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SWEEPING OUT PROPERTIES
OF OPERATOR SEQUENCES

MUSTAFA A. AKCOGLU, DZUNG M. HA AND ROGER L. JONES

ABSTRACT.  Letlp = Lp(X,u), 1 < p < oo, be the usual Banach Spaces of real
valued functions on a complete non-atomic probability space. Let (T, ..., Tk) be L,-
contractions. Let 0 < ¢ < § < 1. Call afunction f as-spanning function if ||f|, = 1
and if || Tyf — Qe_1Tifll2 > & foreachk = 1,...,K, where Qp = 0 and Q isthe
orthogonal projection on the subspace spanned by (Taf, ..., Tf). Cal afunction h a
(6, €) -sweeping function if ||hf|.o < 1, ||h|j1 < &, and if max;<k<x |Txh| > 6 —econa
set of measure greater than 1 — ¢. The following is the main technical result, which is
obtained by elementary estimates. Thereis aninteger K = K(g,6) > 1 suchthat if f is
ad-spanning function, and if the joint distribution of (f, T1f,..., Tkf) is normal, then
h= ((f/\M)v(fM)) /Misa(s, e)-sweeping function, for someM > 0. Furthermore, if
Tsaretheaveragesof operatorsinduced by theiteratesof ameasure preserving ergodic
transformation, then asimilar result istrue without requiring that thejoint distribution is
normal. This givesthe following theorem on asequence (T;) of these averages. Assume
that for each K > 1 thereis a subsequence (T, ..., Tj, ) of length K, and aé-spanning
function fi for this subsequence. Then for each ¢ > Othereisafunctionh,0 <h <1,
[Ih]1 < e, such that limsup; T;h > § ae.. Another application of the main result gives
arefinement of a part of Bourgain's “Entropy Theorem”, resulting in a different, self
contained proof of that theorem.

1. Introduction. Let (X, 1) be acomplete non-atomic probability spaceand L, =
Lp(X, 1) the usual Banach Spaces of functionson (X, i), 1 < p < oo. We will consider
only the real valued case; possible extensions to the complex case will be obvious. A
linear operator T on L, is called positive if Tf > 0 whenever f > 0 and a contraction,
or an Ly-contraction, if || T||, < 1. Let (T;) be a sequence of operators on L,. In most
cases Ti's will be contractions of L,. We are interested in knowing whether or not the
sequence (T;f) converges pointwise (a.e.) for al f € L. If (Tif) diverges pointwise,
then we are also interested in the degree of divergence, as measured by sweeping out
properties defined below. We will obtain sufficient conditions for divergence of a given
degree, in termsof the L, behaviour of the sequence (T;f). Our methods al so show how to
construct functionsh that will result in divergent sequencesT;h of agiven degree. Wewill
now start with some definitions and remarks. The main result is stated as Theorems 1.6
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and 1.7. The relation between these theorems and Bourgain’s entropy theorem [10] is
discussed in the remarks following the statement of Theorem 1.7.

1.1 Definition of 6-sweeping out. Let (T;) denote a sequence of positive operators and
0 < 6 <1.Then (T;) issaid to be §-sweeping out if for each ¢ > 0 thereis aset E such
that u(E) < ¢ and such that limsup Ty xe(X) > 6 a.e..

REMARKS. If 6 = 1 then the sequenceis said to have the strong sweeping out prop-
erty. This was the main definition used to characterize the sequences that behave very
badly. Several examples of strongly sweeping out sequences are given in [1]. In [18]
Rosenblatt pointed out that there are sequences of positive L> contractions for which
a.e. divergence occurs, but which do not have the strong sweeping out property. He then
introduced the above definition of 6-sweeping out and showed that there are sequences
of operators (T,) which are § sweeping out, but not 4 + ¢ sweeping out for any ¢ > 0.
Thus it becomes interesting to establish which sequences of operators are 6-sweeping
out, since it gives us a measure of divergence. The d-sweeping out character of a se-
guence will follow from a certain type of behaviour of its finite segments, stated in the
next definition.

1.2 Definition of (6, ¢)-sweeping. Let 0 < ¢ < § < 1. A sequence of functions
(ha, ..., hg) will becalled a(§, £)-sweeping sequenceif ||h||1 < e foreachk = 1,...,K,
and if maxi<k<k |hk| > & — ¢ on a set of measure greater than 1 — &. Let (T1,..., Tk)
be finitely many operators and h be a function. Then h is called a (¢, €)-sweeping func-
tion (for (T1,...,Tk)) if |l < 1, ||h|l1 < €, andif (T1h,..., Tkh) isa(é, €)-sweeping
sequence.

REMARK 1.3. Let (T,) be a sequence of positive L, contractionsand 4 > O fixed.
If for each e > Othereisa (b, ¢)-sweeping function for afinite set of operators from this
sequence, then it is clear that (T, is 6-sweeping out. (See also Rosenblatt [18].) If T,'s
are not assumed to be positive, then the existence of (4, €)-sweeping functions for each
e > 0 till implies the existence of an L, function h such that T,h diverges a.e.. This,
however, is not adirect observation as in the positive case, but follows from the results
of Bellow and Jonesin [7].

Thefollowing definition describesan L, behaviour for afinite sequence of functions,
which implies, in certain cases, the existence of (6, £)-sweeping sequences, as discussed
below.

1.4 Déefinition of 6-spanning. Let0 < 6 < 1. A sequenceof vectors(ay, .. .,ax) inanin-
ner product spacewill becalled aé-spanning sequenceif ||ay|| < 1and ||ax—Qu—12x|| > 6
foreachk = 1,...,K, where Qo = 0 and Q is the orthogonal projection on the sub-
space spanned by (a, ..., ay). In particular a sequence of functions (f, ..., fk) will be
called a-spanning sequenceif they form ad-spanning sequencein Ly. Let (T4,..., Tk)
befinitely many operatorsandf beafunction. Thenf is called as-spanning function (for
(Ta, ..., Tk)) if ||f]|2 = Land if (Taf, ..., Tkf) isaé-spanning sequence.

