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Convection within planetary bodies is often modelled using a temperature-dependent
rheology which, when cooled from the surface, naturally leads to the formation of a
so-called stagnant lid at the cold outer surface. However, for sufficiently large planets
the phase diagram describing the partially molten system may depend significantly on
pressure in addition to temperature, leading to significant variations in solid fraction. The
aggregate rheology may therefore exhibit significant dependence on both the temperature
and pressure, and hence may exhibit marked dependence on depth in addition to the
dependence on the thermal structure due to convection. Here, we consider the growth
and stability of a planetary stagnant lid. We first characterise the effect of a pressure- and
temperature-dependent rheology on the evolution of a symmetric, planetary stagnant lid.
This analysis further suggests that the pressure dependence of the rheology may lead to
an instability of the growing stagnant lid which, importantly, may lead to asymmetric
lid growth. We find that the most unstable mode is at the longest wavelengths, and
discuss the implications for stagnant-lid convection and the growth of asymmetric surfaces
of planetary bodies. In particular, we discuss the possibility that this instability has
implications for the formation of the crustal dichotomy found on the Moon.
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1. Introduction

Some rocky planets and large satellites, such as the Moon (Laneuville et al. 2013) and
Mars (Reese & Solomatov 2006), maintain a significant hemispherical dichotomy in the
thickness of their crust. The cause of this phenomenon remains poorly understood, with
proposed causes of the lunar crustal dichotomy, including the effect of radiative heating
from Earth (Roy, Wright & Sigurd̄sson 2014), asymmetric radiogenic heating (Laneuville
et al. 2013), tidal heating (Garrick-Bethell et al. 2014) and degree-1 modes of mantle
convection (Morison et al. 2019). However, each of these approaches raises significant
further questions. The time scale of millennia for crustal formation required by Roy
et al. (2014) is at odds with the more orthodox scale of tens to hundreds of millions of
years for crustal formation by flotation (Elkins-Tanton, Burgess & Yin 2011). Asymmetric
distribution of radiogenic elements requires a chemical dichotomy in the initial conditions.
Tidal heating is, to leading order, an effect at spherical harmonic degree 2. It is difficult to
see how this mechanism would induce a major difference between the two hemispheres.
The degree-1 mode of mantle convection suggested by Morison et al. (2019) does not
provide a physical mechanism, but rather posits that effects deep in the mantle can perhaps
influence the crust. Additionally, large impacts have been suggested as the cause of Mars’s
dichotomy (Andrews-Hanna, Zuber & Banerdt 2008; Marinova, Aharonson & Asphaug
2008; Golabek et al. 2011).

For both Mars (Elkins-Tanton 2012) and the Moon (Wieczorek et al. 2006), a significant
fraction of the crust (if not all) is thought to have originated in the time period when a
large proportion of the planet was molten, in what is known as a magma ocean. While
ultimately driven by radiative heat loss at the surface, the manner of cooling of both
magma oceans (Elkins-Tanton 2012; Michaut & Neufeld 2022) and the solid mantle
(Labrosse & Jaupart 2007) is primarily convective. In these settings the temperature
dependence of the viscosity of the convecting material is of major importance, given the
range in viscosity between a pure melt of ∼0.1 Pa s and a pure solid at ∼1021 Pa s (Reese &
Solomatov 2006). Due to the inherent difficulty in driving fluid motions in the cold, very
viscous stagnant lid, a thick surface boundary layer commonly occurs in convecting fluids
with a temperature-dependent viscosity ratio of several orders of magnitude (Davaille
& Jaupart 1994; Solomatov 1995). Similar stagnant lids have also been observed and
studied in laboratory experiments (Richter, Nataf & Daly 1983; Davaille & Jaupart 1993)
and in numerical models (Stengel, Oliver & Booker 1982; Christensen 1984; Morris &
Canright 1984; Ogawa, Schubert & Zebib 1991; Moresi & Solomatov 1995), both of which
have provided useful insight into the behaviour of convection with temperature-dependent
rheologies.

