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SWEEPING OUT PROPERTIES
OF OPERATOR SEQUENCES

MUSTAFA A. AKCOGLU, DZUNG M. HA AND ROGER L. JONES

ABSTRACT. Let Lp ≥ Lp(X,ñ), 1 � p � 1, be the usual Banach Spaces of real
valued functions on a complete non-atomic probability space. Let (T1, . . . , TK) be L2-
contractions. Let 0 Ú ¢ Ú é � 1. Call a function f a é-spanning function if kfk2 ≥ 1
and if kTkf � Qk�1Tkfk2 ½ é for each k ≥ 1, . . . , K, where Q0 ≥ 0 and Qk is the
orthogonal projection on the subspace spanned by (T1f , . . . , Tkf ). Call a function h a
(é, ¢) -sweeping function if khk1 � 1, khk1 Ú ¢, and if max1�k�K jTkhj Ù é � ¢ on a
set of measure greater than 1� ¢. The following is the main technical result, which is
obtained by elementary estimates. There is an integer K ≥ K(¢, é) ½ 1 such that if f is
a é-spanning function, and if the joint distribution of (f , T1f , . . . , TKf ) is normal, then

h ≥
�

(f^M)_(�M)
�
ÛM is a (é, ¢)-sweeping function, for some M Ù 0. Furthermore, if

Tks are the averages of operators induced by the iterates of a measure preserving ergodic
transformation, then a similar result is true without requiring that the joint distribution is
normal. This gives the following theorem on a sequence (Ti) of these averages. Assume
that for each K ½ 1 there is a subsequence (Ti1 , . . . , TiK ) of length K, and a é-spanning
function fK for this subsequence. Then for each ¢ Ù 0 there is a function h, 0 � h � 1,
khk1 Ú ¢, such that lim supi Tih ½ é a.e.. Another application of the main result gives
a refinement of a part of Bourgain’s “Entropy Theorem”, resulting in a different, self
contained proof of that theorem.

1. Introduction. Let (X,ñ) be a complete non-atomic probability space and Lp ≥
Lp(X,ñ) the usual Banach Spaces of functions on (X,ñ), 1 � p � 1. We will consider
only the real valued case; possible extensions to the complex case will be obvious. A
linear operator T on Lp is called positive if Tf ½ 0 whenever f ½ 0 and a contraction,
or an Lp-contraction, if kTkp � 1. Let (Ti) be a sequence of operators on Lp. In most
cases Ti’s will be contractions of L2. We are interested in knowing whether or not the
sequence (Tif ) converges pointwise (a.e.) for all f 2 Lp. If (Tif ) diverges pointwise,
then we are also interested in the degree of divergence, as measured by sweeping out
properties defined below. We will obtain sufficient conditions for divergence of a given
degree, in terms of the L2 behaviour of the sequence (Tif ). Our methods also show how to
construct functions h that will result in divergent sequences Tih of a given degree. We will
now start with some definitions and remarks. The main result is stated as Theorems 1.6
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and 1.7. The relation between these theorems and Bourgain’s entropy theorem [10] is
discussed in the remarks following the statement of Theorem 1.7.

1.1 Definition of é-sweeping out. Let (Ti) denote a sequence of positive operators and
0 Ú é � 1. Then (Ti) is said to be é-sweeping out if for each ¢ Ù 0 there is a set E such
that ñ(E) Ú ¢ and such that lim sup TiüE(x) ½ é a.e..

REMARKS. If é ≥ 1 then the sequence is said to have the strong sweeping out prop-
erty. This was the main definition used to characterize the sequences that behave very
badly. Several examples of strongly sweeping out sequences are given in [1]. In [18]
Rosenblatt pointed out that there are sequences of positive L1 contractions for which
a.e. divergence occurs, but which do not have the strong sweeping out property. He then
introduced the above definition of é-sweeping out and showed that there are sequences
of operators (Tn) which are é sweeping out, but not é + è sweeping out for any è Ù 0.
Thus it becomes interesting to establish which sequences of operators are é-sweeping
out, since it gives us a measure of divergence. The é-sweeping out character of a se-
quence will follow from a certain type of behaviour of its finite segments, stated in the
next definition.

1.2 Definition of (é, ¢)-sweeping. Let 0 Ú ¢ Ú é � 1. A sequence of functions
(h1, . . . , hK) will be called a (é, ¢)-sweeping sequence if khkk1 Ú ¢ for each k ≥ 1, . . . , K,
and if max1�k�K jhkj Ù é � ¢ on a set of measure greater than 1 � ¢. Let (T1, . . . , TK)
be finitely many operators and h be a function. Then h is called a (é, ¢)-sweeping func-
tion (for (T1, . . . , TK)) if khk1 � 1, khk1 Ú ¢, and if (T1h, . . . , TKh) is a (é, ¢)-sweeping
sequence.

REMARK 1.3. Let (Tn) be a sequence of positive L1 contractions and é Ù 0 fixed.
If for each ¢ Ù 0 there is a (é, ¢)-sweeping function for a finite set of operators from this
sequence, then it is clear that (Tn) is é-sweeping out. (See also Rosenblatt [18].) If Tn’s
are not assumed to be positive, then the existence of (é, ¢)-sweeping functions for each
¢ Ù 0 still implies the existence of an L1 function h such that Tnh diverges a.e.. This,
however, is not a direct observation as in the positive case, but follows from the results
of Bellow and Jones in [7].

The following definition describes an L2 behaviour for a finite sequence of functions,
which implies, in certain cases, the existence of (é, ¢)-sweeping sequences, as discussed
below.

1.4 Definition of é-spanning. Let 0 Ú é � 1. A sequence of vectors (a1, . . . , aK) in an in-
ner product space will be called a é-spanning sequence if kakk � 1 andkak�Qk�1akk ½ é
for each k ≥ 1, . . . , K, where Q0 ≥ 0 and Qk is the orthogonal projection on the sub-
space spanned by (a1, . . . , ak). In particular a sequence of functions (f1, . . . , fK) will be
called a é-spanning sequence if they form a é-spanning sequence in L2. Let (T1, . . . , TK)
be finitely many operators and f be a function. Then f is called a é-spanning function (for
(T1, . . . , TK)) if kfk2 ≥ 1 and if (T1f , . . . , TKf ) is a é-spanning sequence.

The following is the main technical result of this article, which establishes a relation
between the é-spanning and (é, ¢)-sweeping functions.
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THEOREM 1.5. Let 0 Ú ¢ Ú é � 1. Then there is an integer K ≥ K(é, ¢) ½ 1 with
the following property. Let (T1, . . . , TK) be K contractions in L2. If there is a é-spanning
function f for (T1, . . . , TK) such that the joint distribution of (f , T1f , . . . , TKf ) is normal,
then there is an M Ù 0 such that h ≥ (1ÛM)

�
(f ^ M) _ (�M)

�
is a (é, ¢)-sweeping

function for (T1, . . . , TK).

