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Abstract
Let S be a minimal irregular surface of general type, whose Albanese map induces a hyperelliptic fibration
𝑓 : 𝑆 → 𝐵 of genus g. We prove a quadratic upper bound on the genus g (i.e., 𝑔 ≤ ℎ

(
𝜒(O𝑆)

)
, where h is a

quadratic function). We also construct examples showing that the quadratic upper bounds cannot be improved to
linear ones. In the special case when 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1, we show that 𝑔 ≤ 14.
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1. Introduction

We work over the complex number throughout this paper. Let S be a minimal irregular surface of general
type, and 𝑎 : 𝑆 → Alb(𝑆) be its Albanese map. We are interested in the case when the image 𝑎(𝑆) is a
curve. In this case, the Albanese map induces a fibration, which we call the Albanese fibration of S:

𝑓 : 𝑆 −→ 𝐵.

In fact, by the universal property of the Albanese map, 𝐵 � 𝑎(𝑆), and under this isomorphism, the
above fibration f is nothing but the Albanese map of S.

Let g be the genus of a general fiber of f. A natural problem is to study the behavior of the genus g.
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Question 1.1. Can we give an upper bound on the genus g of the Albanese fibration of S?

By [2], it is known that the genus g of the Albanese fibration of S is a differential invariant, and
hence is also a deformation invariant. Fixing 𝜒(O𝑆) and 𝐾2

𝑆 , there are only finitely many deformation
equivalence classes of such surfaces (cf. [1, §VII]). Hence, there must be an upper bound on g depending
on 𝜒(O𝑆) or 𝐾2

𝑆 . However, it is still unclear how the upper bound depends on 𝜒(O𝑆) (or 𝐾2
𝑆). Explicit

upper bounds are only known under some extra assumptions.

(i) Suppose that 𝑔(𝐵) > 1. Then 𝑔 ≤
𝜒 (O𝑆 )

𝑔 (𝐵)−1+1 ≤ 𝜒(O𝑆)+1 by the semi-positivity of the Hodge bundle
𝑓∗O𝑆

(
𝐾𝑆/𝐵

)
. Moreover, this bound is sharp since there are generalised hyperelliptic surfaces,

whose Albanese map is a fibration of genus 𝑔 = 𝜒(O𝑆) + 1 (cf. [2]).
(ii) Suppose that 𝑔(𝐵) = 1 and 𝐾2

𝑆 < 4𝜒(O𝑆). From the slope inequality [5, 23] it follows that
𝐾 2

𝑆

𝜒 (O𝑆 )
≥

4(𝑔−1)
𝑔 , and hence, 𝑔 ≤

4𝜒 (O𝑆 )

4𝜒 (O𝑆 )−𝐾
2
𝑆

≤ 4𝜒(O𝑆). Konno [14] showed that 𝑔 ≤ 6 if moreover
S is an even canonical surface.

(iii) Suppose that 𝑔(𝐵) = 1 and 𝐾2
𝑆 = 4𝜒(O𝑆). We showed that 𝑔 ≤ max{6, 3𝜒(O𝑆) +1} (cf. [15]). See

also [13] for the case when f is moreover hyperelliptic, where it was proved that 𝑔 ≤ 2𝜒(O𝑆) + 2.

All the upper bounds above are linear in 𝜒(O𝑆). Our first aim is to give an upper bound on the genus
g of hyperelliptic Albanese fibrations of surfaces of general type with 𝐾2

𝑆 > 4𝜒(O𝑆).

Theorem 1.2. Let S be a minimal irregular surface of general type with 𝑞(𝑆) = 1 and 𝐾2
𝑆 > 4𝜒(O𝑆),

and 𝑓 : 𝑆 → 𝐵 its Albanese fibration whose general fiber is of genus g. Suppose that f is hyperelliptic.
Then

𝑔 ≤
25
4
𝜒(O𝑆)2 +

19
2
𝜒(O𝑆) + 2. (1.1)

We will construct in Section 5 examples of minimal irregular surfaces of general type with
𝐾2
𝑆 > 4𝜒(O𝑆) admitting hyperelliptic Albanese fibrations, whose general fiber is of genus g as large as

a quadratic function in 𝜒(O𝑆). This is different from the phenomenons when 𝐾2
𝑆 ≤ 4𝜒(O𝑆), where the

upper bounds are all linear in 𝜒(O𝑆) as mentioned above.

Remark 1.3. As mentioned above, the genus g is a deformation invariant when f is the Albanese
fibration. Hence, one may expect an upper bound on g using invariants of S. In general, there is no
such upper bound on g if f is not the Albanese fibration. In fact, Penegini-Polizzi ([21]) constructed a
minimal surface S with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 2, 𝐾2

𝑆 = 4 (whose Albanese map is generically finite), on which
there are fibrations 𝑓𝑘 : 𝑆 → 𝐵, such that the genera of 𝑓𝑘 ’s can be arbitrarily large.

Nevertheless, in the case when 𝑓 : 𝑆 → 𝐵 is hyperelliptic, the quadratic upper bound proved in
Theorem 1.2 holds true even if f is not the Albanese fibration, and hence, our results can be applied in
a more general situation. See Theorem 3.1 and Theorem 3.3 for more details.

Another interest of ours is the classification of minimal irregular surface of general type with
𝜒(O𝑆) = 1. Although the value 𝜒(O𝑆) = 1 is the minimal possibility among surfaces of general
type, the classification of such surfaces is widely open. Beauville proved in an appendix to [7] that
𝑝𝑔 (𝑆) = 𝑞(𝑆) ≤ 4 for such surfaces, and the equality holds if and only if S is isomorphic to a product
of two curves of genus 2.

We are more interested in the case when the Albanese map of S induces a fibration. In this case,
𝑝𝑔 (𝑆) = 𝑞(𝑆) ≤ 3 by Beauville’s result above. In a series of works [4, 11, 19, 20, 27], a full classification
has been obtained when 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 3 or 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 2. However, the case when 𝑝𝑔 (𝑆) =
𝑞(𝑆) = 1 seems to be much more mysterious. An explicit upper bound on the genus g of the Albanese
fibration is still unknown, although theoretically such an upper bound exists since there are at most
finitely many deformation equivalence classes of such surfaces. By Theorem 1.2 above, 𝑔 ≤ 17 if the
Albanese fibration is hyperelliptic. In fact, we can even get more.
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Theorem 1.4. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g. Then 𝑔 ≤ 14. More precisely, it holds
𝑔 ≤ 10 except for the following two possible cases:

(i) 𝐾2 = 8, 𝑔 = 14; (ii) 𝐾2 = 8, 𝑔 = 11.

The known examples of surfaces with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1 are mostly restricted to the region 𝑔 ≤ 𝐾2
𝑆 .

The first example with 𝑔 > 𝐾2
𝑆 was constructed in [8], in which 𝑔 = 7 and 𝐾2

𝑆 = 6. More recently, an
example with 𝑔 = 19 and 𝐾2

𝑆 = 9 was constructed in [6]. By our result above, the Albanese fibration of
the example in [6] must be non-hyperelliptic.

The paper is organized as follows. In Section 2, we mainly review some basic facts about surface
fibrations and do some technical preparations. In Section 3 and Section 4, we prove Theorem 1.2 and
Theorem 1.4, respectively. Finally, in Section 5, we construct examples of irregular surfaces of general
type with hyperelliptic fibrations of genus g as large as a quadratic function in 𝜒(O𝑆).

2. Preliminaries

In this section, we mainly review some basic facts and fix the notations. In Section 2.1, we recall some
general facts about surface fibrations and refer to [1] for more details; and then in Section 2.2, we restrict
ourselves to the theory on the hyperelliptic fibrations, which goes back to Horikawa and Xiao (cf. [12,
25, 26]).

2.1. The surface fibrations

Let 𝑓 : 𝑆 → 𝐵 be a fibration of curves of genus 𝑔 ≥ 2, (i.e., f is a proper morphism from a smooth
projective surface S onto a smooth projective curve B with connected fibers, and the general fiber is
a smooth projective curve of genus g). The fibration f is called relatively minimal if there is no (−1)-
curve (i.e., a smooth rational curve with self-intersection −1) contained in the fibers of f. It is called
hyperelliptic if its general fiber is hyperelliptic, smooth if all its fibers are smooth, isotrivial if all its
smooth fibers are mutually isomorphic, and locally trivial if it is both smooth and isotrivial.

Let 𝜔𝑆 (resp. 𝐾𝑆) be the canonical sheaf (resp. canonical divisor) of S, and let 𝜔𝑆/𝐵 = 𝜔𝑆 ⊗ 𝑓 ∗𝜔∨
𝐵

(resp. 𝐾 𝑓 = 𝐾𝑆/𝐵 = 𝐾𝑆 − 𝑓 ∗𝐾𝐵) be the relative canonical sheaf (resp. the relative canonical divisor)
of f. Put 𝑏 := 𝑔(𝐵), 𝑝𝑔 := ℎ0 (𝑆, 𝜔𝑆), 𝑞 := ℎ1 (𝑆, 𝜔𝑆), 𝜒 = 𝜒(O𝑆) := 𝑝𝑔 − 𝑞 + 1, and let 𝑒(𝑆) be the
topological Euler characteristic of S. The basic invariants of f are

𝜒 𝑓 = 𝜒 − (𝑔 − 1) (𝑏 − 1);
𝐾2
𝑓 = 𝐾2

𝑆 − 8(𝑔 − 1) (𝑏 − 1);

𝑒 𝑓 = 𝑒(𝑆) − 4(𝑔 − 1) (𝑏 − 1).

These invariants satisfy the following properties:

1. 𝜒 𝑓 = deg 𝑓∗𝜔𝑆/𝐵 is the degree of the Hodge bundle 𝑓∗𝜔𝑆/𝐵. Moreover, 𝜒 𝑓 ≥ 0, and the equality
holds if and only if f is locally trivial.

2. When f is relatively minimal, 𝐾2
𝑓 ≥ 0, and the equality holds if and only if f is locally trivial.

3. 𝑒 𝑓 =
∑
𝑒𝐹 , where 𝑒𝐹 := 𝑒(𝐹𝑟𝑒𝑑) − (2 − 2𝑔) for any fiber F, 𝐹𝑟𝑒𝑑 is the reduced part of F and

𝑒(𝐹𝑟𝑒𝑑) is the topological Euler characteristic of 𝐹𝑟𝑒𝑑 . Moreover, 𝑒𝐹 ≥ 0, and the equality holds if
and only if F is smooth. Hence, 𝑒 𝑓 ≥ 0, and 𝑒 𝑓 = 0 if and only if f is smooth.