A stagnant lid occurs when the cold boundary layer is too viscous to support convective
motions. The interior of the fluid remains vigorously stirred by convection and is therefore
well characterised by a near-uniform temperature (Nataf & Richter 1982; Richter et al.
1983), while the stagnant lid transmits heat by conduction. A thinner unstable boundary
layer therefore connects the stagnant lid to the convecting interior, and acts in a similar
manner to boundary layers found in isoviscous convection, and is defined by having
the viscosity across it vary by approximately only one order of magnitude (Morris &
Canright 1984; Smith 1988; Davaille & Jaupart 1993). The temperature contrast across
the thermal boundary layer at the base of the stagnant lid may therefore be characterised
by a rheological temperature scale

Tμ =
[
−μ/

dμ

dT

]
T̄

, (1.1)
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Early asymmetric growth of planetary stagnant lids

where μ and T denote viscosity and temperature, respectively. The rheological temperature
is evaluated at the temperature of the mixed interior, T̄ .

For large viscosity contrasts, and hence temperature differences much greater than Tμ,
the convective heat flux associated with the combination of the stagnant lid and the flow
of the interior is significantly lower than would be expected for a constant-viscosity fluid
at the temperature of the well-mixed interior (Davaille & Jaupart 1993; Solomatov 1995).
Instead, the convective heat flux FH is set by the viscosity of the well-mixed interior and
the much smaller rheological temperature scale

FH ∼ μ−1/3T4/3
μ = μ

(
dμ

dT

)−4/3

. (1.2)

A planet in a thermal steady state exhibits heat fluxes which must balance across the
unstable boundary layer, so that in a steady state the convective heat flux from the mixed
interior is equal to the conductive heat flux into the stagnant lid. Since the planet evolves
slowly, the convective heat flux may be taken to be quasi-steady, and the thermal evolution
given by a global heat balance. In such a setting the crust may then form by extraction
of buoyant liquid from the partially molten mantle and compaction in the stagnant lid
(Michaut & Neufeld 2022).

It is worth noting that the phase diagram as characterised by solidus and liquidus of
silicate rocks varies considerably over the large pressure scales found in planetary interiors
(Maurice et al. 2017), and accordingly there is a large pressure dependence of the viscosity
of well-mixed partial melts (Elkins-Tanton 2012). These combined effects suggest that the
pressure-dependent rheology may have a significant impact on the evolution of planetary
surfaces and the global heat budget of their interiors. Pressure- and temperature-dependent
viscosities give rise to pressure- and temperature-dependent rheological temperature
scales, which are reflected in both a temperature and pressure, or equivalently depth,
dependence of the convective heat fluxes. Since the heat flux is independent of the depth
of the mixed interior in classical stagnant-lid theory (Davaille & Jaupart 1993), it is the
pressure at the top of the mixed interior that is used in the calculations of the viscosity
and the corresponding heat flux. Since the pressure within the lid is hydrostatic, the heat
flux may be considered to be a function of mixed interior temperature and stagnant-lid
thickness. Thicker stagnant lids will lead to a higher pressure and hence higher viscosity,
giving rise to the potential for a reduction in convective heat flux. This may in turn lead
to further thickening of the stagnant lid. Conversely, for thinner stagnant lids the lower
pressures may imply a lower viscosity, and hence higher heat flux reducing stagnant-lid
growth.

Here, we investigate the evolution and stability of the growth of a planetary stagnant
lid whose rheology is both temperature and pressure dependent. The close association
between stagnant lids and crustal formation (Breuer & Spohn 2006; Morschhauser, Grott
& Breuer 2011; Thiriet et al. 2018; Michaut & Neufeld 2022) suggests that this instability
may play an important role in amplifying small initial perturbations to produce the
large crustal dichotomy seen in some planetary bodies. In § 2, we begin by describing
in detail the physical model, detailing the effect of both the temperature and pressure
dependence of the phase diagram on the rheology of a solidifying magma ocean. We
use boundary-layer arguments to constrain the dependence of the convective heat flux on
temperature and pressure, and hence depth. In addition, we enforce energy conservation
across the unstable boundary layer to determine the time-dependent growth of the stagnant
lid. Subsequently, in § 3 we present the results of our model for the symmetric growth of
a uniform planetary stagnant lid. In order to provide a concrete example, we numerically
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Stagnant lid