This result may not be too useful by itself, because of the restrictive hypothesis that the
functions involved must have a joint normal distribution. This hypothesis is not needed,
however, in the following two cases described below. The first case seems to be more
important, more intuitive, and easier to deal with. As the second case is more general,
however, we will not give the details for the first case, and prove only the second case.
The discussion of the second case starts in Section 1.9, with the definition of ergodic
sequences. The corresponding result is stated as Theorem 1.10.

AVERAGES OF ERGODIC TRANSFORMATIONS. Let ú: X ! X be a measure preserving
and ergodic transformation of (X,ñ). We do not assume that ú is invertible. Let A be the
class of operators of the form Tf ≥ Pn

i≥0 ãif Ð úi . Let T be the class of all L2-contractions
that can be approximated by operators from A in the sense that for each T 2 T , f 2 L2,
and ¢ Ù 0, there is a T0 2 A such that kTf � T0fk2 Ú ¢. For transformations in T the
following result is true.

THEOREM 1.6. Let (T0, T1, . . . , TK) be K +1 transformations in T and f 2 L2, where
T0 ≥ I is the identity transformation. Then there is a sequence fn in L2, such that all
the inner products (Tifn, Tjfn) converge to the corresponding products (Tif , Tjf ), i, j ≥
0, 1, . . . , K and such that the joint distributions of (T0fn, T1fn, . . . , TKfn) converge to a
normal distribution in the weak topology of measures in RK+1, induced by the real valued
bounded continuous functions on RK+1.

The proof is constructive and uses Rokhlin’s Lemma and the central limit theorem.
We will omit the details. See also [3], where a part of this result has been proved under the
assumption that the measure space is the unit circle and the ergodic transformation ú is
an irrational rotation. As known, this example is typical and, with some additional work,
implies the general case. Finally, routine approximations show that the Theorems 1.5 and
1.6 together imply the following result.

THEOREM 1.7. Given 0 Ú ¢ Ú é � 1 there is an integer K ≥ K(é, ¢) ½ 1 with
the following property. If (T1, . . . , , TK) are K transformations in T , and if there is a é-
spanning function f for (T1, . . . , , TK), then there is also a (é � ¢, ¢)-sweeping function
h for (T1, . . . , TK).

Here the extra ¢ in the (é, ¢)-sweeping function is due to the fact that an approximately
normal distribution must be used in the application of the first theorem. Again, we will
omit the easy details. It is also clear that this result, together with the remark in 1.3,
implies the following theorem.
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THEOREM 1.8. Let é Ù 0 and let (Ti) be a sequence of transformations in T . If for
each integer K ½ 1 there are K operators from this sequence admitting a é-spanning
function, then (Tih) diverges a.e. for an L1 function h. Further, if the operators are pos-
itive, then (Ti) is é-sweeping out.

1.9 Ergodic Sequences. We will now describe the second case referred to above. A
sequence of operators (Pn) on L2(X,ñ) will be called an ergodic sequence if each Pn is
a positive isometry of L2 with Pn1 ≥ 1, and if (1Ûn)

Pn
j≥1 Pjf converges in L2 to the

constant function
R

X f dñ for each f 2 L2. In this case it is easy to see that each Pn is
a positive contraction of all Lp spaces, PnfPng ≥ Pn(fg) for each f , g 2 L2, and that
(1Ûn)

Pn
j≥1 Pjf converges to

R
X f dñ in L1, for each f 2 L1. We will say that a family of

operators commute with an ergodic sequence, if there is an ergodic sequence (Pn) such
that each Pn commutes with each member of that family.

THEOREM 1.10. Given 0 Ú ¢ Ú é � 1 there is an integer K ≥ K(é, ¢) ½ 1 with the
following property. If (T1, . . . , , TK) are K contractions in L2 commuting with an ergodic
sequence, and if there is a é-spanning function f for (T1, . . . , , TK), then there is also a
(é, ¢)-sweeping function h for (T1, . . . , TK).

As before, it is clear that this result, together with the remark in 1.3, implies the fol-
lowing theorem.

THEOREM 1.11. Let é Ù 0 and let (Ti) be a sequence of L2-contractions commuting
with an ergodic sequence. If for each integer K ½ 1 there are K operators from this
sequence admitting a é-spanning function, then (Tih) diverges a.e. for an L1 function h.
Further, if the operators are positive, then (Ti) is é-sweeping out.

RELATION TO BOURGAIN’S ENTROPY THEOREM. These results are similar to the re-
sults obtained by Bourgain in his entropy theorem [10]. This similarity will be explained
further in the Appendix, Section 6. The method introduced by Bourgain in that theorem
for establishing divergence has proven very useful, and resulted in the first proof of di-
vergence for several sequences of operators. (See [10], [18], and [14] for example.) In
fact, Rosenblatt [18] was able to show that for many interesting diverging sequences of
operators, there is a é Ù 0 so that the sequence is é-sweeping out. However, with the
estimates used in Bourgain’s proof, it was unclear what the relationship was between the
entropy of the diverging sequence of operators, and the value of é for é-sweeping out. In
particular, it was not clear if the entropy criteria could be used to establish strong sweep-
ing out. In this paper we refine Bourgain’s result so that an estimate of sweeping out
can also be obtained, and in particular in some situations we can obtain strong sweeping
out (see Theorem 1.10). In addition, we give a self contained different proof of a part of
his results, concerning the divergence for bounded functions. Although the present proof
depends on the same basic idea due to Bourgain, namely reducing the general case to the
normally distributed case and making the estimates for the normally distributed case, it
differs from Bourgain’s original proof at both of these stages. In particular, the estimates
for the normal case are done completely differently, in an elementary and self contained
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way, without the use of Slepian’s lemma or Sudakov’s estimate, and the estimates are
aimed at obtaining the sweeping out properties of the sequence.

REMARK. In the case of operators induced by averages of an ergodic measure pre-
serving transformation, the existence of a commuting ergodic sequence (Pj) is automatic.
However, for more general operators, the (Pj) play an important role. In particular, the
results obtained here are false if we do not assume such a sequence exits. As a simple
example, consider the sequence

Tnf (x) ≥
 p

n(n + 1)
Z 1

0
f (t) dt

!
ü( 1

n+1 , 1
n )(x).

These operators are contractions on L2, and it is easy to check that for every K Ù 1 the
function 1 is a é-spanning function. (In fact we see that (Tn1, Tm1) ≥ 0 and kTn1k2 ≥ 1
so these functions even form an orthonormal set.) However, we clearly do not have a
(é, ¢) sweeping function for (T1, T2, . . . , TK) for any K Ù 1.

