the set of rectifiable arcs lying in S and let A_{2} denote the set of terminally nonrectifiable arcs in S. Denote by B_{1} the set of rectifiable arcs in $P-S$ and by B_{2} the set of terminally nonrectifiable arcs in $P-S$. Let $A=A_{1} \cup A_{2}$ and $B=B_{1} \cup B_{2}$. Then $A_{1}, A_{2}, B_{1}, B_{2}, A$, and B satisfy the hypothesis of the previous theorem, and the result follows.

As every totally nonrectifiable arc is terminally nonrectifiable, we also obtain the following corollary.

Corollary 16. Let S be a planar set. Then the set of points of P which are both rectifiably ambiguous relative to S and totally nonrectifiably ambiguous relative to S is a set of first Baire category.

References

F. Bagemihl (1966), 'Ambiguous points of arbitrary planar sets and functions', Zeitschr. f. math. Logik und Grundlagen d. Math. 12, 205-217.
C. Carathéodory (1948), Vorlesungen über reelle Funktionen. (New York, 1948).

University of Wisconsin-Milwaukee
Western Illinois University
U.S.A.