(crust/lithosphere)

Unstable boundary layer (z = −ℎ(t))

Surface (z = 0)
Ts

μ(T, z)

T = T̄

�T

δT

Mixed interior

ℎ
FH

Figure 1. Diagram of model set-up, including an asymmetric planetary structure and a close-up of the
structure of the stagnant lid and unstable boundary layer.

examine a radially symmetric model of the Moon, and then use this insight to set up a
generic symmetric stagnant lid chosen to be representative to use as a base state for our
subsequent perturbation analysis. In § 4, we consider the possible growth of perturbations
to this symmetric stagnant lid, deriving a condition for their exponential growth throughout
the evolution of the stagnant lid. We find that pressure dependence of the melt fraction, and
hence rheology and convective heat flux, leads to an instability that grows most quickly
at large wavelengths. Finally, in § 5 we discuss the implications of our predictions for
observations of crustal dichotomy on planetary bodies, and discuss for which planetary
bodies our analysis is relevant.

2. Description of the physical model

2.1. Overview
We consider the cooling and crystallisation of a planetary magma ocean from an initial
state with a high melt fraction. Surface radiation or atmospheric convection drives cooling
and crystallisation of a surface boundary layer which, because of the sensitive dependence
of the mixture viscosity on temperature and solid fraction, results in a stagnant lid
of thickness h(t), which evolves as a function of time t (see figure 1). To simplify
the subsequent analysis, and to focus on the stability of the evolving stagnant lid we
approximate surface radiative cooling with a fixed, cold surface temperature Ts. As the
lid is stagnant, the thermal evolution of the lid is determined by diffusion and radiogenic
heating alone.

Rapid convection ensures the interior of the magma ocean is well mixed, as assumed in
the work of Michaut & Neufeld (2022). However, we add the additional complicating
factor of a pressure- and hence depth-dependent solidus and liquidus, similarly to
Elkins-Tanton (2012). Vigorous convection ensures that the crystals within the magma
ocean remain in suspension, and the slurry remains in thermodynamic equilibrium. Thus
the solid fraction φ = φ(T, p) is a function of temperature and pressure – for example,
decreasing pressure reduces the solidus and liquidus, causing a decrease in φ.
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In many studies (Elkins-Tanton 2012; Laneuville et al. 2013; Tosi et al. 2013; Solomatov
2015; Maurice et al. 2017) the temperature of the convecting interior of rocky planets
are assumed to follow an adiabatic, or isentropic, temperature profile. Such a temperature
profile may be defined in terms of pressure p and potential temperature Tp. We define an
adiabatic temperature profile Ti(Tp, p) by

Ti(Tp, 0) = Tp, (2.1)

and
∂Ti

∂p
= αTi

ρcp
. (2.2)

Hence

Ti = Tp exp
[∫ p

0

α(Ti(Tp, p′), p′)
cp(Ti(Tp, p′), p′)ρ(Ti(Tp, p′), p′)

dp′
]

. (2.3)

Here, p is the pressure, α(T, p) is the thermal expansivity of the fluid, ρ is its density and
cp(T, p) is its constant-pressure specific heat capacity. The density and thermal expansivity
of the fluid are related by

α = − 1
ρ0

dρ

dT
, (2.4)

where ρ0 is the reference density of the fluid, and we use the Boussinesq approximation

|ρ − ρ0| � ρ0. (2.5)

The mixed interior’s potential temperature Tp(t) is therefore uniform in space, but may
change in time to account for heat conservation. Together with the assumption that pressure
is hydrostatic to leading order, the pressure, temperature and solid fraction at any point in
the modelled planet may be calculated from the phase diagram, the potential temperature
and the radial coordinate. The mixed interior’s potential temperature may be increased
by mechanisms such as radiogenic heating and heat transfer from the planetary core, and
decreased by heat lost to the stagnant lid.

Any difference between the convective heat flux into the unstable boundary layer and the
conductive heat flux up into the base of the stagnant lid is accounted for by a Stefan-like
growth condition in order to ensure heat conservation at the base of the stagnant lid (see
(2.27)). This growth is regulated by the temperature difference δT across the unstable
boundary layer at the interface between the stagnant lid and the interior.