The following is the main technical result of this article, which establishes arelation
between the §-spanning and (6, £)-sweeping functions.
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THEOREM 1.5. Let0 < e < 6 < 1. Thenthereisan integer K = K(5,¢) > 1 with
the following property. Let (Ty, ..., Tx) be K contractionsin L. If there is a §-spanning
function f for (Ty,. .., Tk) such that the joint distribution of (f, Tf,..., Txf) isnormal,
then thereis an M > 0 such that h = (1/M)((f A M) V (=M)) is a (5, £)-sweeping
function for (Ty, ..., Tk).

Thisresult may not betoo useful by itself, because of therestrictive hypothesisthat the
functionsinvolved must have ajoint normal distribution. This hypothesisis not needed,
however, in the following two cases described below. The first case seems to be more
important, more intuitive, and easier to deal with. As the second case is more general,
however, we will not give the details for the first case, and prove only the second case.
The discussion of the second case starts in Section 1.9, with the definition of ergodic
sequences. The corresponding result is stated as Theorem 1.10.

AVERAGES OF ERGODIC TRANSFORMATIONS. Let7: X — X be ameasure preserving
and ergodic transformation of (X, 1+). We do not assumethat 7 isinvertible. Let A bethe
classof operatorsof theform Tf = > j oif -7'. Let T betheclassof all Lp-contractions
that can be approximated by operatorsfrom A in the sensethat foreach T € T, f € L,
and e > O, thereisaT’ € A suchthat || Tf — T'f||> < e. For transformationsin T the
following result is true.

THEOREM 1.6. Let(Tg, Tq,..., Tk) beK+1transformationsin T andf < L,, where
To = | is the identity transformation. Then there is a sequence f,, in L, such that all
the inner products (Tif,, T;f,) converge to the corresponding products (Tif, Tjf), i, ] =
0, 1,...,K and such that the joint distributions of (Tof,, T1fn,..., Tfn) convergeto a
normal distribution in the weak topol ogy of measuresin R¢*1, induced by the real valued
bounded continuous functions on R<*2,

The proof is constructive and uses Rokhlin’s Lemma and the central limit theorem.
Wewill omit thedetails. Seealso[3], whereapart of thisresult hasbeen proved under the
assumption that the measure spaceis the unit circle and the ergodic transformation 7 is
anirrational rotation. Asknown, this exampleistypical and, with some additional work,
impliesthe general case. Finally, routine approximations show that the Theorems 1.5 and
1.6 together imply the following result.

THEOREM 1.7. Given0 < ¢ < 6 < lthereisaninteger K = K(6,e) > 1 with
the following property. If (T4,..., , T) areK transformationsin T , and if there is a -
spanning function f for (Ty,..., , Tk), thenthereisalso a (6§ — ¢, €)-sweeping function
h for (T]_, . ,TK).

Heretheextrae inthe (6, €)-sweeping function is dueto the fact that an approximately
normal distribution must be used in the application of the first theorem. Again, we will
omit the easy details. It is aso clear that this result, together with the remark in 1.3,
implies the following theorem.
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THEOREM 1.8. Let$ > 0 and let (T;) be a sequence of transformationsin T . If for
each integer K > 1 there are K operators from this sequence admitting a 6-spanning
function, then (T;h) divergesa.e. for an L, function h. Further, if the operatorsare pos-
itive, then (T;) is 6-sweeping out.

1.9 Ergodic Sequences. We will now describe the second case referred to above. A
sequence of operators (P,) on Lo(X, ) will be called an ergodic sequenceif each P, is
a positive isometry of L, with P,1 = 1, and if (1/n) E}Ll P;f convergesin L, to the
constant function Jx f du for each f € L,. In this caseit is easy to see that each P, is
a positive contraction of all L, spaces, P,fPhg = Py(fg) for each f, g € L, and that
(1/n) YL, Pjf convergesto Jx f du in Ly, foreachf € Ly. We will say that a family of
operators commute with an ergodic sequence, if there is an ergodic sequence (Pp,) such
that each P,, commutes with each member of that family.

THEOREM 1.10. Given0 < ¢ < ¢ < 1thereisaninteger K = K(6,¢) > 1 with the
following property. If (T4,. .., , Tk) are K contractionsin L, commuting with an ergodic
sequence, and if there is a §-spanning function f for (T4,...,, Tk), then thereis also a
(6, €)-sweeping function h for (T4, ..., Tk).

As before, it is clear that this result, together with the remark in 1.3, implies the fol-
lowing theorem.

THEOREM 1.11. Leté > Oandlet (T;) be a sequence of L,-contractions commuting
with an ergodic sequence. If for each integer K > 1 there are K operators from this
sequence admitting a 6-spanning function, then (T;h) divergesa.e. for an L, function h.
Further, if the operatorsare positive, then (T;) is 6-sweeping out.

RELATION TO BOURGAIN'S ENTROPY THEOREM. Theseresults are similar to the re-
sults obtained by Bourgain in his entropy theorem [10]. Thissimilarity will be explained
further in the Appendix, Section 6. The method introduced by Bourgain in that theorem
for establishing divergence has proven very useful, and resulted in the first proof of di-
vergence for several sequences of operators. (See [10], [18], and [14] for example.) In
fact, Rosenblatt [18] was able to show that for many interesting diverging sequences of
operators, thereisaé > 0 so that the sequence is §-sweeping out. However, with the
estimates used in Bourgain's proof, it was unclear what the rel ationship was between the
entropy of the diverging sequence of operators, and the value of 4 for §-sweeping out. In
particular, it was not clear if the entropy criteria could be used to establish strong sweep-
ing out. In this paper we refine Bourgain's result so that an estimate of sweeping out
can also be obtained, and in particular in some situations we can obtain strong sweeping
out (see Theorem 1.10). In addition, we give a self contained different proof of a part of
hisresults, concerning the divergencefor bounded functions. Although the present proof
dependson the same basic idea due to Bourgain, namely reducing the general caseto the
normally distributed case and making the estimates for the normally distributed case, it
differs from Bourgain’soriginal proof at both of these stages. In particular, the estimates
for the normal case are done completely differently, in an elementary and self contained
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way, without the use of Slepian’s lemma or Sudakov’s estimate, and the estimates are
aimed at obtaining the sweeping out properties of the sequence.