RELATED RESULTS. Most of the related results are associated with ergodic trans-
formations. Rosenblatt [17] considered the sequence of binomial averages (bn) defined
by bnf (x) ≥ 1

2n

Pn
k≥0

�
n
k

�
f (úkx), and showed that they can diverge, even for functions

f 2 L1. Krengel [16] considered averages along subsequences of the form Cnf (x) ≥
1
n

Pn
k≥1 f (únk x) where (nk) is an increasing sequence of integers. If (nk) ≥ k we have the

usual ergodic averages, which of course converge a.e.. However, Krengel [16] showed
that there are subsequences for which the averages diverge. Later Bellow [4], [5] showed
that these subsequence averages diverge if (nk) ≥ (2k), while Bourgain [10] showed they
converge if (nk) ≥ (k2) and f 2 Lp, p Ù 1. Finally we mention a classical paper of Rudin
[19], in which pointwise divergence properties of Riemann sums were established. The
present proofs for the ergodic case apply to this example. Many other special cases are
known, as discussed in the given references, but understanding for which subsequences
we have convergence of averages along these subsequences remains an open question.

In addition to operators that arise from questions in ergodic theory, we can also con-
sider operators that arise in other areas. For example, in the case of singular integrals we
can consider the operator defined by the Fourier multiplier niç, and take a sequence of
ç’s that converge to zero. The question of a.e. convergence or divergence was open for
many years, and the divergence has been shown [14] by the entropy theorem.

COROLLARIES AND EXAMPLES. In some applications it will be convenient to replace
the L2 behaviour described by the é-spanning sequences by a different type of behaviour.
The following theorems are obtained in this way.

THEOREM 1.12. Let 0 � ö Ú 1 and let (Ti) be a sequence of L2-contractions com-
muting with an ergodic sequence. If for each integer K ½ 1 there are K operators
(Ti1 , . . . , TiK ) from this sequence and a function f such that kTikfk2 ½ 1 and (Tik f , Tilf ) �
ö for all 1 � k Â≥ l � K, then (Tih) diverges a.e. for an L1 function h. Further, if the
operators are positive, then (Ti) is é-sweeping out with é ≥ p

1 � ö.
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THEOREM 1.13. Let (Ti) be a sequence of positive L2-contractions commuting with
an ergodic sequence. Assume that for each ö, 0 Ú ö Ú 1, and for each integer K ½
1 there are K operators (Ti1 , . . . , TiK ) from this sequence and a function f such that
kTikfk2 ½ 1 and (Tik f , Til f ) � ö for all 1 � k Â≥ l � K. Then (Ti) is strong sweep-
ing out.

As an application of these last two theorems we mention the following result. A spe-
cial case of this result, corresponding to “arbitrarily small ã” and strong sweeping out, is
contained in [1], but with a different proof. The construction given in the present proof
is similar to an argument of Rosenblatt in [18], pp. 237–238.

COROLLARY 1.14. Let 0 Ú ã Ú (1Û5) and let ú be an invertible measure preserving
ergodic transformation. Define a sequence of averages by Tnf (x) ≥ P1

k≥�1 ón(k)f (úkx),
where (ón) is a sequence of probability measures on Z, the set of integers. The Fourier
Transform of ón is

ó̂n(ç) ≥
1X

k≥�1
ón(k) exp(2ôiçk).

Assume that for each K ð 2K matrix Σ ≥ (õkj) with each õkj 2 f�1, 1g, we can find n1,
n2, . . . , nK and ç1, . . . , ç2K such that jó̂nk (çj)�õkjj Ú ã. Then the sequence of operators
Tn are é-sweeping out with é ≥

q
(1 � 5ã)Û(1 � ã). Further, if these hypotheses are

satisfied with any choice of ã, then (Tn) is strong sweeping out.

PROOF. By standard transfer arguments it is enough to establish this result for a sin-
gle dynamical system. We will establish it for the irrational shift on [0, 1) corresponding
to an irrational number í. Choose an integer K ½ 1 and 2K integers ‡j and define

f (x) ≥ 1p
2K

2KX
j≥1

e2ôi‡jx.

Then we see that

Tnf (x) ≥ 1p
2K

2KX
j≥1

ó̂n(‡jí)e2ôi‡jx.

Hence

(Tnf , Tmf ) ≥ 1
2K

2KX
j≥1

ó̂n(‡jí)ó̂m(‡jí).

Form the matrix (õk,j) so that each row has half 1’s and half �1’s, and such that the
rows are independent. (Note that this implies

P2K

j≥1 õujõvj ≥ 0.) Then find çk’s so that
jó̂nk (çj) � õk,jj Ú ã. There are integers ‡j such that we also have jó̂nk (‡jí) � õk,jj Ú ã.
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Hence if f is defined in terms of these integers then we see that, if 1 � u Â≥ v � K,

j(Tnu f , Tnv f )j ≥
þþþþþ 1
2K

2KX
j≥1

ó̂nu (‡jí)ó̂nv (‡jí)
þþþþþ

≥
þþþþþ 1
2K

2KX
j≥1

�ó̂nu (‡jí)ó̂nv (‡jí) � õujõvj

�þþþþþ
� 1

2K

2KX
j≥1

jó̂nu (‡jí)ó̂nv (‡jí) � õujõvjj � 2ã.

Also note that, since jõkjj ≥ 1, jó̂nk (‡jí)j Ù 1 � ã. Hence kTnk fk2 Ù 1 � ã for all
1 � k � K. Looking at the real and imaginary parts of Tnk f and noticing that for at least
half of the k’s, one of these parts has an L2-norm not less than (1�ã)Û2, we see that the
hypotheses of Theorem 1.12 are satisfied with ö ≥ 4ãÛ(1 � ã). Hence the proof of the
first part follows. The last part follows from Theorem 1.13.

EXAMPLE 1.15. Fix a probability measure ñ on Z, such that ñ satisfies

lim
ç!1

jñ̂(ç) � 1j
1 � jñ̂(ç)j ≥ 1.

Then the measure ón defined by ón ≥ ñ Ê ñ Ê ñ Ê Ð Ð Ð Ê ñ, the n-fold convolution of ñ
with itself, has the strong sweeping out property.

The estimates necessary to apply Corollary 1.15 to the above example follow as in
[1]. The sequence of binomial averages considered by Rosenblatt, and defined bnf (x) ≥
1
2n

Pn
j≥1

�
n
j

�
f (újx), can be viewed as an n-fold convolution of 1

2 (é0 + é1). Consequently
these averages can be shown to have the strong sweeping out property by the above
result.