4. The above three invariants satisfy the Noether equality: 12𝜒 𝑓 = 𝐾2
𝑓 + 𝑒 𝑓 .

Suppose that f is relatively minimal and not locally trivial. Then both 𝐾2
𝑓 and 𝜒 𝑓 are strictly positive.

In this case, the slope of f is defined to be 𝜆 𝑓 =
𝐾 2

𝑓

𝜒 𝑓
. According to the non-negativity of these basic
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invariants of f, it holds 0 < 𝜆 𝑓 ≤ 12. The so-called slope inequality, proved independently by Cornalba-
Harris [5] and Xiao [23], states that

𝜆 𝑓 ≥
4(𝑔 − 1)

𝑔
. (2.1)

2.2. Invariants of hyperelliptic fibrations

In this subsection, we restrict to hyperelliptic fibrations. Let 𝑓 : 𝑆 → 𝐵 be a relatively minimal
hyperelliptic fibration. The relative canonical map of f is generically of degree 2. Hence, it determines
an involution 𝜎 on S whose restriction on a general fiber F of f is the hyperelliptic involution of F.

Let 𝜇 : 𝑆 → 𝑆 be the blow-ups of all the isolated fixed points of 𝜎, and let �̃� be the induced
involution on 𝑆. The quotient space �̃� = 𝑆/〈�̃�〉 is a smooth surface, and f induces a ruling ℎ̃ : �̃� → 𝐵
on �̃�. Also, the quotient map �̃� : 𝑆 → �̃� is a double cover which is determined by the pair (�̃�, 𝛿), where
�̃� is the branch locus of �̃� and 𝛿 is a line bundle such that O�̃� (�̃�) � 𝛿

⊗2 and �̃�∗O�̃� � O�̃� ⊕ 𝛿∨. (See
[1] Chapter V.22)

For any contraction 𝜑 : �̃� → 𝑃′ of (−1)-curves and 𝑅′ = 𝜑(�̃�), the double cover �̃� induces a double
cover 𝑆′ → 𝑃′, which is determined by (𝑅′, 𝛿′). We call (𝑅′, 𝛿′) the image of (�̃�, 𝛿).

Lemma 2.1 [25, 26]. There exists a contraction of a ruled surfaces 𝜓 : �̃� → 𝑃:

�̃�
𝜓 ��

ℎ̃

����
���

���
���

�� 𝑃

ℎ

��
𝐵

such that P is a geometrical ruled surface (i.e., any fiber of h is P1), the singularities of R are at most
of multiplicity 𝑔 + 2, and the self-intersection 𝑅2 is the smallest among all such choices, where (𝑅, 𝛿) is
the image of (�̃�, 𝛿) in P.

The contraction 𝜓 in Lemma 2.1 can be decomposed into �̃� : �̃� → �̂� and �̂� : �̂� → 𝑃, where �̃�
and �̂� are composed respectively of resolutions of negligible and non-negligible singularities of R (cf.
[25, Def 4] or [17, Def 2.1]). Let (�̂�, �̂�) be the image of (�̃�, �̃�) in �̂�. Let �̂� = �̂�1 ◦ · · · ◦ �̂�𝑡 be the
decomposition of �̂�, where �̂�𝑖 : �̂�𝑖 → �̂�𝑖−1 is the blow-up at 𝑦𝑖−1, �̂�0 = 𝑃 and �̂�𝑡 = �̂�. Let �̂�𝑖 be the
image of �̂� in �̂�𝑖 . We remark that the decomposition of �̂� is not unique. If 𝑦𝑖−1 is a singular point of
�̂�𝑖−1 of odd multiplicity 2𝑘 + 1 (𝑘 ≥ 1) and there is a unique singular point y of �̂�𝑖 on the exceptional
curve Ê𝑖 of multiplicity 2𝑘 + 2, then we always assume that �̂�𝑖+1 : �̂�𝑖+1 → �̂�𝑖 is the standard blow-up at
𝑦𝑖 = 𝑦. We call such a pair (𝑦𝑖−1, 𝑦𝑖) a singularity of type (2𝑘 + 1 → 2𝑘 + 1) and call 𝑦𝑖−1 (resp. 𝑦𝑖) the
first (resp. second) component of such a singularity.

Definition 2.2. For any singular fiber F of f and 3 ≤ 𝑖 ≤ 𝑔 + 2, the i-th singularity index of F is defined
as follows (with respect to the contraction 𝜓):

(1) if i is odd, 𝑠𝑖 (𝐹) equals the number of (𝑖 → 𝑖) type singularities of R over the image 𝑓 (𝐹);
(2) if i is even, 𝑠𝑖 (𝐹) equals the number of singularities of multiplicity i or 𝑖 + 1 of R over the image

𝑓 (𝐹), neither belonging to the second component of (𝑖 − 1 → 𝑖 − 1) type singularities nor to the first
component of (𝑖 + 1 → 𝑖 + 1) type singularities.

Here, we give an example to help to understand the above singularity indices.

Example 2.3. Suppose that F is a singular fiber of f, and Γ is its corresponding fiber in the geometrical
ruled surface ℎ : 𝑃 → 𝐵. Let t be a local coordinate of B around 𝑏 = ℎ(Γ), and x be an affine fiber-
coordinate of the P1-bundle over B.
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1. Suppose that the local equation of R over b is (𝑡2𝑘 − 𝑥2𝑘 ) (𝑥2𝑔+2−2𝑘 − 1) = 0 with 2 ≤ 𝑘 ≤
[ 𝑔+1

2
]
.

Then p is the unique singularity of R on Γ of multiplicity 2𝑘 . In this case, 𝑠2𝑘 (𝐹) = 1 and 𝑠𝑖 (𝐹) = 0
for all other 𝑖 ≥ 3.

2. Suppose that the local equation of R over b is (𝑡2(2𝑘+1) − 𝑥2𝑘+1) (𝑥2𝑔+1−2𝑘 −1) = 0 with 1 ≤ 𝑘 ≤
[ 𝑔

2
]
.

Then p is a singularity of R on Γ contained in a singularity of type (2𝑘 + 1 → 2𝑘 + 1). In this case,
𝑠2𝑘+1(𝐹) = 1 and 𝑠𝑖 (𝐹) = 0 for all other 𝑖 ≥ 3.

3. Suppose that g is odd, and that the local equation of R over b is 𝑡 (𝑡𝑔+1 − 𝑥2(𝑔+1) ) = 0. Then p is also
the unique singularity of R on Γ. In this case, 𝑠𝑔+2(𝐹) = 1 and 𝑠𝑖 (𝐹) = 0 for all other 𝑖 ≥ 3.

We remark that the minimality of 𝑅2 implies that 𝑠𝑔+2(𝐹) = 0 if g is even (cf. [17, Thm 2.6 and its
proof])

Let 𝐾�̂�/𝐵 = 𝐾�̂� − ℎ̂∗𝐾𝐵 and 𝑅′ = �̂� \ �̂� , where �̂� is the union of isolated vertical (−2)-curves in �̂�.
Here, an irreducible curve 𝐶 ⊂ �̂� is said to be isolated in R if there is no other irreducible curve 𝐶 ′ ⊂ �̂�
such that 𝐶 ∩ 𝐶 ′ ≠ ∅. We define

𝑠2 � (𝐾�̂�/𝐵 + 𝑅′) · 𝑅′ and 𝑠𝑖 �
∑

𝐹 is singular
𝑠𝑖 (𝐹), 3 ≤ 𝑖 ≤ 𝑔 + 2.

Note that 𝑠𝑖 is nonnegative for 𝑖 ≥ 3 by definition, but the singularity index 𝑠2 might be negative ( cf. [9]).

Lemma 2.4 [25, 26]. These singularity indices 𝑠𝑖’s defined above are independent on the choices of 𝜓
in Lemma 2.1.

According to [25, page 604], we can write 𝑅 ∼ −(𝑔 + 1)𝐾𝑃/𝐵 + 𝑛𝐹, where ‘∼’ stands for numerical
equivalence, and

𝑛 =
𝑅2

4(𝑔 + 1)
, (2.2)

which is an integer. The following formulas for hyperelliptic fibrations are due to Xiao; we refer to
[25, Thm 1] or [17, Thm 2.6] for a proof.

Theorem 2.5. Let 𝑓 : 𝑆 → 𝐵 be a hyperelliptic fibration of genus 𝑔 ≥ 2, and let 𝑠𝑖’s be the singularity
indices as above. Then

𝜒 𝑓 =
1
2
𝑔𝑛 −

[
𝑔+1

2 ]∑
𝑘=1

𝑘2𝑠2𝑘+1 −

[
𝑔+1

2 ]∑
𝑘=2

𝑘 (𝑘 − 1)
2

𝑠2𝑘

=
𝑔𝑠2 + (𝑔2 − 2𝑔 − 1)𝑠𝑔+2

4(2𝑔 + 1)
+

[
𝑔
2 ]∑
𝑘=1

𝑘 (𝑔 − 𝑘)

2𝑔 + 1
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

𝑘 (𝑔 − 𝑘 + 1)
2(2𝑔 + 1)

𝑠2𝑘 ;

𝐾2
𝑓 = (2𝑔 − 2)𝑛 + 𝑠𝑔+2 −

[
𝑔+1

2 ]∑
𝑘=1

(2𝑘 − 1)2𝑠2𝑘+1 −

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)2𝑠2𝑘

=
(𝑔 − 1)

(
𝑠2 + (3𝑔 + 1)𝑠𝑔+2

)
2𝑔 + 1

+

[
𝑔
2 ]∑
𝑘=1

12𝑘 (𝑔 − 𝑘) − 2𝑔 − 1
2𝑔 + 1

𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

6𝑘 (𝑔 − 𝑘 + 1) − 4𝑔 − 2
2𝑔 + 1

𝑠2𝑘 ;

𝑒 𝑓 = 𝑠2 − 2𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

𝑠2𝑘+1 + 2
[
𝑔+1

2 ]∑
𝑘=2

𝑠2𝑘 .
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Suppose that f is not locally trivial. Then the above formulas imply in particular that(
𝜆 𝑓 −

4(𝑔 − 1)
𝑔

)
𝜒 𝑓 = 𝐾2

𝑓 −
4(𝑔 − 1)

𝑔
𝜒 𝑓

=
𝑔2 − 1
𝑔

𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

4𝑘 (𝑔 − 𝑘) − 𝑔

𝑔
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2𝑘 (𝑔 − 𝑘 + 1) − 2𝑔
𝑔

𝑠2𝑘 .