As a further simplification we assume that all our thermodynamic parameters remain
constant, with the exception of adjustments to the heat capacity cp and thermal expansivity
α in the partial melt to account for the release of latent heat and the density difference
between solid and liquid phases. In reality all properties of silicates may be temperature
and pressure dependent.

2.2. Viscosity of the crystal-magma slurry
The effective viscosity of a fluid with a dense suspension of particles (or crystals) is very
complex. Studies such as Einstein (1906, 1911) suggest a linear relationship between solid
fraction and viscosity at low solid fraction, whereas those such as Roscoe (1952) suggest a
viscosity that diverges at a critical solid fraction. For thermodynamically reactive systems
the solid fraction must itself be calculated, and for simplicity here we consider it to be
determined by a linear relationship between the solidus and liquidus.
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Partial melts in silicate rock can persist over a wide range of temperatures and pressures.
For example, Maurice et al. (2017) predict a difference of over 500 K between the solidus
and liquidus temperatures at zero pressure in peridotite. In linearised form their equations
are

Tsol = 1400 K + 149.5 K GPa−1p, (2.6)

Tliq = 1977 K + 64.1 K GPa−1p, (2.7)

where Tsol and Tliq are the solidus and liquidus temperatures, respectively.
In order to take into account the finite viscosity of the pure solid, we use the results of

Costa, Caricchi & Bagdassarov (2009) for partially solid systems. This slurry viscosity,
together with an Arrhenius law for the viscosity of the solid and liquid phases, results in a
continuous viscosity function

μ(T, p) =

⎧⎪⎨
⎪⎩

μs(T, p) T ≤ Tsol( p),

μl(T, p)f (φ) Tsol( p) < T < Tliq( p),

μl(Tp) T ≥ Tliql( p).

(2.8)

Here, the solidus and liquidus are functions of pressure, Tsol( p) and Tliq( p), respectively,
as given by (2.6) and (2.7), and the viscosity of the solid matrix and interstitial melt are

μs = μsolidus exp
[

Eμ

Rg

(
1
T

− 1
Tsol( p)

)]
, (2.9)

μl = μliquidus exp
[

Eμ

Rg

(
1
T

− 1
Tliq( p)

)]
, (2.10)

respectively, where Eμ is the activation energy, Rg is the ideal gas constant and μliquidus
and μsolidus are set as constants for simplicity. In this paper we assume Eμ is constant,
though in reality it would depend on both temperature and pressure.

A more realistic model would also take into account the activation volume for creep to
find the viscosity in the solid, this being the value Va in a viscosity equation of the form

μs ∼ exp
(

Eμ + Vap
RgT

)
. (2.11)

However, in silicate rock this volume itself varies significantly with temperature and
pressure (Borch & Green 1987; Durham et al. 2009), and our approximation using the
solidus temperature is not unheard of in the field of geophysics (Weertman 1970, 1978).

At temperatures between the solidus and liquidus, we use a model of suspension
rheology by Costa et al. (2009), which is described by the empirical function

f (φ) = 1 + (φ/φ∗)δ[
ξ + (1 − ξ)erfc

(√
π(φ/φ∗) (1 + (φ/φ∗)γ )

2(1 − ξ)

)]BEφ∗
, (2.12)

where φ is the solid fraction, φ* is the critical solid fraction, δ, γ and ξ are empirical
constants and BE = 5

2 is the Einstein constant (Einstein 1906, 1911). Costa et al. (2009)
suggests that δ + γ = 13, and we use γ = 4 throughout this work. We define ξ by the
requirement that the viscosity is continuous at solid fraction φ = 1, so that

μl(Tsol( p), p)f (1) = μsolidus. (2.13)

While this viscosity function’s complicated nature stands in contrast to the simple nature
of the functions we use in the pure solid and pure melt, it holds the advantage of being one

952 A3-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.864


Early asymmetric growth of planetary stagnant lids

1500 1600 1700 1800 1900

103

108

1013

1018

(a) (b)

(c) (d )

(e) ( f )

V
is

co
si

ty
 (

P
a 

s)