REMARK. In the case of operators induced by averages of an ergodic measure pre-
serving transformation, the existence of a commuting ergodic sequence(P;) is automatic.
However, for more general operators, the (P;) play an important role. In particular, the
results obtained here are false if we do not assume such a sequence exits. As a simple
example, consider the sequence

T 09 = (VAT [} 10 e .00

These operators are contractions on L,, and it is easy to check that for every K > 1 the
function 1 is aé-spanning function. (In fact we seethat (Tn1, Tml) = Oand | o1l = 1
so these functions even form an orthonormal set.) However, we clearly do not have a
(6, €) sweeping function for (Ty, Ty, ..., Tx) forany K > 1.

RELATED RESULTS. Most of the related results are associated with ergodic trans-
formations. Rosenblatt [17] considered the sequence of binomial averages (b,) defined
by bof () = % o (|)f(7*x), and showed that they can diverge, even for functions
f € L. Krengel [16] considered averages along subsequences of the form Cyf(x) =
% Y F(T™x) where (n) is an increasing sequence of integers. If (ny) = k we have the
usual ergodic averages, which of course converge a.e.. However, Krengel [16] showed
that there are subsequencesfor which the averagesdiverge. Later Bellow [4], [5] showed
that these subsequenceaveragesdivergeif (n) = (2¥), while Bourgain [10] showed they
convergeif (ng) = (k?) andf € Ly, p > 1. Finally we mention aclassical paper of Rudin
[19], in which pointwise divergence properties of Riemann sums were established. The
present proofs for the ergodic case apply to this example. Many other special cases are
known, as discussed in the given references, but understanding for which subsequences
we have convergence of averages along these subsequencesremains an open question.

In addition to operators that arise from questionsin ergodic theory, we can also con-
sider operators that arise in other areas. For example, in the case of singular integrals we
can consider the operator defined by the Fourier multiplier n”, and take a sequence of
v’'s that converge to zero. The question of a.e. convergence or divergence was open for
many years, and the divergence has been shown [14] by the entropy theorem.

COROLLARIESAND EXAMPLES.  Insomeapplicationsit will be convenientto replace
the L, behaviour described by the §-spanning sequencesby adifferent type of behaviour.
The following theorems are obtained in this way.

THEOREM 1.12. Let0 < p < 1 and let (T;) be a sequence of L,-contractions com-
muting with an ergodic sequence. If for each integer K > 1 there are K operators
(Ti,, ..., Ti,) fromthis sequenceand a function f suchthat || T f||2 > 1and(T; f, T;f) <
pforal 1 <k #1I <K, then (Tih) divergesa.e. for an L, function h. Further, if the
operatorsare positive, then (T;) isd-sweeping out withb = /1 — p.

https://doi.org/10.4153/CJM-1997-001-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-001-3

8 MUSTAFA A. AKCOGLU, DZUNG M. HA AND ROGER L. JONES

THEOREM 1.13. Let (T;) be a sequence of positive L,-contractions commuting with
an ergodic sequence. Assume that for each p, 0 < p < 1, and for each integer K >
1 there are K operators (T;,, ..., Tj,) from this sequence and a function f such that
[Tifll2 > Land (T, f, Tif) < pforal 1 < k # | < K. Then (T;) is strong sweep-
ing out.

As an application of these last two theorems we mention the following result. A spe-
cial caseof thisresult, corresponding to “ arbitrarily small «” and strong sweeping out, is
contained in [1], but with a different proof. The construction given in the present proof
is similar to an argument of Rosenblatt in [18], pp. 237—238.

COROLLARY 1.14. LetO < o < (1/5) andlet T bean invertible measure preserving
ergodic transformation. Define a sequence of averagesby Tof (X) = S22 vn(K)f (7%x),

where (vy) is a sequence of probability measureson Z, the set of integers. The Fourier
Transformof v, is

n() = > va(K) exp(2rivk).
k=—00
Assumethat for each K x 2¢ matrix £ = (o)) with each oy € {—1, 1}, we canfind n,
N2,...,Nk andvy,...,7Vx suchthat |7, (7j) — 04| < a. Thenthe sequence of operators

T, are 5-sweeping out with § = /(1 — 5) /(1 — «). Further, if these hypotheses are
satisfied with any choice of «, then (T,) is strong sweeping out.

PROCF. By standard transfer argumentsit is enough to establish this result for asin-
gle dynamical system. We will establishit for the irrational shift on [0, 1) corresponding
to an irrational number . Choose an integer K > 1 and 2 integers ¢; and define

1 Z
f) = — > &mhx,
Then we seethat
1 X i
Tof(X) = —= > In((;0)€7™ 5%,
X3
Hence
12, .
(Tof, Tuf) = = 21 Dn(£;0)7m(€;6).
J:

Form the matrix (oy;) so that each row has half 1's and half —1's, and such that the
rows are independent. (Note that this implies ijil ogoyj = 0.) Thenfind vi's so that
|70 (Vj) — okj| < o There are integers ¢; such that we also have |7, (¢;0) — oyj| < a.
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Henceif f isdefined in terms of these integers then we seethat, if 1 <u # v <K,

(T, TaB) =

12 .
” zum(z,-e)m(eﬁ)‘
=1

12, .
2% Sl (60) = o)

12 R
< yizzlllfnu(fif))m(fﬁ) — 04joyi| < 20

Also note that, since |oy| = 1, |n, (¢;0)] > 1 — . Hence || T f||2 > 1 — o for all
1 <k < K. Looking at the real and imaginary parts of Ty, f and noticing that for at least
half of thek’s, one of these parts has an L,-norm not less than (1 — «) / 2, we see that the
hypotheses of Theorem 1.12 are satisfied with p = 4cr /(1 — «). Hence the proof of the
first part follows. Thelast part follows from Theorem 1.13.