(2.3)

Corollary 2.6 [26, 16]. Let 𝑓 : 𝑆 → 𝐵 be a not locally trivial hyperelliptic fibration of genus 𝑔 ≥ 2.
Then the slope 𝜆 𝑓 satisfies

4(𝑔 − 1)
𝑔

≤ 𝜆 𝑓 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12 −

8𝑔 + 4
𝑔2 , if 𝑔 is even

12 −
8𝑔 + 4
𝑔2 − 1

, if 𝑔 is odd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ < 12. (2.4)

If, moreover, the base curve B is an elliptic curve, then the upper bound of 𝜆 𝑓 can be improved. In
this case, 𝑔(𝐵) = 1, and hence, the relative invariants of f equal the corresponding invariants of the
surface S; that is,

𝐾2
𝑓 = 𝐾2

𝑆 , 𝜒 𝑓 = 𝜒 = 𝜒(O𝑆), 𝑒 𝑓 = 𝑒(𝑆). (2.5)

By the Miyaoka-Yau inequality together with (2.5), one obtains

𝜆 𝑓 =
𝐾2
𝑓

𝜒 𝑓
≤ 9. (2.6)

To end this section, we mention that by (2.3)together with (2.6) and (2.4), one obtains

𝜒 𝑓 ≥
𝑔2 − 1
5𝑔 + 4

𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑔 − 4𝑘2

5𝑔 + 4
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1) (𝑔 − 𝑘)

5𝑔 + 4
𝑠2𝑘 , if 𝑔(𝐵) = 1, (2.7)

𝜒 𝑓 >
𝑔2 − 1
8𝑔 + 4

𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑔 − 4𝑘2

8𝑔 + 4
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1) (𝑔 − 𝑘)

8𝑔 + 4
𝑠2𝑘 , if 𝑔(𝐵) ≥ 2. (2.8)

3. Quadratic upper bounds on hyperelliptic Albanese fibrations

The main purpose of this section is to prove Theorem 1.2. We will prove the following upper bounds
(using the relative invariants) on the genus g for any not locally trivial hyperelliptic fibration, not
necessarily the Albanese fibration. We remark once more that the relative invariants of f equal the
corresponding invariants of the surface S (cf. (2.5)) if the base B is an elliptic curve.

Theorem 3.1. Let 𝑓 : 𝑆 → 𝐵 be a relatively minimal hyperelliptic fibration of genus 𝑔 ≥ 2. Suppose
that f is not locally trivial.

1. If 𝜆 𝑓 ≤ 4, then

𝑔 ≤
4𝜒 𝑓 + 4

2 + (4𝜒 𝑓 − 𝐾2
𝑓 )

≤ 2𝜒 𝑓 + 2.
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2. If 𝜆 𝑓 > 4, then

𝑔 ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝜒 𝑓 + 1, if 𝑔(𝐵) = 0;
25
4
𝜒2
𝑓 +

19
2
𝜒 𝑓 + 2, if 𝑔(𝐵) = 1;

16𝜒2
𝑓 + 14𝜒 𝑓 + 2, if 𝑔(𝐵) ≥ 2.

We first prove Theorem 1.2 based on Theorem 3.1.

Proof of Theorem 1.2. Let 𝑓 : 𝑆 → 𝐵 be the Albanese fibration of S and let g be the genus of a general
fiber of f. Since 𝑔(𝐵) = 𝑞(𝑆) = 1, f must be not locally trivial; otherwise, 𝜒(O𝑆) = 𝜒 𝑓 = 0 which is
absurd. Thus, by (2.5) together with Theorem 3.1 (2), one obtains (1.1). �

Remark 3.2. (1) If 𝜆 𝑓 = 4 and 𝑔(𝐵) = 1, then the upper bound 𝑔 ≤ 2𝜒 𝑓 + 2 has already been obtained
by Ishida [13].

(2) We will construct examples in Section 5 showing that the quadratic upper bounds cannot be
improved into a linear one.

The proof of Theorem 3.1 relies on the following technical result.

Theorem 3.3. Let 𝑓 : 𝑆 → 𝐵 be a relatively minimal hyperelliptic fibration of genus 𝑔 ≥ 2, and
𝑛 = 𝑅2

4(𝑔+1) be an integer as in (2.2). Suppose that f is not locally trivial with slope 𝜆 𝑓 > 4 and 𝑔(𝐵) ≥ 1.
Then

1 ≤ 𝑛 ≤
(𝜆 𝑓 − 4

2
+

𝜆 𝑓

𝑔 − 1

)
𝜒 𝑓 , (3.1)

and

𝑔 ≤
(𝜆 𝑓 − 4)2

4𝑛
𝜒2
𝑓 + (𝜆 𝑓 − 4 +

𝜆 𝑓

2𝑛
)𝜒 𝑓 + 𝑛 + 1. (3.2)

Moreover, equality in (3.2) holds if and only if there exists exactly one 𝑠2𝑘 = 1 for some 𝑘 ≥ 2 and
𝑠𝑖 = 0 for all 𝑖 ≥ 3, 𝑖 ≠ 2𝑘 .

We first prove Theorem 3.1 based on Theorem 3.3 in the following, and then prove Theorem 3.3.

Proof of Theorem 3.1. (1). Note that if 𝑠𝑖 = 0 for all 𝑖 ≥ 3, then by Theorem 2.5, we get 𝜒 𝑓 = 1
2𝑔𝑛, and

consequently, 𝑔 =
2𝜒 𝑓

𝑛 ≤ 2𝜒 𝑓 < 2𝜒 𝑓 + 2. So we can assume that 𝑠𝑖 ≠ 0 for some 𝑖 ≥ 3.
Since 𝜆 𝑓 ≤ 4 (i.e., 𝐾2

𝑓 ≤ 4𝜒 𝑓 ), it follows that 𝑡 := 4𝜒 𝑓 − 𝐾2
𝑓 ≥ 0. By Theorem 2.5, one gets

𝜒 𝑓 −
𝑔𝑡

4
=
𝑔

4

(
𝐾2
𝑓 −

4(𝑔 − 1)
𝑔

𝜒 𝑓

)
=
𝑔2 − 1

4
𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑔 − 4𝑘2

4
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(𝑘 − 1) (𝑔 − 𝑘)

2
𝑠2𝑘

≥ min

{
𝑔2 − 1

4
, min

1≤𝑘≤[
𝑔
2 ]

(4𝑘 − 1)𝑔 − 4𝑘2

4
, min

2≤𝑘≤[
𝑔+1

2 ]

(𝑘 − 1) (𝑔 − 𝑘)

2

}
=
𝑔 − 2

2
.

Thus, 𝑔 ≤
4𝜒 𝑓 +4

2+𝑡 ≤ 2𝜒 𝑓 + 2, as required.

https://doi.org/10.1017/fms.2025.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.43


8 S. Ling and X. Lü

(2). If 𝑔(𝐵) = 0, then

𝜒 𝑓 = 𝜒(O𝑆) + (𝑔 − 1) = 𝑝𝑔 − 𝑞 + 𝑔 ≥
𝑔 − 1

2
.

The inequality above follows from the inequality 𝑞 ≤
𝑔+1

2 by Xiao [24] and the non-negativity of 𝑝𝑔.
Hence, 𝑔 ≤ 2𝜒 𝑓 + 1, as required.

We consider next the case when 𝑔(𝐵) ≥ 1. By Theorem 3.3 above, we have

𝑔 ≤
(𝜆 𝑓 − 4)2

4𝑛
𝜒2
𝑓 + (𝜆 𝑓 − 4 +

𝜆 𝑓

2𝑛
)𝜒 𝑓 + 𝑛 + 1, 𝑛 ≤

(𝜆 𝑓 − 4
2

+
𝜆 𝑓

𝑔 − 1
)
𝜒 𝑓 . (3.3)

If 𝑔(𝐵) = 1, then 𝜆 𝑓 ≤ 9 by (2.6), and hence,

𝑔 ≤ max
1≤𝑛≤

( 𝜆 𝑓 −4
2 +

𝜆 𝑓
𝑔−1

)
𝜒 𝑓

{
𝑔(𝑛) :=

25
4𝑛
𝜒2
𝑓 +

(
5 +

9
2𝑛

)
𝜒 𝑓 + 𝑛 + 1

}
.

Suppose that

𝑔 >
25
4
𝜒2
𝑓 +

19
2
𝜒 𝑓 + 2 = 𝑔(1). (3.4)

Since 𝜒 𝑓 ≥ 1, we have 𝑔 ≥ 18, and thus, 𝑛 ≤ 3𝜒 𝑓 . Note that as n increases, 𝑔(𝑛) first decreases and
then increases. Hence, we have

𝑔 ≤ max
1≤𝑛≤

( 𝜆 𝑓 −4
2 +

𝜆 𝑓
𝑔−1

)
𝜒 𝑓

{𝑔(𝑛)} ≤ max{𝑔(1), 𝑔(3𝜒 𝑓 )} = max{𝑔(1),
121
12

𝜒 𝑓 +
5
2
} = 𝑔(1),

which contradicts to (3.4).
If 𝑔(𝐵) = 2, the argument is almost the same as the case when 𝑔(𝐵) = 1, except that we have to

replace (2.6) by (2.4); the details are omitted here. �

We now prove the technical result Theorem 3.3.