OUTLINE OF THE PAPER. In Section 2 we review the normal distributions briefly,
mainly to establish our notation and state the results we are going to assume. Section 3
contains the estimates to prove the main technical result, Theorem 1.5, which is obtained
in Section 4. In Section 5 it is shown that the general case of Theorem 1.10 can be reduced
to the normally distributed case of Theorem 1.5. Finally Theorem 1.12 is obtained in
Section 6, together with other formulations of some of the results.

2. Gauss Measures.
2.1 The Standard Gauss Measure. A finite dimensional inner product space W has a
particular measure Γ ≥ ΓW on its Borel sets B 2 B of W, defined by

Γ(B) ≥ 1
K

Z
B

exp
�
�1

2
(w, w)

�
ï(dw),

where ï is a Lebesgue (or Haar) measure for W, and

K ≥ Z
W

exp
�
�1

2
(w, w)

�
ï(dw)
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is the normalizing factor to make Γ(W) ≥ 1. Since any two Lebesgue measures for W
differ only by a multiplicative constant, the standard Gauss measure Γ is independent of
the choice of ï. In particular, if W ≥ R, with its usual inner product, then we see that

ΓR(B) ≥ 1p
2ô

Z
B

e�s2Û2 ds

for any Borel set B ² R. For y 2 R we will let

§(y) ≥ ΓR
�
(y, 1)

� ≥ 1p
2ô

Z 1
y

e�s2Û2 ds.

The following elementary estimate on §(y) is obtained by integration by parts. The de-
tails are given, for example, in [12], Chapter 7, Lemma 2.

LEMMA 2.2. If y Ù 0, then

1

y
p

2ô
�

1 � 1
y2

�
exp

�
�y2

2

�
Ú §(y) Ú 1

y
p

2ô exp
�
�y2

2

�
.

We will use this estimate to obtain the following two computational lemmas.

LEMMA 2.3. Let 0 Ú ¢ Ú 1 and 2 Ú L. If

K Ù 10LeL2Û2 log(1Û¢)

then
[1 � 2§(L)]K Ú ¢.

PROOF. Let K0 be the solution of the equation [1 � 2§(L)]K0 ≥ ¢. Hence

K0 ≥ log ¢
log[1 � 2§(L)]

� [2§(L)]�1 log
1
¢ .

Using the estimate
1

L
p

2ô
�

1 � 1
L2

�
e�L2Û2 Ú §(L)

given above we obtain

K0 �
p

2ôL3

2(L2 � 1)
eL2Û2 log(1Û¢) � 10LeL2Û2 log(1Û¢).

Hence [1 � 2§(L)]K Ú ¢ whenever K Ù K0.
The following estimate can be improved substantially. The given form is sufficient

for our purpose, however.
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LEMMA 2.4. If M Ù 1 then

1p
2ô

Z 1

M
t2e�t2Û2 dt Ú Me�M2Û2.

PROOF. Integrating by parts and using the estimate

Z 1

M
e�t2Û2 dt Ú (1ÛM)e�M2Û2

we obtain
1p
2ô

Z 1

M
t2e�t2Û2 dt ≥ 1p

2ô
 

Me�M2Û2 +
Z 1

M
e�t2Û2 dt

!

� 1p
2ô

�
M +

1
M

�
e�M2Û2,

which implies the estimate in the Lemma.

NOTATION 2.5. A finite sequence of functions F ≥ (f1, . . . , fK) on (X,ñ) defines a
function

F ≥ (f1, . . . , fK): X ! RK

which transports ñ to a measure ∆F on RK, defined by ∆F(G) ≥ ñ(F�1G) for measurable
sets G ² RK, and called the distribution measure of F. If f : X ! R and M Ù 0, then
(f )M ≥ (f ^M) _ (�M) is the truncated function at šM.

COROLLARY 2.6. Let the distribution measure of f : X ! R be the standard Gauss
measure ΓR. Then k(f )Mk2

2 Ù 1�2Me�M2Û2 and kf�(f )Mk2
2 Ú 2Me�M2Û2 for all M Ù 1.

PROOF. We have

k(f )Mk2
2 ≥

1p
2ô

Z 1
�1

(t2 ^M2)e�t2Û2 dt

≥ 1 � 1p
2ô

Z 1

�1
[t2 � (t2 ^ M2)]e�t2Û2 dt

Ù 1 � 2
1p
2ô

Z 1
M

t2e�t2Û2 dt Ù 1 � 2Me�M2Û2,

which is the first estimate. For the second estimate note that f and f � (f )M have the same
sign at every point. Hence

�
f , f � (f )M

� ½ 0 and

kf � (f )Mk2
2 � kfk2

2 � k(f )Mk2
2.

2.7 Properties of the Standard Gauss Measure. Isometries of W leave ΓW invariant. An
orthogonal projection P: W ! V of W onto a subspace V transports ΓW to ΓV . If V and
U are two orthogonal subspaces spanning W then ΓW is equal to the Cartesian product
measure ΓV ð ΓU, with the usual identification between W and V ð U. In particular, if
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U is a one dimensional subspace spanned by a unit vector u0 orthogonal to V, and if the
pairs (v, t) 2 V ð R are identified with the vectors w ≥ (v + tu0) 2 W, then

Z
W

f dΓW ≥ 1p
2ô

Z
V

Z
R

f (v + tu0)e�t2Û2 dtΓV(dv).

Finally,

0 ≥ Z
W

(a, w) ΓW (dw), and,

(a, b) ≥ Z
W

(a, w)(b, w) ΓW (dw)

for any a, b 2 W.

2.8 General Gauss Measures. A measure ç on a finite dimensional vector space V is
called a (general) Gauss measure if it can be obtained by transporting the standard Gauss
measure ΓW of a finite dimensional inner product space W by a linear transformation
L: W ! V. In particular, Gauss measures on RK are identified with K ð K covariance
matrices (that is, symmetric nonnegative definite matrices) in the usual way, as follows.
Given K vectors (a1, . . . , aK) in W, the linear transformation L: W ! RK defined by

L(w) ≥ �
(w, a1), . . . , (w, aK)

� 2 RK

induces a Gauss measure ç onRK. Since ΓW is invariant under the linear isometries of W,
this measure ç depends only on the matrix A ≥ f(ai, aj)g formed by the inner products
of (a1, . . . , aK). This is a covariance matrix. Conversely, any covariance matrix is of this
form and induces a Gauss measure on RK. Sometimes we will write çA to denote the
Gauss measure corresponding to A. Finally, for a fixed bounded and continuous function
ß:RK ! R, the integral

R
RK ß dçA depends only on A. We will denote this integral by

Φ(A). It is clear that Φ(A) is a continuous function of A. Finally we have, with the usual
coordinate functions òk:RK ! R, and with the Gauss measure ç defined above in terms
of the K vectors (a1, . . . , aK),Z

RK
òiòj dç ≥ Z

W
(w, ai)(w, aj) ΓW (dw) ≥ (ai, aj)

for all i, j ≥ 1, . . . , K. Hence, Z
RK
òiòj dçA ≥ Aij,

where A ≥ fAijg is a covariance matrix.