ExAMpPLE 1.15. Fix aprobability measure i on Z, such that 1, satisfies

L [EO) =1
M)

Then the measure v, defined by v, = % u x p % - - - x i, the n-fold convolution of
with itself, has the strong sweeping out property.

The estimates necessary to apply Corollary 1.15 to the above example follow asin
[1]. The sequence of binomial averages considered by Rosenblatt, and defined byf(X) =
720 (?)f(rj X), can be viewed as an n-fold convolution of (5o + 81). Consequently
these averages can be shown to have the strong sweeping out property by the above
resullt.

OQUTLINE OF THE PAPER. |In Section 2 we review the normal distributions briefly,
mainly to establish our notation and state the results we are going to assume. Section 3
containsthe estimatesto prove the main technical result, Theorem 1.5, which is obtained
in Section 4. In Section 5 it isshownthat the general case of Theorem 1.10 can bereduced
to the normally distributed case of Theorem 1.5. Finally Theorem 1.12 is obtained in
Section 6, together with other formulations of some of the resuilts.

2. GaussMeasures.
2.1 The Sandard Gauss Measure. A finite dimensional inner product space W has a
particular measure ™ = Ny onits Borel setsB € B of W, defined by

r(B) = % /B exp(—%(w, w)) A(dw),

where ) isal ebesgue (or Haar) measure for W, and

K= /w exp(—%(w, W)) A(dw)
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is the normalizing factor to make I'(W) = 1. Since any two Lebesgue measures for W
differ only by amultiplicative constant, the standard Gauss measure I isindependent of
the choice of A. In particular, if W = R, with its usual inner product, then we see that

_ 1 /2
FR(B)_\/—Z_W/Be ds

for any Borel set B C R. Fory € R wewill let

1 0 _ @
= I_ y e e /2 dS.
=0) = M0 29)) = 7= |
The following elementary estimate on w(y) is obtained by integration by parts. The de-
tails are given, for example, in [12], Chapter 7, Lemma 2.

LEMMA 2.2. Ify >0, then
2

2
i ben(-S) <mtr< Eeol %)

We will usethis estimate to obtain the following two computational lemmas.

LEMMA 2.3. LetO<e<land2<L.If
K > 10Le-/?log(1/¢)

then
[1—2w(L)]X <e.

PROOF.  Let Kq be the solution of the equation [1 — 2(L)]¥° = €. Hence

109 _ [20(L)] tlog %

Ko = log[1 — 2(L)] =

Using the estimate

1 1\ 12

given above we obtain

V27L3

L2/2 < 12/2
A2 — 1)6 log(1/e) < 10Le~/“log(1/e).

Ko <
Hence[1 — 2(L)]X < e whenever K > K.

The following estimate can be improved substantially. The given form is sufficient
for our purpose, however.
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LEMMA 2.4. If M > 1then
1 o5 e —M2/2
— t°e dt < MeM/2,
=k
PROOF. Integrating by parts and using the estimate
/M et < (1/Mye M /2

we obtain
(Me"\"z/2 + /oo e /2 dt)
M

e

1 2 —2/2
—2_7r/'\"te dt =

<

RESE
B B

which implies the estimate in the Lemma.

NOTATION 2.5. A finite sequence of functions F = (fy,...,fk) on (X, 1) definesa
function
F=(f...,fk): X —RK

which transports i to ameasure Ar on RX, defined by Ar(G) = p(F~1G) for measurable
sets G C RK, and called the distribution measure of F. If f:X — R and M > 0, then
f)m = (F AM) V (—=M) isthe truncated function at =M.

COROLLARY 2.6. Let the distribution measure of f: X — R be the standard Gauss
measure . Then || (f)m]|2 > 1—2MeM*/2and ||f — (f)u |2 < 2Me ™*/2for all M > 1.

ProoF. We have

1(Fml3 = (2 AMP)e /2 dt

1 /00

/27 /=00
1 S 2
=1-—— [ [B—EBAMI)e"/2dt
= [ =@ nm)
1 0 2 2
>1-2— | t%&%2dt>1-2mMe™/?
Ver /’V'

which isthefirst estimate. For the second estimate note that f and f — (f )y havethe same
sign at every point. Hence (f, f — (f)w) > 0 and

IF = EmllZ < IF1Z = 1Fm13-

2.7 Properties of the Sandard Gauss Measure. Isometries of W leave I'y invariant. An
orthogonal projection P: W — V of W onto a subspace V transports 'y to I'y. If V and
U are two orthogonal subspaces spanning W then Ny, is equal to the Cartesian product
measure 'y x My, with the usual identification between W and V x U. In particular, if
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U isaone dimensional subspace spanned by a unit vector ug orthogonal to V, and if the
pairs (v,t) € V x R are identified with the vectorsw = (v + tug) € W, then

_ 1 —t2/2
/W fdry = e /V /R f(v + tuo)e™ /2 dtr v (dv).
Finally,

0= /W (a,w) M'w(dw), and,

(ab)= /W (a, w)(b, w) M (dw)
forany a,b € W.