Proof of Theorem 3.3. We first prove (3.2). By Theorem 2.5, we have

(𝜆 𝑓 − 4)𝜒 𝑓 + 2𝑛 = 𝐾2
𝑓 − 4𝜒 𝑓 + 2𝑛 = (2𝑔 + 2)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)𝑠2𝑘 . (3.5)

Hence,

(𝜆 𝑓 − 4)2𝜒2
𝑓 + (4𝑛 + 3) (𝜆 𝑓 − 4)𝜒 𝑓 + 4𝑛2 + 6𝑛

=
(
(𝜆 𝑓 − 4)𝜒 𝑓 + 2𝑛

)2
+ 3

(
(𝜆 𝑓 − 4)𝜒 𝑓 + 2𝑛

)
=
(
(2𝑔 + 2)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)𝑠2𝑘

)2

+ 3
(
(2𝑔 + 2)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)𝑠2𝑘

)
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≥ (𝑔 + 1) (4𝑔 + 10)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(16𝑘2 + 4𝑘 − 2)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(4𝑘2 − 2𝑘 − 2)𝑠2𝑘

≥ (𝑔 + 1) (2𝑔 + 4)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(8𝑘2 + 4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(4𝑘2 − 2𝑘 − 2)𝑠2𝑘 . (3.6)

However, by Theorem 2.5, we have

𝜒 𝑓 =
𝑔𝑠2 + (𝑔2 − 2𝑔 − 1)𝑠𝑔+2

4(2𝑔 + 1)
+

[
𝑔
2 ]∑
𝑘=1

𝑘 (𝑔 − 𝑘)

2𝑔 + 1
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

𝑘 (𝑔 − 𝑘 + 1)
2(2𝑔 + 1)

𝑠2𝑘

=
𝑔

4(2𝑔 + 1)

(
𝑒 𝑓 −

[
𝑔
2 ]∑
𝑘=1

𝑠2𝑘+1 −

[
𝑔+1

2 ]∑
𝑘=2

2𝑠2𝑘

)
+
(𝑔2 − 1)𝑠𝑔+2

4(2𝑔 + 1)
+

[
𝑔
2 ]∑
𝑘=1

𝑘 (𝑔 − 𝑘)

2𝑔 + 1
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

𝑘 (𝑔 − 𝑘 + 1)
2(2𝑔 + 1)

𝑠2𝑘

=
1
8

(
𝑒 𝑓 + (2𝑔 + 2)𝑠𝑔+2

)
+

[
𝑔
2 ]∑
𝑘=1

( 𝑘
2
−

1
8
)
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

( 𝑘
4
−

1
4
)
𝑠2𝑘

−
1

2𝑔 + 1
����

1
8

(
𝑒 𝑓 + (𝑔 + 1)(2𝑔 + 4)𝑠𝑔+2

)
+

[
𝑔
2 ]∑
𝑘=1

(2𝑘2 + 𝑘

2
−

1
8
)
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(2𝑘2 − 𝑘

4
−

1
4
)
𝑠2𝑘

����.
Combining this with (3.5), we get

2𝑛 = 𝑒 𝑓 + (2𝑔 + 2)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)𝑠2𝑘 − 8𝜒 𝑓

=
1

2𝑔 + 1

(
𝑒 𝑓 + (𝑔 + 1) (2𝑔 + 4)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(8𝑘2 + 4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(4𝑘2 − 2𝑘 − 2)𝑠2𝑘

)
. (3.7)

Note that the left-hand side of the above equality is an integer and that the right-hand side of the above
equality is positive. Hence, we have

𝑒 𝑓 + (𝑔 + 1) (2𝑔 + 4)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(8𝑘2 + 4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(4𝑘2 − 2𝑘 − 2)𝑠2𝑘 = 2𝑛(2𝑔 + 1). (3.8)

Now combining (3.6) and (3.8), we get

(𝜆 𝑓 − 4)2𝜒2
𝑓 +

(
4𝑛(𝜆 𝑓 − 4) + 2𝜆 𝑓

)
𝜒 𝑓 + 4𝑛2 + 6𝑛

= 𝑒 𝑓 + (𝜆 𝑓 − 4)2𝜒2
𝑓 + (4𝑛 + 3) (𝜆 𝑓 − 4)𝜒 𝑓 + 4𝑛2 + 6𝑛

≥ 𝑒 𝑓 + (𝑔 + 1) (2𝑔 + 4)𝑠𝑔+2 +

[
𝑔+1

2 ]∑
𝑘=1

(8𝑘2 + 4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

(4𝑘2 − 2𝑘 − 2)𝑠2𝑘

= 2𝑛(2𝑔 + 1). (3.9)

Hence, we get

𝑔 ≤
(𝜆 𝑓 − 4)2

4𝑛
𝜒2
𝑓 +

(
𝜆 𝑓 − 4 +

𝜆 𝑓

2𝑛
)
𝜒 𝑓 + 𝑛 + 1.
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Finally, the equality in (3.2) holds if and only if equality in (3.6) holds, and if and only if there exists
exactly one 𝑠2𝑘 = 1 for some 𝑘 ≥ 2 and 𝑠𝑖 = 0 for all 𝑖 ≥ 3, 𝑖 ≠ 2𝑘 .

Now we prove (3.1). According to (2.3) and (3.7), we get

(𝜆 𝑓 − 4)𝑔 + 4
𝑔

𝜒 𝑓 ≥
𝑔 − 1

2𝑔
����(2𝑔 + 2)𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(4𝑘 − 1)𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=2

2(𝑘 − 1)𝑠2𝑘
����

≥
𝑔 − 1

2𝑔
(
(𝜆 𝑓 − 4)𝜒 𝑓 + 2𝑛

)
.

This proves (3.1). �

Remark 3.4. We will construct examples reaching the equality in (3.2); see Example 5.6.

If 𝜒 𝑓 is large, one can obtain a better upper bound on g as follows.

Lemma 3.5. Let 𝑓 : 𝑆 → 𝐵 be a relatively minimal hyperelliptic fibration of genus 𝑔 ≥ 2, and
𝑛 = 𝑅2

4(𝑔+1) be an integer as in (2.2). Suppose that f is not locally trivial with slope 𝜆 𝑓 > 4 and 𝑔(𝐵) ≥ 1.

Set 𝑔(𝑛) := (𝜆 𝑓 −4)2

4𝑛 𝜒2
𝑓 +

(
𝜆 𝑓 − 4 +

𝜆 𝑓

2𝑛
)
𝜒 𝑓 + 𝑛 + 1. If 𝑔 ≥ 25 and 𝜒 𝑓 ≥ 4, then we have

𝑔(1) ≥ 𝑔(2) ≥ max
1≤𝑛≤

( 𝜆 𝑓 −4
2 +

𝜆 𝑓
𝑔−1

)
𝜒 𝑓

{𝑔(𝑛)}.

Proof. (1) Since 𝜒 𝑓 ≥ 1 and 𝜆 𝑓 ≥ 4, we have 𝜆 𝑓

2 𝜒 𝑓 + 1 ≥
𝜆 𝑓

4 𝜒 𝑓 + 2, and thus, 𝑔(1) ≥ 𝑔(2). So we
only need to prove

𝑔(2) ≥ max
1≤𝑛≤

( 𝜆 𝑓 −4
2 +

𝜆 𝑓
𝑔−1

)
𝜒 𝑓

{𝑔(𝑛)}.

Since 𝑛 ≤
( 𝜆 𝑓 −4

2 +
𝜆 𝑓

𝑔−1
)
𝜒 𝑓 , 𝜆 𝑓 < 12 (see (2.4)) and we have assumed 𝑔 ≥ 25, we get 𝑛 <

𝜆 𝑓 −3
2 𝜒 𝑓 . Note that as n increases, 𝑔(𝑛) first decreases and then increases. Hence, we only need to show

𝑔(2) ≥ 𝑔
( 𝜆 𝑓 −3

2 𝜒 𝑓
)
.

𝑔(2) − 𝑔
(𝜆 𝑓 − 3

2
𝜒 𝑓

)
=
( 𝜒 𝑓

8
−

1
2(𝜆 𝑓 − 3)

)
(𝜆 𝑓 − 4)2𝜒 𝑓 +

6 − 𝜆 𝑓

4
𝜒 𝑓 + 2 −

𝜆 𝑓

𝜆 𝑓 − 3
.

Since we have assumed 𝜆 𝑓 ≥ 4 and 𝜒 𝑓 ≥ 4, we have 𝜒 𝑓

8 ≥ 1
2 ≥ 1

2(𝜆 𝑓 −3) .
(i) If 𝜆 𝑓 ≤ 6, then we have

𝑔(2) − 𝑔
(𝜆 𝑓 − 3

2
𝜒 𝑓

)
≥ 6 − 𝜆 𝑓 + 2 −

𝜆 𝑓

𝜆 𝑓 − 3
= 4 −

(
(𝜆 𝑓 − 3) +

3
𝜆 𝑓 − 3

)
≥ 0.

(ii) If 𝜆 𝑓 > 6, then we have 𝜆 𝑓 − 3 ≥ 3 and 2 −
𝜆 𝑓

𝜆 𝑓 −3 ≥ 0. Hence, we have

𝑔(2) − 𝑔
(𝜆 𝑓 − 3

2
𝜒 𝑓

)
≥

( (1
2
−

1
6
)
(𝜆 𝑓 − 4)2 +

1
2
−
𝜆 𝑓 − 4

4

)
𝜒 𝑓 > 0.

Therefore, if 𝑔 ≥ 25 and 𝜒 𝑓 ≥ 4, we always have 𝑔(2) ≥ 𝑔
( 𝜆 𝑓 −3

2 𝜒 𝑓
)
. �
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Proposition 3.6. Let 𝑓 : 𝑆 → 𝐵 be a relatively minimal hyperelliptic fibration of genus 𝑔 ≥ 2. Suppose
that f is not locally trivial with slope 𝜆 𝑓 ≥ 4 and 𝑔(𝐵) ≥ 1. If 𝑔 ≥ 25 and 𝜒 𝑓 ≥ 4, then we have

𝑔 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝜆 𝑓 − 4)2

4
𝜒2
𝑓 + (

3
2
𝜆 𝑓 − 4)𝜒 𝑓 + 2, if 𝑔 is even;

(𝜆 𝑓 − 4)2

8
𝜒2
𝑓 + (

5
4
𝜆 𝑓 − 4)𝜒 𝑓 + 3, if 𝑔 is odd.

(3.10)

Moreover, equality in (3.10) holds if and only if there exists exactly one 𝑠2𝑘 = 1 for some 𝑘 ≥ 2 and
𝑠𝑖 = 0 for all 𝑖 ≥ 3, 𝑖 ≠ 2𝑘 .