2.9 Gauss Measures Induced by L2-Functions. In particular, if (a1, . . . , aK) is a set of
K functions F ≥ (f1, . . . , fK) in L2(X,ñ), considered as an inner product space, then the
induced Gauss measure ç on RK, as defined above, will be called the Gauss measure
induced by F ≥ (f1, . . . , fK). It is uniquely specified byZ

X
fifj dñ ≥ Z

RK
òiòj dç,

as before. If this Gauss measure ç is also the distribution measure of the mapping

(f1, . . . , fK): X ! RK,

then the functions (f1, . . . , fK) are said to have a joint normal distribution.
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3. A Key Proposition. Let (T1, T2, . . . , , TK) be K contractions in L2, and f 2 L2(X).
In this section we obtain a proposition which gives a condition on the function f and on
the distribution of

(f , T1f , . . . , TKf ): X ! RK+1

which is sufficient for the existence of a (é, ¢)-sweeping function for these operators. This
proposition will imply the main Theorems 1.5 and 1.10 if we can show that the hypothesis
are satisfied. Thus Sections 4 and 5 will be devoted to giving conditions under which the
hypotheses of this proposition are satisfied.

PROPOSITION 3.1. Let ¢ and é be given, 0 Ú ¢ Ú é � 1. Then there is an integer
K ½ 1, and two numbers R Ù 0, M Ù 1 with the following property. Let (T1, . . . , TK) be
K contractions in L2, and f a function such that kfk2 � 3, kf � (f )Mk2

2 Ú 10Me�M2Û2,
and

ñ
�n

x j x 2 X, max
1�k�K

jTkf (x)j � R
o�
Ú 10[1 � 2§(RÛé)]K .

Then h ≥ (1ÛM)(f )M is a (é, ¢)-sweeping function for (T1, . . . , TK).

PROOF. Given ¢ and é as in the Proposition, find ã and å such that 0 Ú ã Ú 1 Ú å
and such that ¢ Ù [1 � (ãÛå)]é. Then find a sufficiently large R Ù 0 such that

200å
é2(1 � ã)2

e�R2(å2�1)Û(2é2) log(20Û¢) Ú ¢
2

,

K1 ≥ 10(RÛé)eR2Û(2é2) log(20Û¢) Ù 2,

and such that ¢Û3 Ù 1ÛR. Let K be any integer satisfying K1 Ú K Ú 2K1 and M ≥
åRÛé. With these choices for R, M, and K, assume that there is a function f and K op-
erators (T1, . . . , TK) satisfying the conditions stated in the Proposition. We claim that
h ≥ (1ÛM)(f )M is a (é, ¢)-sweeping function for (T1, . . . , TK). First, clearly, khk1 � 1.
Also,

khk2 � (1ÛM)kfk2 � (1ÛM) � (1ÛR) Ú ¢.
Hence khk1 Ú ¢. Now let A and B be the sets on which max1�k�K jTkf j � R and
max1�k�K jTkhj � é � ¢, respectively. We would like to show that ñ(B) Ú ¢. Since
(f )M ≥ Mh, we see that B is also the set on which

max
1�k�K

jTk(f )Mj � M(é � ¢).

If C is the set on which
max

1�k�K
jTk(f )Mj � Rã,

then B ² C, since M(é�¢) Ú Rã, by the definitions of ã and M. Hence it will be enough
to show that ñ(C) Ú ¢. We already know that

ñ(A) Ú 10[1� 2§(RÛé)]K Ú ¢Û2.
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Here the first inequality follows from the hypothesis and the second inequality from
Lemma 2.3, observing that K Ù K1. Now C� A is contained in the union of the sets Dk

on which jTk(f )Mj � Rã and jTkf j Ù R, k ≥ 1, . . . , K. These sets, in turn, are contained
in the sets Ek, on which jTk

�
f � (f )M

�
j Ù R(1 � ã). Since Tk’s are L2 contractions, and

since kf � (f )Mk2
2 Ú 10Me�M2Û2 we see that

ñ(Dk) � ñ(Ek) Ú 1
R2(1 � ã)2

10Me�M2Û2,

and, consequently,

ñ(C � B) Ú K
R2(1 � ã)2

10Me�M2Û2

Ú 2K1

R2(1 � ã)2
10Me�M2Û2

≥ 200(RÛé)eR2Û(2é2)

R2(1 � ã)2

åR
é e�å

2R2Û(2é2) log(20Û¢)
Ú ¢Û2,

because of the choice of R. Hence ñ(B) Ú ¢ and the proof is completed.

4. The Normally Distributed Case. As indicated in Section 3, we will now show,
in Lemma 4.3 that the hypotheses of Proposition 3.1 are satisfied in the special case that
the functions involved have a joint normal distribution. This will prove Theorem 1.5.

LEMMA 4.1. Assume that an inner product space W is the linear span of a subspace
V and a vector a not in V. Let P: W ! V be the orthogonal projection on V and é ≥
ka � Pak. Let B ² V be a Borel subset of the vector space V, R Ù 0 a number, and

C ≥ fw j w 2 W, Pw 2 B, j(w, a)j � Rg.

Then

ΓW(C) � [1 � 2§(RÛé)] ΓV(B),

where ΓW and ΓV denote the respective standard Gauss measures of W and V.

PROOF. Let u0 ≥ (a � Pa)Ûé be the unit vector in the direction of (a � Pa). If U
is the subspace spanned by u0 then W is spanned by the orthogonal subspaces V and U.
Representing the vectors w 2 W as w ≥ v + tu0 with v ≥ Pw 2 V and t 2 R we see that
w ≥ v + tu0 is in C if and only if v 2 B and t belongs to the closed interval

I(v) ≥
�
� (v, a)

é � R
é ,

(v, a)
é +

R
é
½
.
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Hence,
ΓW(C) ≥ Z

W
üC(w)Γ(dw)

≥ Z
V

Z
R
üC(v + tu0)ΓR(dt)ΓV(dv)

≥ 1p
2ô

Z
B

Z
I(v)

e�t2Û2 dtΓV(dv)

� 1p
2ô

Z
B

Z RÛé

�RÛé
e�t2Û2 dtΓV(dv)

≥ [1 � 2§(RÛé)]ΓV(B),

where the inequality follows from the observation that

Z ï+ã

ï�ã
e�t2Û2 dt � Z ã

�ã
e�t2Û2 dt

for all ï 2 R and ã ½ 0.