2.8 General Gauss Measures. A measure 7y on afinite dimensional vector spaceV is
called a(general) Gauss measureif it can be obtained by transporting the standard Gauss
measure Ny of a finite dimensional inner product space W by a linear transformation
L:W — V. In particular, Gauss measures on R¥ are identified with K x K covariance
matrices (that is, symmetric nonnegative definite matrices) in the usual way, asfollows.
Given K vectors (ay, . . .,ax) in W, the linear transformation L: W — RK defined by

LW) = (W, aa), ..., (W, a)) € R

inducesa Gaussmeasurey on RK. Since My isinvariant under the linear isometries of W,
this measure ¥ depends only on the matrix A = {(a;, &)} formed by the inner products
of (ai,...,ak). Thisisacovariance matrix. Conversely, any covariance matrix is of this
form and induces a Gauss measure on RK. Sometimes we will write va to denote the
Gauss measure corresponding to A. Finally, for afixed bounded and continuousfunction
0:R€ — R, the integral fy« ¢ dya depends only on A. We will denote this integral by
D(A). It isclear that ®(A) is a continuous function of A. Finally we have, with the usual
coordinate functions ¢,: RX — R, and with the Gauss measurey defined above in terms
of the K vectors (ay, . . ., ax),

[ &6 = [ wa)wa)rwdw = (@,a)
fordli,j=1,...,K. Hence,
./RK &g dva = Ay,
where A = {A; } isacovariance matrix.

2.9 Gauss Measures Induced by Lo-Functions. In particular, if (ag,...,ax) is a set of
K functions F = (f,...,fk) in Lo(X, ), considered as an inner product space, then the
induced Gauss measure ¥ on RX, as defined above, will be called the Gauss measure
induced by F = (fy,...,fk). It isuniquely specified by

o ffdu= [ &g,
as before. If this Gauss measurey is also the distribution measure of the mapping
(f]_, Ca ,fK): X — RK,
then the functions (f1, . . ., fx) are said to have ajoint normal distribution.
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3. AKeyProposition. Let(Ty,To,...,, Tk) beK contractionsinL,, andf € L%(X).
In this section we obtain a proposition which gives a condition on the function f and on
the distribution of
(f, Taf, ..., Tcf): X — RKH

whichissufficient for the existenceof a (¢, £)-sweeping function for these operators. This
proposition will imply the main Theorems 1.5 and 1.10if we can show that the hypothesis
are satisfied. Thus Sections4 and 5 will be devoted to giving conditions under which the
hypotheses of this proposition are satisfied.

ProPOSITION 3.1. Lete and 6 begiven, 0 < ¢ < § < 1. Then thereis an integer
K > 1, and two numbersR > 0, M > 1 with the following property. Let (Ty, ..., Tk) be
K contractionsin Ly, and f a function such that ||f||, < 3, ||f — (F)m|2 < 10Me M*/2,
and
< — K,
p({x|xeX, max ITf (9] <R}) < 10[1 — 2w(R/5)]

Thenh = (1/M)(f)m isa (8, €)-sweeping function for (Ty, ..., Tk).

PrROOF. Given e andé asin the Proposition, find @ and 3 suchthat 0 < o < 1 < 8
and suchthat ¢ > [1 — («/3)]é. Then find a sufficiently large R > 0 such that

2003
52(1 — a)?
Ky = 10(R/5)eX/ @ log(20/¢) > 2,

e R(*-1)/(@27) log(20/¢) < %

and such that £ /3 > 1/R. Let K be any integer satisfying K1 < K < 2K; and M =
BR/6. With these choices for R, M, and K, assume that there is a function f and K op-
erators (Ty, ..., Tk) satisfying the conditions stated in the Proposition. We claim that
h = (1/M)(f)m isa (s, )-sweeping function for (Ty, ..., Tk). First, clearly, ||h]|., < 1.
Also,

Ihl2 < (@/M)[f]|2 < (1/M) < (1/R) <.

Hence ||h|j1 < &. Now let A and B be the sets on which max;<<k |Tif| < R and
maxy <<k | Tkh| < 6 — e, respectively. We would like to show that p(B) < e. Since
(f)m = Mh, we seethat B is also the set on which

< M@ — ¢).
1g‘kaSXK|'|'k(f)M|_'V|(5 £)

If Cisthe set on which

<
1r§nkagx|< ITk(F)m| < R,

thenB C C, sinceM(6 —¢) < Ra, by the definitionsof o and M. Henceit will be enough
to show that ;1(C) < e. We aready know that

1(A) < 10[1 — 2=(R/§)]¢ < &/2.
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Here the first inequality follows from the hypothesis and the second inequality from
Lemma 2.3, observing that K > K;. Now C — A is contained in the union of the sets Dy
onwhich [Ty(f)m| < Raand |Tif| > R k= 1,...,K. These sets, in turn, are contained
in the sets Ey, on which |Tk(f — (f)M)| > R(1 — «). Since Ty's are L, contractions, and
since ||f — (f)w]|3 < 10MeM*/2 we see that

1 2
< - —M?2/2
#(Bx) < p(Ed) < R — o) 10Me™M/%,
and, consequently,

K _M2/2
Ra—op 10Me

2K, M2
< R op 10Me
/@)

= —20%24516:)2 e 1@ log(20/ )

<e/2,

uw(C—B) <

because of the choice of R. Hence 1(B) < ¢ and the proof is completed.

4. TheNormally Distributed Case. Asindicated in Section 3, we will now show,
in Lemma 4.3 that the hypotheses of Proposition 3.1 are satisfied in the special casethat
the functionsinvolved have a joint normal distribution. Thiswill prove Theorem 1.5.