Proof. By Theorem 3.3 and Lemma 3.5, we only need to prove 𝑛 ≥ 2 if g is odd. Here, we use notations
as in Section 2.2. Recall that 𝑅 ∼ −(𝑔+1)𝐾𝑃/𝐵 +𝑛Γ is an even divisor. If g is odd, then −(𝑔+1)𝐾𝑃/𝐵 is
an even divisor, and thus, 𝑛Γ is also an even divisor. Since the Néron-Severi group Num(𝑃) is generated
by a section and a fibre Γ of ℎ : 𝑃 → 𝐵, we see n is even. Since n is a positive integer by (3.7), we get
𝑛 ≥ 2. �

Since we have 𝜆 𝑓 ≤ 9 if 𝑔(𝐵) = 1 (see (2.6)) and 𝜆 𝑓 < 12 if 𝑔(𝐵) ≥ 2 (see (2.4)), we get the
following.

Corollary 3.7. Under the same assumptions as in Proposition 3.6 the following hold.
(1) If 𝑔(𝐵) = 1, we have

𝑔 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
25
4
𝜒2
𝑓 +

19
2
𝜒 𝑓 + 2, if 𝑔 is even;

25
8
𝜒2
𝑓 +

29
4
𝜒 𝑓 + 3, if 𝑔 is odd.

(3.11)

(1) If 𝑔(𝐵) ≥ 2, we have

𝑔 ≤

{
16𝜒2

𝑓 + 14𝜒 𝑓 + 2, if 𝑔 is even;

8𝜒2
𝑓 + 11𝜒 𝑓 + 3, if 𝑔 is odd.

(3.12)

4. Upper bound on hyperelliptic Albanese fibrations with 𝑝𝑔 = 𝑞 = 1

The aim in this section is to prove Theorem 1.4. So we always assume in this section that S is a
minimal irregular surface of general type with 𝑝𝑔 = 𝑞 = 1 and its Albanese fibration 𝑓 : 𝑆 → 𝐵 is
hyperelliptic. In this case, 𝑔(𝐵) = 𝑞 = 1, and f is not locally trivial; otherwise, 0 = 𝜒 𝑓 = 𝜒(O𝑆).
By (2.5), the relative invariants equal the corresponding invariants of S. We use the singularity indices
𝑠𝑖’s introduced in Section 2.2. Since it is unknown whether 𝑠2 is nonnegative, we divide the proof into
two cases, depending on whether 𝑠2 < 0 or 𝑠2 ≥ 0. The proof of Theorem 1.4 will be completed in
Proposition 4.1, Proposition 4.4 and Proposition 4.5.

Proposition 4.1. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g. If 𝑠2 < 0, then 𝑔 ≤ 5.

Proof. We first claim the following:

Claim 4.2. If 𝑠2 < 0, then we have 𝐾2
𝑆 ≤ 7.

Proof of Claim 4.2. If 𝑠2 < 0, using notations in Section 2.2, we see that �̂� must contain some isolated
curve C with𝐶2 ≠ −2. So there must be some smooth rational curves𝐶 contained in fibers of f. Assume
𝐶2 = −𝑛. By [18, Theorem 1.1], we have
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3
2
≤

(𝑛 + 1)2

3𝑛
≤ 𝑒(𝑆) −

1
3
𝐾2
𝑆 =

4
3
(9𝜒 − 𝐾2

𝑆).

Hence, we get 𝐾2
𝑆 ≤ 9 − 9

8 , i.e. 𝐾2
𝑆 ≤ 7 since 𝐾2

𝑆 is an integer. �

Come back to the proof of Proposition 4.1. Since 𝑠2 is an integer and we have assumed that 𝑠2 < 0,
we see that 𝑠2 ≤ −1. By Theorem 2.5, we have

𝐾2
𝑓 −

8𝑔 − 14
𝑔 − 1

𝜒 𝑓

= −
𝑔 − 2

2(𝑔 − 1)
𝑠2 +

𝑔2 + 2𝑔 − 5
2(𝑔 − 1)

𝑠𝑔+2 +

[
𝑔
2 ]∑
𝑘=1

(
2𝑘 (𝑔 − 𝑘)

𝑔 − 1
− 1

)
𝑠2𝑘+1 +

[
𝑔+1

2 ]∑
𝑘=3

(
𝑘 (𝑔 − 𝑘 + 1)

𝑔 − 1
− 2

)
𝑠2𝑘

≥
𝑔 − 2

2(𝑔 − 1)
.

Hence,

𝑔 − 2
2(𝑔 − 1)

≤ 𝐾2
𝑓 −

8𝑔 − 14
𝑔 − 1

𝜒 𝑓 ≤ 7 −
8𝑔 − 14
𝑔 − 1

=
7 − 𝑔

𝑔 − 1
.

It follows that 𝑔 ≤ 16
3 (i.e., 𝑔 ≤ 5, as required). �

In the remaining part of this section, we assume that 𝑠2 ≥ 0. We first claim the following:

Claim 4.3. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g. Suppose that 𝑠2 ≥ 0. Then⎧⎪⎪⎪⎨⎪⎪⎪⎩

if 𝑔 ≥ 6, then 𝑠𝑔+2 = 0;
if 𝑔 ≥ 11, then 𝑠2𝑘+1 = 0, ∀ 𝑘 ≥ 2;
if 𝑔 ≥ 13, then 𝑠2𝑘 = 0, ∀ 𝑘 ≥ 6.

(4.1)

Proof. If 𝑠𝑔+2 > 0, then by (2.5) and (2.7), we have

1 = 𝜒 = 𝜒 𝑓 ≥
𝑔2 − 1
5𝑔 + 4

𝑠𝑔+2 ≥
𝑔2 − 1
5𝑔 + 4

, =⇒ 𝑔2 − 5𝑔 − 5 ≤ 0.

Hence, 𝑔 < 6. This shows that 𝑠𝑔+2 = 0 if 𝑔 ≥ 6. The other two inequalities can be proved similarly
using (2.7), and are left to the readers. �

Proposition 4.4. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g. If 𝑔 ≥ 13, then there is only one possible
case for (𝐾2

𝑆 , 𝑔): 𝐾
2
𝑆 = 8, 𝑔 = 14. In particular, 𝑔 ≤ 14.

Proof. Since 𝑔 ≥ 13, by (4.1) together with Theorem 2.5,

2𝑔 + 1 =
𝑔

4
𝑠2 + (𝑔 − 1)𝑠3 + (𝑔 − 1)𝑠4 +

3
2
(𝑔 − 2)𝑠6 + 2(𝑔 − 3)𝑠8 +

5
2
(𝑔 − 4)𝑠10, (4.2)

𝑔𝑛

2
− 1 = 𝑠3 + 𝑠4 + 3𝑠6 + 6𝑠8 + 10𝑠10. (4.3)

(1) We show first that 𝑠10 = 0. Otherwise, by (4.2), 𝑠10 = 1 and

11 −
𝑔

2
=
𝑔

4
𝑠2 + (𝑔 − 1)𝑠3 + (𝑔 − 1)𝑠4 +

3
2
(𝑔 − 2)𝑠6 + 2(𝑔 − 3)𝑠8.
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Since 𝑔 ≥ 13 and each 𝑠𝑖 is a nonnegative integer, it follows that 𝑠3 = 𝑠4 = 𝑠6 = 𝑠8 = 0, and hence,
11 −

𝑔
2 = 𝑔

4 𝑠2 (i.e., 𝑠2 + 2 = 44
𝑔 ), which implies that 𝑠2 = 0 and 𝑔 = 22. Substituting into the formulas of

Theorem 2.5, one obtains that 𝐾2
𝑆 = 𝐾2

𝑓 = 10 > 9 = 9𝜒(O𝑆), which is a contradiction.
(2) We show that if 𝑠8 ≠ 0, then

𝑠8 = 1, 𝑠6 = 𝑠4 = 𝑠3 = 0, 𝑠2 = 2, 𝑔 = 14, 𝐾2
𝑆 = 8.

In fact, by (1), we have already proven 𝑠10 = 0. According to (4.2), 𝑠8 = 1 and

7 =
𝑔

4
𝑠2 + (𝑔 − 1)𝑠3 + (𝑔 − 1)𝑠4 +

3
2
(𝑔 − 2)𝑠6.

Since 𝑔 ≥ 13, it follows that 𝑠3 = 𝑠4 = 𝑠6 = 0, and 𝑔𝑠2 = 28. Hence, either 𝑔 = 28, 𝑠2 = 1 or
𝑔 = 14, 𝑠2 = 2. The first case is impossible; otherwise, by (4.3), one has 𝑛 = 1

2 , which is a contradiction
since n is an integer. Finally, 𝐾2

𝑆 = 8 follows from the formula in Theorem 2.5.
(3) We show that 𝑠6 = 0. Otherwise, we would have 𝑠6 = 1 again by (4.2). Moreover, by the arguments

(1) and (2) above, we have 𝑠10 = 𝑠8 = 0. Moreover, we have

𝑔

2
+ 4 = (2𝑔 + 1) −

3
2
(𝑔 − 2) =

𝑔

4
𝑠2 + (𝑔 − 1)𝑠3 + (𝑔 − 1)𝑠4.

Hence, 𝑠3 = 𝑠4 = 0, 𝑠2 = 3 and 𝑔 = 16. Substituting into (4.3), one obtains that 𝑛 = 1
2 , which gives a

contradiction as n is an integer.
(4) We show that 𝑠3 = 𝑠4 = 0. Otherwise, by (2), 𝑠8 = 0. Combining with (1) and (2) above, we have

𝑠6 = 𝑠8 = 𝑠10 = 0, and by (4.2),

2𝑔 + 1 =
𝑔

4
𝑠2 + (𝑔 − 1) (𝑠3 + 𝑠4).

Hence, 𝑠3 + 𝑠4 ≤ 2. If 𝑠3 + 𝑠4 = 2, then 𝑔𝑠2 = 12, which is impossible since 𝑔 ≥ 13. If 𝑠3 + 𝑠4 = 1, then
by (4.3), one gets 𝑔𝑛 = 4, which is impossible since 𝑔 ≥ 13 and 𝑛 ≥ 1.

In conclusion, if 𝑔 ≥ 13, then except the possible case (𝐾2
𝑆 , 𝑔) = (8, 14), one has 𝑠𝑖 = 0 for all 𝑖 > 2.