LEMMA 4.2. Let (a1, . . . , aK) be a é-spanning sequence in W and R Ù 0. If C is the
set of vectors w 2 W for which j(w, ak)j � R for each k ≥ 1, . . . , K, then

ΓW(C) � [1 � 2§(RÛé)]K.

PROOF. Let V be the subspace spanned by the ak’s and U the orthogonal complement
of V. Note that C ≥ (C \ V) ð U, which shows that ΓW(C) ≥ ΓV(C \ V)ΓU(U) ≥
ΓV(C \ V). Hence, if K ≥ 1 then, with ã ≥ ka1k Ù é,

ΓW(C) ≥ 1p
2ô

Z RÛã

�RÛã
e�t2Û2 dt � [1 � 2§(RÛé)].

The general case follows by induction from the previous lemma.

LEMMA 4.3. Let f be a é-spanning function for (T1, . . . , TK). Assume that the func-
tions (f , T1f , . . . , TKf ) have a joint normal distribution, as defined in Section 2.9. Then,
for any R Ù 0 and M Ù 1, kf � (f )Mk2

2 Ú 2Me�M2Û2, and

ñ�nx j x 2 X, max
1�k�K

jTkf (x)j � R
o� Ú 2[1 � 2§(RÛé)]K .

PROOF. Let òk:RK+1 ! R, k ≥ 0, 1, . . . , K, be the coordinate functions in RK+1. We
will write T0 for the identity operator. Let ç be the Gauss measure onRK+1 induced by the
functions (T0f , T1f , . . . , TKf ). Since these functions are assumed to have a joint normal
distribution, the measure ç is also the distribution measure of the mapping

(T0f , T1f , . . . , TKf ): X ! RK+1.

Let D be the subset of RK+1 defined by the condition that

max
1�k�K

jòkj Ú R.
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Hence the second conclusion of the Lemma can be stated as

ç(D) Ú 2[1 � 2§(RÛé)]K.

This follows from the corresponding statement in the previous lemma. In fact, let W
be the finite dimensional inner product space obtained as the linear span of the vectors
ak ≥ Tkf , k ≥ 0, 1, . . . , K, in the Hilbert Space L2(X,ñ). Consider W as a measure space
with its standard Gauss measure ΓW . Let C be the subset of W as defined in Lemma 4.3.
Then ΓW(C) ≥ ç(D), since ç is also the distribution measure of L: W ! RK+1 that takes
w 2 W to

L(w) ≥ �
(w, a0), (w, a1), . . . , (w, aK)

� 2 RK+1,

as defined in Section 2.9. To obtain the first statement, note that the norm of ò0:RK+1 ! R
in L2(RK+1, ç) is equal to the norm of f in L2(X,ñ), which is one, because of the definition
of a spanning function, as given in Section 1.4. Hence the distribution measure of ò0 is
the standard Gauss measure on R and the result follows from Corollary 2.6.

5. General Case.
5.1 Notation. Recall that (X,ñ) is a probability space. Let (Pn) be an ergodic sequence.
Hence (Pn) is a sequence of positive isometries of L2(X,ñ) such that Pn1 ≥ 1 and such
that (1ÛN)

PN
n≥1 Pnf converges in L2 to the constant function

R
X f dñ, for each f 2 L2. It

is easy to see that Pn’s are contractions of each one of the Lp spaces, 1 � p � 1, and
that (1ÛN)

PN
n≥1 Pnf converges to

R
X f dñ in L1, for each f 2 L1. Also, PnfPng ≥ Pn(fg)

for all f ,g in L2. Let W be a finite dimensional inner product space with its standard
Gauss measure Γ ≥ ΓW . The product measure space (X,ñ)ð (W, Γ) is denoted by (Z, ö).
Let (un) be a sequence of N orthonormal vectors in W. By means of these vectors we
associate to each function f : X ! R in L2 another function †f : X ! W, defined by

†f (x) ≥ 1p
N

NX
n≥1

(Pnf )(x)un.

We also define Ψf : Z ! R by

Ψf (x, w) ≥ �†f (x), w
� ≥ 1p

N

NX
n≥1

(Pnf )(x)(un , w).

To denote the dependence of these mappings on N sometimes we also write †Nf and ΨNf
instead of †f and Ψf , respectively.

In what follows we will fix a set (f1, . . . , fK) of K functions in L2(X,ñ), with the covari-
ance matrix A ≥ f(fk, fl)g. For each x 2 X, let A(x) ≥ AN(x) be the covariance matrix of
the K vectors

�†Nf1(x), . . . ,†NfK(x)
�

in W. We will also fix a norm on the space of KðK
matrices. As in Section 2.9, the Gauss measure corresponding to a covariance matrix B
is denoted by çB and the integral of a continuous and bounded functionß:RK ! R with
respect to çB by Φ(B). Note that, if (b1, . . . , bK) are K vectors in W with the covariance
matrix B, then

Φ(B) ≥ Z
RK
ß dçB ≥

Z
W
ß
�
(bi, w)

�
dΓW .

Here the value of ß at (ò1, . . . , òK) 2 RK is denoted by ß(òi).
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LEMMA 5.2. Given any ¢ Ù 0, there is an N0 such that if N Ù N0 then

kA� AN(x)k Ú ¢,

for all x in a set EN ² X with ñ(EN) Ù 1 � ¢.
PROOF. Let f and g be two L2 functions. We have

�†Nf (x), †Ng(x)
� ≥ 1

N

NX
n≥1

NX
m≥1

Pnf (x)Pmg(x)(un, um)

≥ 1
N

NX
n≥1

Pnf (x)Png(x)

≥ 1
N

NX
n≥1

Pn(fg)(x).

This last sequence converges in L1 to the constant function (f , g) ≥ R
X fg dñ. Hence given

any ¢1 Ù 0 there is an N1 such that, if N ½ N1 then

þþþ�†Nf (x), †Ng(x)
� � (f , g)

þþþ Ú ¢1

for all x 2 FN ² X, with ñ(FN) Ù 1 � ¢1. Then the proof follows by applying this
argument K2 times, with a sufficiently small ¢1.

LEMMA 5.3. If f and g belong to L2(X,ñ) then Ψf and Ψg belong to L2(Z, ö) and

(f , g) ≥ (Ψf , Ψg),

where the inner products are in their respective L2 spaces.

PROOF. We have

(Ψf , Ψg) ≥ Z
Z

Ψf Ψg dö
≥ Z

X

Z
W

�
†f (x), w

��
†g(x), w

�
ΓW(dw)ñ(dx)

≥ Z
X

�†f (x),†g(x)
�ñ(dx)

≥ 1
N

NX
n≥1

Z
X

Pnf (x)Png(x)ñ(dx)

≥ 1
N

NX
n≥1

(Pnf , Png)

≥ (f , g).