LEMMA 4.1. Assumethat aninner product space W isthelinear span of a subspace
V and a vector a notin V. Let P; W — V be the orthogonal projectiononV and 6 =
|la— Pal|. Let B C V be a Borel subset of the vector spaceV, R > 0 a number, and

C={w|weW, PweB, |(w,a)| <R}
Then
Fw(C) < [1—2=(R/&)]Tv(B),
where My and 'y denote the respective standard Gauss measures of W and V.

PROOF. Let up = (a — Pa)/é be the unit vector in the direction of (a — Pa). If U
is the subspace spanned by ug then W is spanned by the orthogonal subspacesV and U.
Representing the vectorsw € W asw = v +tug withv = Pw € V andt € R we seethat
w = V+tupisin Cif and only if v € B and t belongsto the closed interval

W) ===~

(va R (v,a)+R
) o1
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Hence,
rw(€) = [ xcwr (cw)

= [ ] xelv+ o) a(@ry(dy

1 e
= ﬁ /B/I(V)e t /Zdtrv(dV)
<L rane
T /B J—

=[1—-2=(R/§)Iv(B),
where the inequality follows from the observation that

/ M2 g < L “ e /2 gt

JA—a

foradl e Rand o > 0.

LEMMA 4.2. Let (ay,...,ax) bead-spanning sequencein W and R > 0. If Cisthe
set of vectorsw € W for which |(w, a)| < Rfor eachk = 1,...,K, then

Fw(C) <[1-2=(R/§).

PrROOF. Let V bethe subspace spanned by the a,’sand U the orthogonal complement
of V. Note that C = (C N V) x U, which shows that N'w(C) = I'v(CN V)Iy(U) =
Mv(CN V). Hence, if K = 1 then, with o = ||y || > 6,

rw(C) = e C/2dt < [1— 2=(R/5)].

1 /R/O(
V21 =R/
The general case follows by induction from the previous lemma.

LEMMA 4.3. Letf bea é-spanning function for (T, ..., Tx). Assume that the func-
tions (f, T1f,..., Tkf) have ajoint normal distribution, as defined in Section 2.9. Then,
for any R > 0and M > 1, [|f — (F)m|3 < 2Me™*/2, and

p({xxeX, max ITf (] <R}) < 2[1—2z(R/8)].

PROOF. Let ¢ :RK*T — R k=0,1,...,K, bethe coordinate functionsin RK*1. We
will write Ty for theidentity operator. Lety bethe Gaussmeasureon R¥*! induced by the
functions (Tof, Tif, ..., Tkf). Since these functions are assumed to have ajoint normal
distribution, the measure 7y is also the distribution measure of the mapping

(Tof, Tlf, . ,TKf): X — RKH'.
Let D be the subset of R<*! defined by the condition that

max R.
max €| <
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Hence the second conclusion of the Lemma can be stated as
Y(D) < 2[1 - 2=(R/&)]¥.

This follows from the corresponding statement in the previous lemma. In fact, let W
be the finite dimensional inner product space obtained as the linear span of the vectors
a =T, k=0,1,...,K, intheHilbert Space L,(X, ). Consider W as a measure space
with its standard Gauss measureI'yy. Let C be the subset of W as defined in Lemma4.3.
Then M'yw(C) = (D), since is also the distribution measure of L: W — RK*! that takes
we Wto

L(wW) = (W, &), (W, a1), ..., (W, a)) € R**,

asdefinedin Section 2.9. To obtain the first statement, notethat the norm of £o: RX*! — R
inLo(RX*, ) isequal to thenorm of f in Ly(X, ), whichis one, because of the definition
of a spanning function, as given in Section 1.4. Hence the distribution measure of &g is
the standard Gauss measure on R and the result follows from Corollary 2.6.

5. General Case.

5.1 Notation. Recall that (X, i) isaprobability space. Let (P,) be an ergodic sequence.
Hence (Py) is a sequence of positive isometries of Lo(X, ) such that P,1 = 1 and such
that (1/N) Zj,’}‘:l P.f convergesin L to the constant function fx f du, for eachf € L. It
is easy to seethat P,’s are contractions of each one of the L, spaces, 1 < p < oo, and
that (1/N) ©=N_, Pnf convergesto Jx f du in Ly, for eachf € Ly. Also, PyfPng = Pn(fg)
for al f,g in L,. Let W be a finite dimensional inner product space with its standard
Gaussmeasurel” = M. The product measure space (X, ) x (W, I') isdenoted by (Z, p).
Let (u) be a sequence of N orthonormal vectors in W. By means of these vectors we
associate to each function f: X — R in L, another function ¢f: X — W, defined by

1 N
vi(X) = N 2 (Paf)(X)un.
n=1

We also defineWf: Z — R by

N
WiE0w) = (4109,) = = (Pl W)

To denotethe dependenceof these mappingson N sometimeswe also write f and Wy f
instead of ¢f and Wf, respectively.

Inwhat followswewill fix aset (f1, .. ., fx) of K functionsin Lo(X, p), with the covari-
ancematrix A = {(fy,fi)}. For each x € X, let A(x) = An(X) be the covariance matrix of
theK vectors (ynfi(x), ..., ¥nfk(X)) in W. Wewill also fix anorm on the space of K x K
matrices. Asin Section 2.9, the Gauss measure corresponding to a covariance matrix B
is denoted by vg and the integral of a continuous and bounded function ¢: RX — R with
respect to vg by ®(B). Note that, if (b4, ..., bk) are K vectorsin W with the covariance
matrix B, then

®@) = [, vdve = [, ¢((b,w)drw.
Herethevalueof o at (£1,...,&k) € RK isdenoted by ¢ (&)).
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LEMMA 5.2. Givenany e > 0, thereisan Np such that if N > Ny then
A=AV <e,

for all xinaset Ey C Xwith u(Ey) > 1— .