Hence, by (4.3), it holds 𝑔𝑛 = 2, which is impossible since n is an integer. This completes the proof. �

Proposition 4.5. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g.

1. The genus 𝑔 ≠ 12.
2. If 𝑔 = 11, then 𝐾2

𝑆 = 8.

Proof. (1) Suppose that 𝑔 = 12. Then by (4.1) together with Theorem 2.5,

25 = 2𝑔 + 1 = 3𝑠2 + 11𝑠3 + 11𝑠4 + 15𝑠6 + 18𝑠8 + 20𝑠10 + 21𝑠12.

Note that all the 𝑠𝑖’s are nonnegative integers. It is not difficult to show that 𝑠6 = 𝑠8 = 𝑠10 = 𝑠12 = 0.
Thus, 3𝑠2 + 11(𝑠3 + 𝑠4) = 25. It follows that 𝑠2 = 1 and 𝑠3 + 𝑠4 = 2. By Theorem 2.5, one has
6𝑛 = 𝑔𝑛

2 = 1 + 𝑠3 + 𝑠4 = 3, which is impossible since n is an integer.
(2) Suppose that 𝑔 = 11. Similar as above, by (4.1) together with Theorem 2.5,

46 = 2(2𝑔 + 1) =
11
2
𝑠2 + 20𝑠3 + 20𝑠4 + 27𝑠6 + 32𝑠8 + 35𝑠10 + 36𝑠12.

In particular, 𝑠2 is even. If 𝑠2 ≥ 6, then

20𝑠3 + 20𝑠4 + 27𝑠6 + 32𝑠8 + 35𝑠10 + 36𝑠12 ≤ 13.
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This is impossible since all 𝑠𝑖’s are nonnegative integers. If 𝑠2 = 4, then

20𝑠3 + 20𝑠4 + 27𝑠6 + 32𝑠8 + 35𝑠10 + 36𝑠12 = 24.

It is again impossible. If 𝑠2 = 2, then

20𝑠3 + 20𝑠4 + 27𝑠6 + 32𝑠8 + 35𝑠10 + 36𝑠12 = 35.

Hence, 𝑠10 = 1 and 𝑠𝑖 = 0 for other 𝑖 > 2. Combining with Theorem 2.5, one computes 𝐾2
𝑆 = 8. If

𝑠2 = 0, then

20𝑠3 + 20𝑠4 + 27𝑠6 + 32𝑠8 + 35𝑠10 + 36𝑠12 = 46.

One checks again that this is impossible since all 𝑠𝑖’s are nonnegative integers. This completes the
proof. �

Remark 4.6. Let S be a minimal surface of general type with 𝑝𝑔 (𝑆) = 𝑞(𝑆) = 1. Suppose that the
Albanese fibration 𝑓 : 𝑆 → 𝐵 of S is hyperelliptic of genus g. By a similar argument as above, one can
show that 𝑔 ≠ 9. More precisely, the list of all possibilities for (𝐾2

𝑆 , 𝑔) is as follow:

𝐾2
𝑆 𝑔

9 4, 6, 8, 10
8 3, 4, 5, 6, 7, 8, 10, 11, 14
7 3, 4, 5, 6
6 2, 3, 4, 5, 6, 7, 8
5 2, 3, 4
4 2, 3, 4

3, 2 2

If 𝐾2
𝑆 = 2, then 𝑔 = 2 by the slope inequality (2.1). If 𝐾2

𝑆 = 3, then one can only get 𝑔 ≤ 4 by the
slope inequality. Catanese-Ciliberto [3, Prop 5.6 & Thm 5.7] proved that in this case, 𝑔 = 2. Our method
here provides a different proof of this result. Finally, it would be interesting to construct examples of
hyperelliptic Albanese fibrations (or exclude the existence) in the above list (𝐾2

𝑆 , 𝑔).

5. Hyperelliptic Albanese fibrations with a quadratic Albanese genus

In this section, we will construct several examples. Example 5.1 and Example 5.6 show that the equalities
in Proposition pro-4-1 can be reached for both g odd and g even; in particular, the genus g of hyperelliptic
Albanese fibrations can be as large as a quadratic function in 𝜒(O𝑆). Example 5.9 indicates that the
equality in Example 3.1 (1) is also sharp.

Example 5.1. There exist a sequence of minimal irregular surfaces 𝑆𝑘 (𝑘 ≥ 3 and odd) of general type
with 𝑞(𝑆𝑘 ) = 1, such that their Albanese maps induce a hyperelliptic fibration 𝑓𝑘 : 𝑆𝑘 → 𝐸 of odd
genus 𝑔𝑘 = (𝑘−1) (𝑘+3)

2 + 1, and that

𝜒(O𝑆𝑘 ) = 𝜒 𝑓𝑘 =
3𝑘 − 1

2
, 𝐾2

𝑆𝑘
= 𝐾2

𝑓𝑘
= 8𝑘 − 8.

We use notations introduced in Section 2.2. To construct the required hyperelliptic fibrations is
equivalent to find appropriate data (𝑃, 𝑅, 𝛿) with suitable singularity indices 𝑠𝑖’s.

For any integer 𝑚 ≥ 1, let 𝐺𝑚 = Z/𝑚Z be the cyclic group of order m. Assume that 𝜎 ∈ 𝐺𝑚 acts on
P

1 by 𝜎(𝑡) = 𝜉𝑡 (where 𝜉 is any m-th primitive unit root), and 𝜎 ∈ 𝐺𝑚 acts on some elliptic curve 𝐸0
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by translation 𝜎(𝑥) = 𝑥 + 𝑝, where p is a torsion point of order m. Let 𝑃 := (𝐸0 × P
1)/𝐺𝑚, where 𝐺𝑚

acts on 𝐸0 × P
1 by the diagonal action. Then we have the following commutative diagram:

𝐸0 × P
1 Π ��

��

𝑃 := (𝐸0 × P
1)/𝐺𝑚

ℎ

��
𝐸0

𝑚:1 �� 𝐸 := 𝐸0/𝐺𝑚

Then ℎ : 𝑃 → 𝐸 is a P1-bundle over the elliptic curve E. In fact, 𝑃 � P(O𝐸 ⊕ N ), and it admits two
sections 𝐶0, 𝐶∞ with 𝐶2

0 = 𝐶2
∞ = 0, where N is a torsion line bundle of order m over E. Denote by Γ the

general fiber of h. As a geometric ruled surface over an elliptic curve, the Picard group of P is simply

Pic (𝑃) = Z[𝐶0] ⊕ ℎ∗Pic (𝐸).

Lemma 5.2. Let ℎ : 𝑃 → 𝐸 be the P1-bundle above. For any irreducible curve𝐷 ⊆ 𝑃, let𝐷 ∼ 𝑎𝐶0+𝑏Γ.
Then 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑎 + 𝑏 > 0. Moreover, if 𝑏 = 0, then 𝑎 ≥ 𝑚 unless 𝐷 = 𝐶0 or 𝐶∞.

Proof. We prove here that 𝑎 ≥ 𝑚 if 𝐷 ≠ 𝐶0, 𝐷 ≠ 𝐶∞ and 𝑏 = 0. The rest is clear by [10, §V.2]. Let
𝐷 ′ = Π∗(𝐷) ⊆ 𝐸0 × P1. Since 𝐷 ∼ 𝑎𝐶0, it follows that 𝐷 ′ ∼ 𝑎𝐶 ′, where 𝐶 ′ stands for 𝐸0 × {𝑥} ⊆

𝐸0 × P
1. In particular, 𝐷 ′ consists of several sections (the number is exactly a) of the trivial P1-bundle

𝐸0 × P1 → 𝐸0. However, as 𝐷 ≠ 𝐶0 and 𝐷 ≠ 𝐶∞, it follows that any irreducible component in 𝐷 ′

maps to another component under any non-identity element of the Galois group 𝐺𝑚. It follows that the
number of irreducible components in 𝐷 ′ is a multiple of m, and in particular, 𝑎 ≥ 𝑚, as required. �

Lemma 5.3. Let ℎ : 𝑃 → 𝐸 be the P1-bundle above. For any 𝑝 ∈ 𝑃 \ {𝐶0 ∪𝐶∞}, let 𝜏 : 𝑃 → 𝑃 be the
blow-up centered at p, and E be the exceptional curve. Then for any odd 3 ≤ 𝑘 ≤ 𝑚 − 2, there exists a
smooth divisor 𝑅 ∈

��𝜏∗ ((2𝑔𝑘 + 2)𝐶0 + 2Γ
)
− 2𝑘E

��, where 𝑔𝑘 = (𝑘−1) (𝑘+3)
2 + 1.

Proof. It is enough to prove that the linear system
��𝜏∗ ((2𝑔𝑘 + 2)𝐶0 + 2Γ

)
− 2𝑘E

�� is base-point-free.
Note that 𝐾𝑃 = 𝜏∗𝐾𝑃 + E . It follows that 𝜏∗

(
(2𝑔𝑘 + 2)𝐶0 + 2Γ

)
− 2𝑘E = 𝐾𝑃 + 𝐿, where

𝐿 = 𝜏∗
(
(2𝑔𝑘 + 2)𝐶0 + 2Γ − 𝐾𝑃

)
− (2𝑘 + 1)E .

Note that numerically, we have 𝐾𝑃 ∼ −2𝐶0. Hence, 𝐿2 = 4𝑘 + 11 ≥ 15 > 0. We claim the following.

Claim 5.4. For any irreducible curve 𝐷 ⊆ 𝑃, 𝐿 · 𝐷 ≥ 2. In particular, L is ample.

Assuming the above claim, then one sees easily that the linear system��𝜏∗ ((2𝑔𝑘 + 2)𝐶0 + 2Γ
)
− 2𝑘E

�� = ��𝐾𝑃 + 𝐿
��

is base-point-free by applying Reider’s method [22]. Hence, a general divisor 𝑅 ∈
��𝐾𝑃 + 𝐿

�� is smooth
by Bertini’s theorem.

It remains to prove Claim 5.4. Let 𝐷 ⊆ 𝑃 be any irreducible curve. If 𝐷 = E , or 𝐷 is the strict
transform of any fiber of ℎ : 𝑃 → 𝐸 . Then one checks easily that

𝐿 · 𝐷 > 2.