Here, the third equality follows from a basic property of the standard Gauss measures,
as stated in Section 2.7.

https://doi.org/10.4153/CJM-1997-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-001-3


18 MUSTAFA A. AKCOGLU, DZUNG M. HA AND ROGER L. JONES

LEMMA 5.4. As in Notation 5.1, let (f1, . . . , fK) be K functions in L2(X,ñ) with the
covariance matrix A. Let íN be the distribution measure of the mapping

(ΨNf1, . . . , ΨNfK): Z ! RK,

and let ßi:RK ! R, i ≥ 1, . . . , I, be finitely many bounded and continuous functions.
Then for each ¢ Ù 0 there is an N0 such that if N ½ N0 thenþþþþþ

Z
RK
ßi díN �

Z
RK
ßi dçA

þþþþþ Ú ¢

for each i ≥ 1, . . . , I.

PROOF. We use the notation of 5.1. We will assume, without loss of generality, that
I ≥ 1 and write ß for ß1. We have

Z
RK
ß díN ≥ Z

Z
ß
�
(†Nfi(x), w)

�
ö(dx dw)

≥ Z
X

Z
W
ß�(†Nfi(x), w)

�
ΓW(dw)ñ(dx)

≥ Z
X

Φ
�
AN(x)

�
ñ(dx).

Let M ≥ kßk1. Given ¢1, 0 Ú ¢1 Ú ¢Û(2M+1), find é Ù 0 such that jΦ(B)�Φ(A)j Ú ¢1

whenever B is a covariance matrix with kB�Ak Ú é. Use Lemma 5.2 to find an N0 with
the following property. For each N ½ N0 there is a set EN ² X with ñ(EN) Ù 1�¢1 such
that kAN(x) � Ak Ú é for each x 2 EN. Then, if N ½ N0,þþþþþ

Z
RK
ß dçA �

Z
RK
ß díN

þþþþþ ≥
þþþþþΦ(A) � Z

X
Φ
�
AN(x)

�ñ(dx)
þþþþþ

≥
þþþþþ
Z

X
Φ(A)ñ(dx) � Z

X
Φ
�
AN(x)

�
ñ(dx)

þþþþþ
� Z

X

þþþΦ(A) �Φ
�
AN(x)

�þþþñ(dx)

� 2M¢1 + ¢1 Ú ¢.
LEMMA 5.5. Let (T1, . . . , TK) be K contractions in L2, commuting with an ergodic

sequence (Pn). Let f be a é-spanning function for (T1, . . . , TK). Then, given R Ù 0 and
M Ù 1, there are N real numbers ãn such that the function

g ≥ 1p
N

NX
n≥1

ãnPnf

satisfies the conditions that kgk2 Ú 3, kg � (g)Mk2
2 Ú 10Me�M2Û2, and

ñ�nx j x 2 X, max
1�k�K

jTkg(x)j � R
o� Ú 10[1 � 2§(RÛé)]K.

PROOF. We will use Lemma 4.3 and the notation introduced in this Lemma and its
proof. In particular, T0 denotes the identity operator. Let A be the (K + 1) ð (K + 1)
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covariance matrix of the L2 functions fk ≥ Tkf , 0 � k � K, and çA the Gauss measure
on RK+1 corresponding to A. From Lemma 4.4 and from the fact that kf0k2 ≥ kfk2 ≥ 1
(by the definition of a é-spanning function) we obtain

Z
RK+1

ò2
0 dçA ≥ 1,

Z
RK+1

(ò2
0 ^M2) dçA Ù 1 � 2Me�M2Û2,

and Z
RK+1

üD dçA Ú 2[1 � 2§(RÛé)]K,

where üD is the characteristic function of the set D ² RK+1 on which

max
1�k�K

jòkj � R.

Hence we can find a bounded and continuous function ß:RK+1 ! R such that üD � ß
and Z

RK+1
ß dçA Ú 2[1 � 2§(RÛé)]K.

Now apply Lemma 5.4 with the bounded and continuous functions (ò2
0 ^ M2) and ß to

find a sufficiently large N, such that if Ψ ≥ ΨN and if í is the distribution measure of the
mapping

(Ψf0, Ψf1, . . . , ΨfK): Z ! RK+1,

then Z
RK+1

(ò2
0 ^M2) dí Ù 1 � 2Me�M2Û2,

and Z
RK+1

üD dí � Z
RK+1

ß dí Ú 2[1 � 2§(RÛé)]K.

Also, note that, by Lemma 5.3,
Z
RK+1

ò2
0 dí ≥ kΨf0k2

2 ≥ kf0k2
2 ≥ 1.

Returning to the domain Z of the mapping

(Ψf0, Ψf1, . . . , ΨfK): Z ! RK+1,

we see that, if C is the subset of Z on which

max
1�k�K

jΨfk j � R,

then
Z

Z
(Ψf0)2 dö ≥ 1,

Z
Z
[(Ψf0)2 � (Ψf0)2 ^M2] dö Ú 2Me�M2Û2,
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and Z
Z
üC dö Ú 2[1 � 2§(RÛé)]K.

For each w 2 W let

F(w) ≥ Z
X
(Ψf0)2(x, w)ñ(dx),

G(w) ≥ Z
X
[(Ψf0)2 � (Ψf0)2 ^M2](x, w)ñ(dx),

H(w) ≥ Z
X
üC(x, w)ñ(dx).

Note that the values of these functions depend on the functions fk only as members of
L2, not on their representations. Since F, G, and H are nonnegative functions of w with

Z
W

F(w)ΓW(dw) ≥ 1,
Z

W
G(w)ΓW (dw) Ú 2Me�M2Û2,

Z
W

H(w)ΓW (dw) Ú 2[1 � 2§(RÛé)]K,

it is clear that there is a point w0 2 W such that F(w0) Ú 9, G(w0) Ú 10Me�M2Û2, and

H(w0) Ú 10[1 � 2§(RÛé)]K.

Let

g ≥ Ψf0( Ð , w0) ≥ 1p
N

NX
n≥1

(un, w0)Pnf .

It is clear that kgk2
2 ≥ F(w0) Ú 9 and, as in the Proof of Corollary 2.6,

kg� (g)Mk2
2 � kgk2

2 � k(g)Mk2
2 ≥ G(w0) Ú 10Me�M2Û2.

Also, since

Tkg ≥ 1p
N

NX
n≥1

(un, w0)PnTkf ≥ Ψfk( Ð , w0),

we have

ñ
�n

x j x 2 X, max
1�k�K

jTkg(x)j � R
o�
≥ H(w0) Ú 10[1 � 2§(RÛé)]K .