PrOOF. Letf and g betwo L, functions. We have

N
>~ Paf ()Pmg(X) (Un, Um)

m=1

Mz

(Unf (), vng()) =

>
Il
=

Pnf ()Png(x)

>
Il
=

Mz

Pn(fg) (%)

I
Zlkr Zlkr Z-
Mz

n=1

Thislast sequenceconvergesinL; to the constant function (f, g) = Jx fgdu. Hencegiven
any 1 > Othereisan N; such that, if N > N; then

(UnF09, ¥ng09) — (F, )] < ex

foral x € Fy C X, with u(Fn) > 1 — e1. Then the proof follows by applying this
argument K2 times, with a sufficiently small «;.

LEmmA 5.3. Iff and g belong to Lo(X, 1) then Wf and Wg belongto L»(Z, p) and
(f,g) = (¥f, %),

wherethe inner productsarein their respective L, spaces.
ProoF. We have
(Wf, Wg) = /Z WiWgdp
- /x /w(wf (x), W) (wg(x), W) Mw(dw)p(dx)
J (69, v909) (e

N
= 3 2 Pt GOPag(c)

1 N
=N ngl(PnfyPng)
= (f,9).

Here, the third equality follows from a basic property of the standard Gauss measures,
as stated in Section 2.7.
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LEMMA 5.4. Asin Notation 5.1, let (f1,...,fk) be K functionsin Lo(X, 1) with the
covariance matrix A. Let 8y be the distribution measure of the mapping

(LPNfl, . LPNfK): Z— RK,

and let oi:RX — R,i = 1,...,1, befinitely many bounded and continuous functions.
Then for each e > Othereisan Ng suchthat if N > Ng then

‘RK@idHN—.Rchid"/A <e

foreachi =1,...,1.

PROOF. We use the notation of 5.1. We will assume, without loss of generality, that
| = 1 and write p for ¢1. We have

./[RK p don = /z @ ((Unfi(¥), W) p(dx dw)
= /x /w @ ((nFi (9, W) ) Fw(dw) (dx)
= [ P(AN09) ().

LetM = ||¢]|o- Givene, 0 < e1 < £/(2M+1), finds > O suchthat |P(B)—P(A)| < 1
whenever B isacovariance matrix with ||B— A|| < é. UseLemma5.2to find an No with
the following property. For each N > Ng thereisaset Ey € X with u(En) > 1— €1 such
that ||An(X) — AJ| < & for each x € Ey. Then, if N > N,

‘RKadeA—./RKgadHN

~ o) — [ S(A0)u(e

- |/X DA (dx) — /X O(An(X)) p(dX)

< [ ®(A) = D(An(9) u(ch)
<2Meg+eg <e.

LEMMA 5.5. Let (Ty,...,Tk) be K contractionsin L,, commuting with an ergodic
sequence (Py). Let f be a §-spanning function for (Ty, ..., Tk). Then, given R > 0 and
M > 1, thereare N real numbers o, such that the function

1 N
_\/anl

satisfies the conditionsthat ||g||2 < 3, [|g — (g)m]|3 < 10Me /2, and

g anPhf

p({x|xeX, max ITg®)| < R}) < 10[1 — 2w(R/5)] .

Proor. Wewill use Lemma 4.3 and the notation introduced in this Lemmaand its
proof. In particular, To denotes the identity operator. Let A be the (K + 1) x (K + 1)
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covariance matrix of the L, functionsfy = T.f, 0 < k < K, and YA the Gauss measure
on RX*1 corresponding to A. From Lemma 4.4 and from the fact that ||f|2 = ||f || = 1
(by the definition of aé-spanning function) we obtain

ggdva =1,

JRK+L

[A(€8AMD dYa > 1— 2Me /2,

and
[ X0 DA < 2[1 = 2(R/O)],

where xp is the characteristic function of the set D ¢ RK*! on which

max <R

max & <

Hence we can find a bounded and continuous function : R€*1 — R such that yp < ¢
and

/R ¢ da < 2[1—2w(R/6)]".

Now apply Lemma 5.4 with the bounded and continuous functions (¢3 A M?) and ¢ to
find asufficiently large N, suchthat if W = Wy and if 4 isthe distribution measure of the

mapping
(Wfg, Wiy, ..., ¥f):Z— RKH‘,
then
[ (€ AMD Q0 > 1= 2Me 72,
and

[ X0dd < /R 0 dh < 2[1— 2w(R/O)X.
Also, notethat, by Lemma5.3,
e €50 = ||Who|| = |Ifol15 = 1.
Returning to the domain Z of the mapping

(Wfo, Wiy, ..., Wi):Z — R
we seethat, if Cisthe subset of Z on which

max |V <R,
1<k<K

then

(WP do =1,
L I(Wlo)? — (Who)? A M?] dp < 2Me /2,
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and
/Z Xcdp < 2[1— 2=(R/8)]X.
For eachw € W let
Fw) = [ (Wo)?( whp(d),
GW) = [ [(Wio)® — (Who)? A M2](x, )u(c)
HW) = [ xc(4 Wa(d).

Note that the values of these functions depend on the functions f, only as members of
L, not on their representations. Since F, G, and H are nonnegative functions of w with

J,, FOMw(dw) = 1,
/W GW)Iw(dw) < 2Me™M/2,
/W HW)Mw(dw) < 2[1 — 2(R/6)I¥,

it is clear that thereis apoint wo € W such that F(wg) < 9, G(wp) < 10MeM*/2, and
H(wo) < 10[1 — 2(R/&)]*.

Let
1 N
g = LIJfo( 1W0) = = Z(UmWO)Pnf-
N n=1

It isclear that ||g||3 = F(wo) < 9 and, asin the Proof of Corollary 2.6,

lg— @wmll3 < llgll — @mlZ = Gwo) < 10Me™*/2,

Also, since
1§ f f
Tkg = —= D (Un, Wo)Pr Ty = Whi(-, Wo),
kg \/anl( n 0) nlk k( 0)

we have
p({x]x€X, max ITg®)| < R}) = H(wo) < 10[1 — 2(R/&)]*.