0 250 500 750 1000

104

109

1014

1019

1500 1600 1700 1800 1900

10−2

100

102

104

H
ea

t 
fl

u
x

0 250 500 750 1000

10−2

100

102

1500 1600 1700 1800 1900

Potential temperature (K)

100

101

R
h
eo

lo
g
ic

al
 t

em
p
er

at
u
re

sc
al

e 
(K

)

0 250 500 750 1000

Pressure (MPa)

100

Pressure (MPa)

0

500

1000

Potential temperature (K)

1600

1700

1800

Figure 2. Viscosity, heat flux and rheological temperature scales as functions of potential temperature and
pressure.

of the few differentiable viscosity functions for suspensions that cover the entire range of
phases from pure solid to pure fluid.

The viscosity is plotted in figure 2(a) as a function of the potential temperature for
three representative pressures, and in figure 2(b) as a function of pressure for three
potential temperatures. We note that the viscosity increases by several orders of magnitude
around the critical solid fraction, but remains bounded above by the viscosity of the
pure solid. Notably, the viscosity function is also strongly pressure dependent around this
melt fraction, due to the dependence of the solid fraction on pressure through the phase
diagram.
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2.3. Modelling the convective heat flux
The viscosity of a mixture of rock and magma is highly dependent on temperature,
pressure and solid fraction, with lower temperatures and higher pressures leading to a
higher mixture viscosity. Thus, for a sufficiently steep temperature gradient, the viscosity
of the hot interior of a planet is significantly less than that at the surface. Despite the large
buoyancy forces associated with surface cooling, in this regime the surface is very cold
and viscous, and therefore stagnant. However, a region on the lower edge of the stagnant
lid remains relatively warm and low viscosity, and is therefore unstable and can engage
with the convection of the fluid below.

In a steady state, the convective heat flux into the bottom of the stagnant lid is balanced
by heat conduction upwards through the stagnant lid. Davaille & Jaupart (1993) found that
in this case the convective heat flux obeys

FH ≈ Ck
(

gαρ

μκ

)1/3

T4/3
μ , (2.14)

when the viscosity depends solely on temperature. Here, C ≈ 0.47 is a dimensionless
constant, k is the thermal conductivity of the fluid, μ is its dynamic viscosity and κ its
thermal diffusivity and g is the gravitational field strength (which itself may vary with
depth), all evaluated at the temperature of the mixed interior. The pressure dependence
of the partial melt’s viscosity introduces a pressure dependence, and hence a depth
dependence, to the heat flux. We incorporate this depth dependence of the heat flux into
the stagnant lid by evaluating Tμ at the hydrostatic pressure at the base of the stagnant lid.
We denote the temperature at the upper boundary of the mixed interior as

T̄ = Ti(Tp, p(−h)). (2.15)

Thus the pressure- and temperature-dependent rheological temperature scale may be
defined as

Tμ = μ(T̄, p(−h))

− ∂μ

∂T

∣∣∣∣
T̄,p(−h)

, (2.16)

and hence the heat flux is naturally dependent on the stagnant lid thickness h.
The temperature and pressure vary across the unstable boundary layer, and the viscosity

of the slurry may likewise vary. It is this variation in viscosity which sets the depth of the
unstable boundary layer, and hence the resultant heat flux. Here, we review the scaling
for the boundary-layer structure and convective heat flux for isoviscous convection before
extending the analysis to temperature dependent rheologies, covering the experimental
results of Davaille & Jaupart (1993), then examining the pressure-dependent case.

For isoviscous convection, the classical mathematical picture at large Rayleigh number
is as follows. At the cooled upper boundary (or equivalently a heated lower one) the
behaviour of the flow adjacent to the boundary layer is independent of the thickness of
the convection cell. The non-dimensional convective heat flux, or Nusselt number, obeys

Nu = FHd
kΔT

= f (Ra, Pr). (2.17)

Here

Ra = ρgαΔTd3

μκ
, (2.18)
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is the Rayleigh number, d is the height of the convection cell, ΔT is the temperature
difference across the convection cell and

Pr = μ

ρκ
, (2.19)

is the Prandtl number. If the heat flux FH is to be independent of d, it follows that