Hence g satisfies the requirements of the Lemma.
Proof of Theorem 1.10. This proof follows easily from Proposition 3.1 and Lemma 5.5.

Given ¢ and é, 0 Ú ¢ Ú é � 1, find K, M and R from Proposition 3.1. Let (T1, . . . , TK) be
K contractions in L2, commuting with an ergodic sequence. Let f be a é-spanning func-
tion for these operators. Use Lemma 5.5 to find a function g with the properties stated
there. Then this function satisfies the hypotheses of Proposition 3.1, and h ≥ (1ÛM)(g)M

is a (é, ¢)-sweeping function for (T1, . . . , TK).
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6. Appendix. We will first show, in Lemma 6.1 that Theorem 1.12 can be reduced
to the Theorem 1.10. We also discuss the relation between the entropy condition used in
Bourgain’s original results and é-spanning sequences. All the arguments are completely
geometrical, valid in finite dimensional inner product spaces.

LEMMA 6.1. Let 0 � ö Ú 1 and 0 Ú é Ú p
1 � ö. Then for each integer K ½ 1

there is another integer M ≥ MK ½ 2 with the following property. Let (a1, . . . , aM) be a
sequence of vectors in an inner product space W such that kamk ½ 1 and (an, am) Ú ö
for all 1 � n Â≥ m � M. Then (a1, . . . , aM) contains é-spanning subsequence of length
K.

PROOF. Proceed by induction over K. For K ≥ 1 we may take M ≥ 1. Assume that
MK has been obtained. Let ë ≥

p
1 � é2 � pö(Ù 0). Find an integer N ≥ N(K, ëÛ6)

such that the unit ball in a K-dimensional subspace of W can be covered by N balls of
radius ëÛ6. Choose an integer A ½ 1 such that

q
ö + (2ÛA) Ú pö + (ëÛ3). We then

let MK+1 ≥ MK + AN. To simplify the expressions we will say that a sequence in W
is a ö-sequence if each term has a norm ½ 1 and the inner products of different terms
are � ö. Note that a ö-sequence stays a ö-sequence if each term ai is replaced by the
unit vector aiÛkaik. Consider a ö-sequence of length MK+1. By the preceding remark
we will assume, without loss of generality, that this sequence consists of unit vectors.
To see that it contains a é-spanning sequence of length K + 1, first choose a é-spanning
sequence (g1, . . . , gK) of length K from the first MK terms of the ö-sequence. Let P be
the orthogonal projection on the K-dimensional subspace E spanned by the é-spanning
sequence (g1, . . . , gK). Apply P to the last AN terms of the ö-sequence to obtain AN
vectors in the unit ball of E. Since this unit ball can be covered by N balls of radius ëÛ6,
there will be A of these projected vectors, say (Pf1, . . . , PfA), that are contained in a ball
of radius ëÛ6. Note that here (f1, . . . , fA) is a ö-sequence of length A chosen from the last
AN terms of the original ö-sequence.

Assume that kPfik2 ½
p

1 � é2 for all i ≥ 1, . . . , A. Let g be the center of the ball of
radius ëÛ6 that contains all Pfi’s. Then, we have, for each i ≥ 1, . . . , A,

1
36
ë2 ½ kg� Pfik2

≥ kgk2 + kPfik2 � 2(g, Pfi)

½ kgk2 +
�
kgk � 1

6
ë
�2 � 2(g, Pfi)

≥ 2kgk2 � 2kgk1
6
ë +

1
36
ë2 � 2(g, Pfi)

which shows that

(g, Pfi) ½ kgk
�
kgk � 1

6
ë
�

.

Hence �
g, P

1
A

AX
i≥1

fi
�
½ kgk

�
kgk � 1

6
ë
�

,

https://doi.org/10.4153/CJM-1997-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-001-3


22 MUSTAFA A. AKCOGLU, DZUNG M. HA AND ROGER L. JONES

or that 



 1
A

AX
i≥1

fi




 ½ kgk � 1

6
ë.

Since

kgk2 ½ kPfik � 1
6
ë ½

p
1 � é2 � 1

6
ë ≥ pö +

5
6
ë,

we then have 



 1
A

AX
i≥1

fi




 ½ pö +

2
3
ë.

We show that this is a contradiction. In fact,





 1
A

AX
i≥1

fi




2
≥ 1

A2

� AX
i≥1

AX
j≥1

(fi , fj)
�

� 1
A2

�
A + (A2 � A)ö�

≥ ö +
1
A

(1 � ö) � ö +
1
A

,

which means that 



 1
A

AX
i≥1

fi






2
�
q
ö + (1ÛA) Ú pö + (ëÛ3),

by the choice of A. Hence we must have kPfik Ú
p

1 � é2 for at least one i ≥ 1, . . . , A.
In this case we have

kfi � Pfik2 ≥ kfik2 � kPfik2 Ù 1 � (1 � é2) ≥ é2.

Therefore fi can be added to the initial é-spanning sequence (g1, . . . , gK) to obtain a é-
spanning sequence of length K + 1.

REMARK. We will now discuss the relation between the following two conditions on
a family C of L2 contractions. The first condition is a hypothesis in Bourgain’s entropy
theorem. The second condition is a hypothesis in Theorem 1.11.

(A) There is a ï Ù 0 such that for each integer N ½ 1 one can find N operators
(S1, . . . , SN) from C and a function f , such that kfk2 � 1 and kSnf � Smfk2 ½ ï for all
1 � n Â≥ m � N.

(B) There is a é Ù 0 such that for each integer K ½ 1 one can find a sequence
(T1, . . . , TK) of K operators from C for which there is a é-spanning function.

It is clear that if (B) is satisfied then (A) is also satisfied with ï ≥ é. Conversely, if
(A) is satisfied then we will show that (B) is also satisfied with é ≥ ïÛ3. In fact, the
following general result is true. We will sketch the proof briefly.

LEMMA 6.2. Let é Ù 0. Then for each integer K ½ 1 there is another integer N ≥ NK

such that if (si) is a sequence of N vectors in the unit ball of an inner product space W
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with ksi � sjk Ù 3é whenever i Â≥ j, then (si) contains a é-spanning subsequence of
length K.

PROOF. First note that there is a number M ≥ Mn such that the unit ball of an n-
dimensional subspace of W can not contain more than M vectors having a distance of at
least é between any two of them. For the proof the lemma, apply an induction over K, for a
fixed é Ù 0. Take N1 ≥ 2. Assume that NK has been obtained and let NK+1 ≥ NK +MK +1.
It is easy to see that this choice works.
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