Hence g satisfies the requirements of the Lemma.

Proof of Theorem 1.10. Thisproof followseasily from Proposition 3.1 and Lemma5.5.
Givene and$, 0 < e < 6 < 1,findK, M and Rfrom Proposition 3.1. Let (Ty, ..., Tk) be
K contractionsin L,, commuting with an ergodic sequence. Let f be a-spanning func-
tion for these operators. Use Lemma 5.5 to find a function g with the properties stated
there. Then this function satisfiesthe hypotheses of Proposition 3.1, andh = (1/M)(g)m
isa(o, )-sweeping function for (Ty, ..., Tk).
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6. Appendix. We will first show, in Lemma 6.1 that Theorem 1.12 can be reduced
to the Theorem 1.10. We also discuss the relation between the entropy condition used in
Bourgain's original results and 6-spanning sequences. All the arguments are compl etely
geometrical, valid in finite dimensional inner product spaces.

LEMMA 6.1. Let0 < p < land0 < § < 4/1— p. Thenfor eachinteger K > 1
thereis another integer M = My > 2 with the following property. Let (ag,...,au) bea
sequence of vectorsin an inner product space W such that ||ay|| > 1 and (an, am) < p
forall 1 < n=# m< M. Then (ay,...,au) contains s-spanning subsequence of length
K.

PrROOF. Proceed by induction over K. For K = 1 we may take M = 1. Assume that
Mk has been obtained. Let n = v/1— 6% — ,/p(> 0). Find an integer N = N(K, 7/6)
such that the unit ball in a K-dimensional subspace of W can be covered by N balls of
radius /6. Choose an integer A > 1 such that \/p+ (2/A) < /p +(n/3). We then
let M1 = Mk + AN. To simplify the expressions we will say that a sequence in W
is a p-sequenceif each term has anorm > 1 and the inner products of different terms
are < p. Note that a p-sequence stays a p-sequence if each term g is replaced by the
unit vector a; /||&||. Consider a p-sequence of length Mk+1. By the preceding remark
we will assume, without loss of generality, that this sequence consists of unit vectors.
To seethat it contains aé-spanning sequence of length K + 1, first choose a é-spanning
sequence (gs, . - -, gk) Of length K from the first Mk terms of the p-sequence. Let P be
the orthogonal projection on the K-dimensional subspace E spanned by the §-spanning
sequence (g1, ---,0k). Apply P to the last AN terms of the p-sequence to obtain AN
vectorsin the unit ball of E. Since this unit ball can be covered by N balls of radius /6,
there will be A of these projected vectors, say (Pfy, ..., Pfa), that are contained in a ball
of radiusy /6. Notethat here (fy, . . ., fa) isa p-sequenceof length A chosen from the last
AN terms of the original p-sequence.

Assumethat ||Pfil|2 > v1—é2forali=1,...,A. Letgbethe center of the ball of
radius /6 that containsall Pf;’s. Then, we have, for eachi = 1,..., A,

1 2 2
—nc> — Pf
= = lg— P
= llgl+ IPA 12 — 2(g, Pf)
1.2
2 _—— u— i
> llgl*+ (llgll - gn)” — 209, Pf)
1 1
— 2 _ = 2 ]
= 2l|glI* - 2llgll gn + zgn° — 2(9, Pf)

which shows that 1
(0.Pf) > llgll(llgll - Zn)-

Hence A
(aPz20) = lal (1l - gn).
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or that
1A 1
=5 > gl = .
A2t = lal -5
Since L L .
lgll2 > IPS ]| = 50 > VI=8 — 2y = 5+ 2n,
we then have

2
>4/p+t én.

1 A
= f.l
H A 2 '
We show that this is a contradiction. In fact,

A 2 A A
il = m(nen)
< A—:\L2<A+(A2—A)p)
=p+ %(1—p) < p+%,

which means that LA
A%

Zg\/m<\/ﬁ+(n/3),

by the choice of A. Hence we must have ||Pfi|| < v1— §%for atleastonei = 1,...,A.
In this case we have

Ifi — PR[[2 = [Ifi|I> = P> > 1— (1 — %) = 6%

Therefore f; can be added to the initial 6-spanning sequence (g, . . ., gk) to obtain a é-
spanning sequence of length K + 1.

REMARK. Wewill now discusstherelation between the following two conditionson
afamily C of L, contractions. The first condition is a hypothesisin Bourgain's entropy
theorem. The second condition is a hypothesisin Theorem 1.11.

(A) Thereisa X > 0 such that for each integer N > 1 one can find N operators
(S, ..., Sv) from C and afunction f, such that ||f||; < 1 and ||Sif — Suf||2 > A for all
1<n#m<N.

(B) Thereisaé > 0 such that for each integer K > 1 one can find a sequence
(Tq,...,Tk) of K operators from C for which there is a§-spanning function.

It is clear that if (B) is satisfied then (A) is also satisfied with A = 6. Conversely, if
(A) is satisfied then we will show that (B) is also satisfied with § = A /3. In fact, the
following general result istrue. We will sketch the proof briefly.

LEMMA 6.2. Letd > 0. Thenfor eachinteger K > 1thereisanother integer N = Ng
such that if (s) is a sequence of N vectors in the unit ball of an inner product space W
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with ||s — s|| > 36 whenever i # j, then (s) contains a §-spanning subsequence of
length K.

PrROOF.  First note that there is a number M = M, such that the unit ball of an n-
dimensional subspace of W can not contain more than M vectors having a distance of at
least 6 between any two of them. For the proof the lemma, apply aninduction over K, for a
fixedd > 0. TakeN; = 2. Assumethat Nk hasbeen obtained and let Nx+1 = Nk +Mk +1.
It is easy to see that this choice works.
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