Otherwise, 𝐷 ∼ 𝜏∗(𝑎𝐶0 + 𝑏Γ) − 𝛽E with 𝑎 > 0 (i.e., the restriction ℎ|�̃� : 𝐷 → 𝐸 is surjective). Thus,

0 ≤ 2𝑝𝑎 (𝐷) − 2 = (𝐾𝑃 + 𝐷) · 𝐷, namely, 2(𝑎 − 1)𝑏 ≥ 𝛽(𝛽 − 1). (5.1)
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By direct computation,

𝐿 · 𝐷 = 2
(
𝑎 + (𝑔𝑘 + 2)𝑏

)
− (2𝑘 + 1)𝛽 = 2𝑎 + (𝑘 + 1)2𝑏 − (2𝑘 + 1)𝛽 + 2𝑏.

If 𝛽 ≥ 𝑘 + 2, then

𝐿 · 𝐷 = 2 + 2(𝑎 − 1) + (𝑘 + 1)2𝑏 − (2𝑘 + 1)𝛽 + 2𝑏

≥ 2 + 2
√

2(𝑘 + 1)2(𝑎 − 1)𝑏 − (2𝑘 + 1)𝛽

≥ 2 + 2(𝑘 + 1)
√
𝛽(𝛽 − 1) − (2𝑘 + 1)𝛽

> 2;

if 𝛽 ≤ 𝑘 + 1, then

𝐿 · 𝐷 = 2 + 2(𝑎 − 1) + (𝑘 + 1)2𝑏 − (2𝑘 + 1)𝛽 + 2𝑏

≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 + 2(𝑘 + 1)2 − (2𝑘 + 1) (𝑘 + 1) = 𝑘 + 3 > 2, if 𝑏 ≥ 2;
2 + 𝛽(𝛽 − 1) + (𝑘 + 1)2 − (2𝑘 + 1)𝛽 = 2 + (𝑘 + 1 − 𝛽)2 > 2, if 𝑏 = 1,
2, if 𝑏 = 0 and 𝑎 = 1;
2𝑎 − (2𝑘 + 1)𝛽 ≥ 2𝑚 − (2𝑘 + 1) > 2, if 𝑏 = 0 and 𝑎 ≥ 2;

Here, we explain a little more about the case when 𝑏 = 0: if 𝑎 = 1, then 𝐷 must be the strict transform
of 𝐶0 or 𝐶∞ by Lemma 5.2, which implies that 𝛽 = 0 since 𝑝 ∈ 𝑃 \ {𝐶0 ∪𝐶∞}, and hence, 𝐿 · 𝐷 = 2; if
𝑎 ≥ 2, then 𝛽 ≤ 1 by (5.1), and 𝑎 ≥ 𝑚 by Lemma 5.2. �

We come back to the construction of the required hyperelliptic Albanese fibrations in Example 5.1.
For any odd 𝑘 ≥ 3, let 𝑅 ∈

��𝜏∗ ((2𝑔𝑘 + 2)𝐶0 + 2Γ
)
− 2𝑘E

�� be any smooth divisor on 𝑃 as in Lemma 5.3.
Let 𝑅 = 𝜏(𝑅) ⊆ 𝑃 be its image in P. Then R admits a singularity of order 2𝑘 at the point p, and

O𝑃 (𝑅) � 𝛿⊗2, where 𝛿 = O𝑃
(
(𝑔𝑘 + 1)𝐶0 + Γ

)
.

Hence, one can construct a hyperelliptic fibration 𝑓𝑘 : 𝑆𝑘 → 𝐸 using the above data (𝑃, 𝑅, 𝛿). The
genus 𝑔𝑘 of a general fiber of 𝑓𝑘 is 𝑔𝑘 = (𝑘−1) (𝑘+3)

2 + 1. Moreover, using the notations introduced in
Section 2.2, one computes that 𝑠2𝑘 = 1, 𝑠2 = (𝐾𝑃/𝐸 + 𝑅) · 𝑅 = 10𝑘 , and 𝑠𝑖 = 0 for other i. Hence, by
Theorem 2.5 (one can also compute 𝜒(O𝑆𝑘 ) and 𝐾2

𝑆𝑘
by applying the formulas [1, §V.22] for double

covers, as 𝑅 is already smooth),

𝜒(O𝑆𝑘 ) = 𝜒 𝑓𝑘 =
3𝑘 − 1

2
, 𝐾2

𝑆𝑘
= 𝐾2

𝑓𝑘
= 8𝑘 − 8.

Suppose that 𝑞(𝑆𝑘 ) = 𝑔(𝐸) = 1. Then 𝑓𝑘 : 𝑆𝑘 → 𝐸 is nothing but the Albanese fibration of 𝑆𝑘 . Thus,
it remains to show that 𝑞(𝑆𝑘 ) = 1. After blowing up 𝜏 : 𝑃 → 𝑃, one sees that 𝑆𝑘 is a double cover of 𝑃
branched over the smooth divisor 𝑅. Moreover, similar to Claim 5.4, one shows that 𝑅 is ample. Hence,
by Kodaira’s vanishing, we get

𝑞(𝑆𝑘 ) = ℎ1 (𝜔𝑆𝑘 ) = ℎ1 (𝜔𝑃) + ℎ
1 (𝜔𝑃 ⊗ 𝛿) = ℎ1 (𝜔𝑃) = 𝑔(𝐸) = 1,

as required.

Remark 5.5. Example 5.1 shows also that the upper bound in Proposition 3.6 for g odd is sharp. Indeed,
the fibration 𝑓𝑘 : 𝑆𝑘 → 𝐸 is a relative minimal hyperelliptic fibration of odd genus 𝑔𝑘 = (𝑘−1) (𝑘+3)

2 + 1,
𝑞(𝑆𝑘 ) = 𝑔(𝐸) = 1, 𝑛 = 𝑅2

4(𝑔+1) = 2, and

https://doi.org/10.1017/fms.2025.43 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.43


Forum of Mathematics, Sigma 17

⎧⎪⎪⎨⎪⎪⎩
𝜒(O𝑆𝑘 ) = 𝜒 𝑓𝑘 =

3𝑘 − 1
2

,

𝐾2
𝑆𝑘

= 𝐾2
𝑓𝑘
= 8𝑘 − 8.

Hence,

𝜆 𝑓𝑘 =
𝐾2
𝑆𝑘

𝜒 𝑓𝑘
=

16
3

−
32

3(3𝑘 − 1)
.

Therefore, one checks directly that

(𝜆 𝑓𝑘 − 4)2

4𝑛
𝜒2
𝑓𝑘
+

(
𝜆 𝑓𝑘 − 4 +

𝜆 𝑓𝑘
2𝑛

)
𝜒 𝑓𝑘 + 𝑛 + 1 =

(𝑘 − 1) (𝑘 + 3)
2

+ 1 = 𝑔𝑘 .

Using a similar method, we can also construct examples reaching the equality in Proposition 3.6 for
g even.

Example 5.6. There exist a sequence of minimal irregular surfaces 𝑆𝑘 (𝑘 ≥ 1 and odd) of general type
with 𝑞(𝑆𝑘 ) = 1, such that their Albanese maps induce a hyperelliptic fibration 𝑓𝑘 : 𝑆𝑘 → 𝐸 of even
genus 𝑔𝑘 = (𝑘 + 1)2, and that

𝜒(O𝑆𝑘 ) = 𝜒 𝑓𝑘 =
3𝑘 + 1

2
, 𝐾2

𝑆𝑘
= 𝐾2

𝑓𝑘
= 8𝑘 − 2, 𝑛 = 1

and the equality in Theorem 3.3 and Proposition 3.6 holds.

The proof is similar to Example 5.1; the difference is that here we take 𝑃 = P𝐸 (𝑉), where V is an
indecomposable rank 2 vector bundle over an elliptic curve E with deg𝑉 = 1.

We use notations as in the construction of Example 5.1. Let ℎ : 𝑃 → 𝐸 be the P1-bundle over the
elliptic curve E. We denote by C a section of h with 𝐶2 = 1 and by Γ a general fibre of h. Then we have

𝐾𝑃/𝐸 = 𝐾𝑃 ∼ −2𝐶 + Γ, 𝐶 · Γ = 1, (𝐾𝑃)
2 = 0, 𝐾𝑃 · 𝐶 = −1, 𝐾𝑃 · Γ = −2.

The key point is the following

Lemma 5.7. For any 𝑝 ∈ 𝑃, let 𝜏 : 𝑃 → 𝑃 be the blow-up centered at p, and E be the ex-
ceptional curve. Then for any odd 𝑘 ≥ 1 and 𝑔𝑘 = (𝑘 + 1)2, there exists a smooth divisor
𝑅 ∈

��𝜏∗ ( − (𝑔𝑘 + 1)𝐾𝑃/𝐸 + Γ
)
− 2𝑘E

�� = ��𝜏∗ ((2𝑔𝑘 + 2)𝐶 − 𝑔Γ
)
− 2𝑘E

��.
Proof. It is enough to prove that the linear system

��𝜏∗ ((2𝑔𝑘 + 2)𝐶 − 𝑔Γ
)
− 2𝑘E

�� is base-point-free. Note
that 𝐾𝑃 = 𝜏∗𝐾𝑃 + E . It follows that 𝜏∗

(
(2𝑔𝑘 + 2)𝐶 − 𝑔Γ

)
− 2𝑘E = 𝐾𝑃 + 𝐿, where

𝐿 = 𝜏∗((2𝑔𝑘 + 4)𝐶 − (𝑔 + 1)Γ) − (2𝑘 + 1)E , 𝐿2 = 4𝑘 + 11 ≥ 15.

We claim the following.

Claim 5.8. For any irreducible curve 𝐷 ⊆ 𝑃, 𝐿 · 𝐷 ≥ 2. In particular, L is ample.

Assuming the above claim, then one sees easily that the linear system��𝜏∗ ((2𝑔𝑘 + 2)𝐶 − 𝑔Γ
)
− 2𝑘E

�� = ��𝐾𝑃 + 𝐿
��

is base-point-free by applying Reider’s method [22]. Hence, a general divisor 𝑅 ∈
��𝐾𝑃 + 𝐿

�� is smooth
by Bertini’s theorem.
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It remains to prove Claim 5.8. Let 𝐷 ⊆ 𝑃 be any irreducible curve. If 𝐷 = E , or 𝐷 is the strict
transform of any fiber of ℎ : 𝑃 → 𝐸 , then one checks easily that

𝐿 · 𝐷 > 2.