FH ∼ kΔT
d

Ra1/3. (2.20)

When the viscosity of the fluid is temperature dependent, the extent of the unstable
boundary layer is additionally set by the variation in viscosity across the boundary
layer. Davaille & Jaupart (1993) studied the convection of a temperature-dependent fluid
theoretically and experimentally, and found that the heat flux in the presence of a stagnant
lid is well approximated by

FH = C
kTμ

d
Ra1/3

ν = Ck
(

ρgα

μκ

)1/3

T4/3
μ = C

kΔT
d

Ra1/3
(

ΔT
Tμ

)−4/3

, (2.21)

for a constant C, with Raν denoting the Rayleigh number with ΔT replaced by Tμ.
Davaille & Jaupart (1993) found the experimental value C ≈ 0.47 ± 0.03. Here, we also

consider a temperature drop across the unstable boundary layer given by BTμ. Davaille &
Jaupart (1993) found that B ≈ 2, although the numerical work of Thiriet et al. (2019) found
a value of B ≈ 2.54.

We thus consider the temperature of the base of the stagnant lid to be the value Tu which
satisfies

μ(Tu, p(−h)) = eBμ(T̄, p(−h)), (2.22)

and set the rheological temperature scale

Tμ = T̄ − Tu

B
. (2.23)

Thus the convective heat flux, including both the temperature and pressure dependence of
the rheology, is given by

FH = Ck
(

ρ0gα

μ(T̄, p(−h))κ

)1/3 ( T̄ − Tu

B

)4/3

. (2.24)

Finally, conduction down the adiabatic temperature gradient must be incorporated, so the
overall heat flux is

FH = Ck
(

ρ0gα

μ(T̄, p(−h))κ

)1/3 ( T̄ − Tu

B

)4/3

+ gkαT̄
cp

. (2.25)

A heat flux function corresponding to the viscosity function depicted in figures 2(a) and
2(b) is plotted in figures 2(c) and 2(d). Additionally, the corresponding values of Tμ are
plotted in figures 2(e) and 2( f ). Note that Tμ reaches a local minimum where μ changes
most rapidly as a function of T , and hence so does FH .
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2.4. Heat conservation at the base of the stagnant lid
At the interface between the stagnant lid and mixed interior, two heat fluxes are involved,
the convective heat flux from the planetary interior and the conductive heat flux through
the stagnant lid. The convective heat flux FH has been described above and its behaviour
is summarised in (2.25). In a steady state, this heat flux from the magma ocean is balanced
by a conductive heat flux through the stagnant lid given by

Fcond = −k
∂T
∂z

∣∣∣∣
z=−h

, (2.26)

where k is the thermal conductivity at the base of the stagnant lid and z is the local vertical
coordinate. In contrast, during transient growth of the stagnant lid, conservation of energy
at the interface between the stagnant lid and the mixed interior suggests that the specific
heat capacity of the boundary layer cannot be neglected. In this case, the evolution of the
stagnant lid is given by

ΔH
dh
dt

= Fcond − FH, (2.27)

(Schubert, Cassen & Young 1979; Breuer, Spohn & Wüllner 1993) where the difference
in specific enthalpy between the mixed interior and the bottom of the stagnant lid is given
by

ΔH =
∫ T̄

Tu

ρ

[
cp − L

dφ

dT

]
dT. (2.28)

Here, L is the latent heat and φ is the solid fraction. Given that this latent heat is applicable
over a range of temperatures between the solidus and the liquidus, we may absorb it into
an effective heat capacity

cp(T, p) =
{

cp + L/(Tliq( p) − Tsol( p)) Tsol( p) < T < Tliq( p)

cp otherwise (2.29)

2.5. Heat conservation in the mixed interior
In addition to a statement of energy conservation at the base of the stagnant lid, heat must
be conserved in the mixed interior. The secular variation of the heat in the mixed interior is
determined by the heat flux across the core–mantle boundary and from radiogenic heating
throughout the volume. These heat sources are balanced by removal by the heat flux into
the stagnant lid FH . Heat conservation in the mixed interior is therefore given by