Otherwise, assume 𝐷 ∼ 𝜏∗(𝑎𝐶+𝑏Γ)−𝛽E with 𝑎 > 0. Then we have 𝑎+2𝑏 ≥ 0 since 𝐷 is an irreducible
curve. Since the restriction ℎ|�̃� : 𝐷 → 𝐸 is surjective, we have

0 ≤ 2𝑝𝑎 (𝐷) − 2 = (𝐾𝑃 + 𝐷) · 𝐷, namely, (𝑎 + 2𝑏) (𝑎 − 1) ≥ 𝛽(𝛽 − 1). (5.2)

By direct computation,

𝐿 · 𝐷 = (𝑎 + 2𝑏)𝑔𝑘 + 3𝑎 + 4𝑏 − (2𝑘 + 1)𝛽 = (𝑎 + 2𝑏) (𝑘 + 1)2 + 𝑎 − (2𝑘 + 1)𝛽 + 2(𝑎 + 2𝑏).

(i) If 𝑎 + 2𝑏 = 0, then we have 𝑏 ≤ −1 and 𝐷 ∼ −𝑏(𝜏∗𝐾𝑃). Hence, we get 𝐿 · 𝐷 = −2𝑏 ≥ 2;
(ii) if 𝑎 + 2𝑏 = 1, then we have 𝑎 ≥ 𝛽(𝛽 − 1) + 1 by (5.2). Hence, we get

𝐿 · 𝐷 ≥ (𝑘 + 1)2 + 𝛽(𝛽 − 1) + 1 − (2𝑘 + 1)𝛽 + 2 = (𝑘 + 1 − 𝛽)2 + 3 > 2;

(iii) if 𝑎 + 2𝑏 ≥ 2, we discuss the following two subcases separately: if 𝛽 ≥ 𝑘 + 2, then

𝐿 · 𝐷 = (𝑎 + 2𝑏) (𝑘 + 1)2 + (𝑎 − 1) − (2𝑘 + 1)𝛽 + 2(𝑎 + 2𝑏) + 1

≥ 2
√
(𝑘 + 1)2(𝑎 + 2𝑏) (𝑎 − 1) − (2𝑘 + 1)𝛽 + 2(𝑎 + 2𝑏) + 1

≥ 2(𝑘 + 1)
√
𝛽(𝛽 − 1) − (2𝑘 + 1)𝛽 + 2(𝑎 + 2𝑏) + 1

> 2(𝑎 + 2𝑏) + 1 ≥ 1.

Since 𝐿 · 𝐷 is an integer, we get 𝐿 · 𝐷 ≥ 2; if 𝛽 ≤ 𝑘 + 1, then

𝐿 · 𝐷 ≥ 2(𝑘 + 1)2 − (2𝑘 + 1) (𝑘 + 1) + 4 = 𝑘 + 5 > 2. �

We come back to the construction of Example 5.6. For any odd 𝑘 ≥ 1, let

𝑅 ∈
��𝜏∗ ((2𝑔𝑘 + 2)𝐶 − 𝑔Γ

)
− 2𝑘E

��
be any smooth divisor on 𝑃 as in Lemma 5.3. Let 𝑅 = 𝜏(𝑅) ⊆ 𝑃 be its image in P. Then R admits a
singularity of order 2𝑘 at the point p, and

O𝑃 (𝑅) � 𝛿⊗2, where 𝛿 = O𝑃
(
(𝑔𝑘 + 1)𝐶 − 𝑔Γ

)
.

Hence, one can construct a hyperelliptic fibration 𝑓𝑘 : 𝑆𝑘 → 𝐸 using the above data (𝑃, 𝑅, 𝛿). The genus
𝑔𝑘 of a general fiber of 𝑓𝑘 is 𝑔𝑘 = (𝑘 + 1)2. Moreover, using the notations introduced in Section 2.2, one
computes that 𝑠2𝑘 = 1, 𝑠2 = (𝐾𝑃/𝐸 + 𝑅) · 𝑅 = 10𝑘 + 6, and 𝑠𝑖 = 0 for other i. Hence, by Theorem 2.5
(one can also compute 𝜒(O𝑆𝑘 ) and 𝐾2

𝑆𝑘
by applying the formulas [1, §V.22] for double covers, as 𝑅 is

already smooth),

𝜒(O𝑆𝑘 ) = 𝜒 𝑓𝑘 =
3𝑘 + 1

2
, 𝐾2

𝑆𝑘
= 𝐾2

𝑓𝑘
= 8𝑘 − 2.

Suppose that 𝑞(𝑆𝑘 ) = 𝑔(𝐸) = 1. Then 𝑓𝑘 : 𝑆𝑘 → 𝐸 is nothing but the Albanese fibration of 𝑆𝑘 . Thus,
it remains to show that 𝑞(𝑆𝑘 ) = 1. After blowing up 𝜏 : 𝑃 → 𝑃, one sees that 𝑆𝑘 is a double cover
of 𝑃 branched over the smooth divisor 𝑅. Moreover, similar to Claim 5.8, one shows that 𝑅 is ample.
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Hence, arguing as above, 𝑞(𝑆𝑘 ) = 𝑞(𝑃) = 𝑔(𝐸) = 1, as required. Finally, one checks directly that 𝑛 = 1,
𝜆 𝑓𝑘 = 16

3 − 28
3(3𝑘+1) and

(𝜆 𝑓𝑘 − 4)2

4𝑛
𝜒2
𝑓𝑘
+

(
𝜆 𝑓𝑘 − 4 +

𝜆 𝑓𝑘
2𝑛

)
𝜒 𝑓𝑘 + 𝑛 + 1 = (𝑘 + 1)2 = 𝑔𝑘 .

This completes the construction of Example 5.6.
At the end of this section, we construct examples showing that the inequality in Theorem 3.1 (1) is

also sharp.

Example 5.9. In Example 5.6, for any integer 𝑛 ≥ 1, 𝜒𝑛 ≥ 6 such that 𝑛| (2𝜒𝑛 + 2), taking
𝑔𝑛 := 2𝜒𝑛+2

𝑛 ≥ 2, 𝑔𝑛 ≡ 𝑛 − 1(mod 2) and 𝑘 = 2,

𝑅 ∈
��𝜏∗ ( − (𝑔𝑛 + 1)𝐾𝑃/𝐸 + 𝑛Γ

)
− 4E

�� = ��𝜏∗ ((2𝑔𝑛 + 2)𝐶 + (𝑛 − 1 − 𝑔𝑛)Γ
)
− 4E

��,
we can get a sequence of minimal irregular surfaces 𝑆𝑛 (𝑛 ≥ 1) of general type with 𝑞(𝑆𝑛) = 1, such
that their Albanese maps induce a hyperelliptic fibration 𝑓𝑛 : 𝑆𝑛 → 𝐸 of genus 𝑔𝑛 = 2𝜒𝑛+2

𝑛 , and that

𝜒(O𝑆𝑛 ) = 𝜒 𝑓𝑛 = 𝜒𝑛, 𝐾2
𝑆𝑛

= 𝐾2
𝑓𝑛
= 4𝜒 𝑓𝑛 − 2(𝑛 − 1) ≤ 4𝜒 𝑓𝑛 , 𝑔𝑛 =

4𝜒 𝑓𝑛 + 4
2 + 4𝜒 𝑓𝑛 − 𝐾2

𝑓𝑛

.

The construction is the same as in Example 5.6, and we only need to prove the following

Claim 5.10. For 𝐿 = �̃� − 𝐾𝑃 = 𝜏∗((2𝑔𝑛 + 4)𝐶 + (𝑛 − 2 − 𝑔)Γ) − 5E , we have 𝐿2 ≥ 5 and, for any
irreducible curve, 𝐷 ⊆ 𝑃, 𝐿 · 𝐷 ≥ 2.

Proof. Here, we have 𝑛 ≥ 1, 𝑛𝑔𝑛 = 2𝜒𝑛 + 2 ≥ 14 and

𝐿2 = (2𝑔𝑛 + 4)2 + (2𝑔𝑛 + 4) (𝑛 − 𝑔𝑛 − 1) − 25 = 4𝑛𝑔𝑛 + 8𝑛 + 2(2𝑔𝑛 + 4) − 25 > 37 > 5.

Now let 𝐷 ⊆ 𝑃 be any irreducible curve. If 𝐷 = E , or 𝐷 is the strict transform of any fiber of ℎ : 𝑃 → 𝐸 ,
then one checks easily that𝐿 · 𝐷 > 2. Otherwise, assume 𝐷 ∼ 𝜏∗(𝑎𝐶 + 𝑏Γ) − 𝛽E with 𝑎 > 0. Then we
have 𝑎 + 2𝑏 ≥ 0 and (𝑎 + 2𝑏) (𝑎 − 1) ≥ 𝛽(𝛽 − 1) as in Lemma 5.7. By direct computation, we get

𝐿 · 𝐷 = (𝑎 + 2𝑏)𝑔𝑛 + 𝑎𝑛 + 2(𝑎 + 2𝑏) − 5𝛽.

If 𝑎 + 2𝑏 = 0 or 1, one can show 𝐿 · 𝐷 ≥ 2 as in Lemma 5.7. Now assume 𝑎 + 2𝑏 ≥ 2. If 𝛽 ≤ 1, we have
𝐿 · 𝐷 ≥ 2𝑔𝑛 + 𝑎𝑛 + 4 − 5 ≥ 4 since 𝑔𝑛 ≥ 2; if 𝛽 ≥ 2, we have 2𝛽(𝛽 − 1) ≥ 𝛽2, and thus,

𝐿 · 𝐷 = (𝑎 + 2𝑏)𝑔𝑛 + (𝑎 − 1)𝑛 + 𝑛 + 4 − 5𝛽

≥
√

4𝑛𝑔𝑛 (𝑎 + 2𝑏) (𝑎 − 1) − 5𝛽 + 𝑛 + 4

≥
√

56𝛽(𝛽 − 1) − 5𝛽 + 𝑛 + 4
> 𝑛 + 4 ≥ 5. �
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