Cm(T̄, h)
dT̄
dt

= FCMB + Q(t)ρV̂(h) − FHÂ(h), (2.30)

where the effective heat capacity of the entire mixed interior is given by

Cm =
∫

Vinterior

ρcp(T, p)
∂T
∂T̄

dV, (2.31)

and where FCMB is the total heat flux across the core–mantle boundary, Q(t) is the
(spatially uniform) rate of radiogenic heating per unit mass as a function of time, V̂(h)

is the volume of the mixed interior and Â(h) is the area of the interface between the mixed
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interior and the stagnant lid. The temperature T at any given point in the calculation of Cm
is constrained by being on the same adiabat as the temperature T̄ at radius R − h.

For the sake of simplicity, and motivated by the small size of the lunar core, in the
following analysis we set FCMB = 0. Similarly, we take the rate of radiogenic heating to
be of the form

Q(t) = Q0 × 2−t/thalf , (2.32)

for an initial rate of radiogenic heating Q0 per unit mass and a half-life thalf , which we set
as thalf = 1 Ga (109 years) to give a decay rate of the correct order of magnitude for the
Earth’s moon.

3. Symmetric growth of the stagnant lid

3.1. Background: symmetric computation
Working from (2.27) and (2.30), we numerically calculate the evolution of a spherically
symmetric planetary model, in order to illustrate and understand the effect of the
pressure-dependent rheology, and hence heat flux, on stagnant-lid growth. We base our
calculation on an approximation of parameters relevant to Earth’s moon. Table 1 shows
the parameters used in our calculations.

We calculate the evolution of a representative series of stagnant lid growth curves as
follows. A high initial temperature is chosen, with a thin stagnant-lid thickness taken that
allows for a linear temperature profile with no stagnant-lid growth, so that

k(Tu − Ts)

h
= FH. (3.1)

We start from a mixed interior potential temperature of 1800 K, which allows the stagnant
lid to start from a negligible thickness of order 1 m. The surface temperature is fixed
at Ts = 250 K, and the stagnant lid begins with a linear temperature profile so that the
conductive heat flux at its lower edge matches the convective heat flux. This state then
evolves according to (2.27) and (2.30), with thermal conduction and radiogenic heating in
the stagnant lid given by

ρcp
∂T
∂t

= ∇ · (k∇T) + Qρ. (3.2)

We use fifth-order finite differences to calculate temperature derivatives in the stagnant
lid, resulting in a system of ordinary differential equations that we solve using a backwards
differentiation method. The results of our simulations of stagnant-lid growth and planetary
thermal evolution are shown in figure 3. In figure 3(a) we plot the potential temperature
Tp(t), which characterises the cooling of the planetary interior, and in figure 3(b) we
plot the stagnant-lid thickness, which characterises the surface boundary layer. In these
simulations, the value of Q0 was changed between calculations, with all other parameters
held constant. At early times, ∼0–10 Ma (millions of years), we find that the high initial
interior temperatures lead to a high convective heat flux, which causes rapid cooling of the
mixed interior. This causes the convective heat flux to decrease, resulting in rapid growth
of the stagnant lid. As the stagnant lid is very thin at this point, the time scale for diffusion
across it remains small, so it retains an approximately linear temperature profile with a
close balance between convective and conductive heat fluxes. Thus

h ≈ k(Tu − Ts)

FH
. (3.3)
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Parameter Symbol Value Units Source

Core density ρc 5171 kg m−3 Garcia et al. (2011)
Reference silicate density ρ0 3328 kg m−3 Garcia et al. (2011)
Gravitational constant G 6.674 × 10−11 m3 kg−1 s−2 Mohr, Newell & Taylor (2016)
Lunar radius R 1.737 × 106 m Weiss & Tikoo (2014)
Silicate thermal expansivity α 2 × 10−5 K−1 Laneuville et al. (2013)
Silicate thermal diffusivity κ 8.8 × 10−7 m2 s−1 Laneuville et al. (2013)
Silicate specific
Heat capacity cp 1000 J kg−1 K−1 Laneuville et al. (2013)
Core radius Rc 3.8 × 105 m Garcia et al. (2011)
Diffusion creep
Activation energy Eμ 3 × 105 J mol−1 Sterenborg & Crowley (2013)
Gas constant Rg 8.31446 J mol−1 K−1 Newell et al. (2018)
Silicate viscosity at solidus μsolidus 1021 Pa s Reese & Solomatov (2006)
Silicate viscosity

at liquidus μliquidus 0.1 Pa s Reese & Solomatov (2006)
Silicate latent

heat of melting L 6 × 106 J kg−1 Laneuville et al. (2013)

Table 1. Parameters used in calculation.
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Figure 3. Symmetric calculation of lunar interior potential temperature (a) and stagnant-lid thickness (b). A
clear separation between a low Q0, low heat flux regime and a high Q0, high heat flux regime is visible.

After ∼10 Ma, radiogenic heating in the interior balances the rapid surface loss of heat,
and so for intermediate times the interior temperature is quasi-static. Beyond 100 Ma,
our solutions diverge into two main groups. At higher rates of radiogenic heating, the
solutions come close to a balance between radiogenic heating and convective heat flux
(see figure 4(b) for an example), with radioactive decay preventing a true steady state from
being reached. At lower levels of heating, no such balance is approached (see figure 4(a)
for an example), and solutions tend towards having the upper boundary of the mixed
interior at the critical solid fraction where viscosity changes most rapidly as a function
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Figure 4. Overall heat fluxes: Q0 = (a) 1.0 × 10−11 W kg−1 and (b) 3.0 × 10−11 W kg−1.

of temperature. This results in a low rheological temperature scale and hence a low
convective heat flux. Stagnant-lid growth in this case is thus primarily controlled by the
enthalpy difference across the unstable boundary layer, in an analogous manner to the
classical Stefan problem with no convective heat flux.

However, for all the values we use, the Moon spends much of its early evolution
undergoing quasi-steady changes. This evolution is seen in the growth of the stagnant lid
and an increase in the temperature of the mixed interior, with a thinner stagnant lid forming
at larger initial radiogenic heating rates. We note that, on a plot of mixed interior potential
temperature against stagnant-lid thickness, our solutions tend towards one of two linear
regions, approximately following contours of the convective heat flux, as shown in figure 5.
For a smaller rate of radiogenic heating (Q0 = 1.0 × 10−11 W kg−1), this contour lies in a
region where the convective heat flux increases with stagnant-lid thickness. However, the
other contour for larger rates of radiogenic heating (Q0 = 3.0 × 10−11 W kg−1) lies in a
region where this heat flux decreases with stagnant lid thickness, leading to the possibility
of instability and asymmetric stagnant-lid growth. We return to the question of the stability
of the stagnant lid in § 4 and instead characterise these modes of symmetric growth as a
base state to be assessed.

Given the important role that the viscosity plays in the heat flux and therefore the
thermal evolution of the planetary interior, we also plot the viscosity as a function of time
and depth for two simulations (see figure 6). We therefore incorporate the slow growth of
the stagnant lid and change in mixed interior temperature into the symmetric base state of
our subsequent stability analysis.

3.2. Quasi-steady evolution of a planar symmetric state and the potential for instability
The growth of the stagnant lid is seen to slowly evolve, driven by the conductive cooling
from the surface and limited by the convective heat flux from the planetary interior.
That this convective heat flux is itself pressure, and hence depth, dependent raises an
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Figure 5. Symmetric calculation in stagnant-lid thickness–potential temperature space. Ticks on the plots are
every 100 Ma. These calculations were run over a time scale of 1 Ga.
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Figure 6. Plots of the structure of the viscosity with depth for differing radiogenic heating rates,
(a) Q0 = 1.0 × 10−11 W kg−1, and (b) Q0 = 3.0 × 10−11 W kg−1. In both plots the dashed lines mark the lower
boundary of the stagnant lid, and viscosities outside the range of the colour bar are not shown.

important possibility. If the convective heat flux decreases more rapidly with depth than
the conductive cooling of a thicker stagnant lid then the growth of the stagnant lid
may be unstable to perturbations from the symmetric base state. Here, we first describe,
in non-dimensional form, the evolution of the symmetric base state before considering
perturbations to this initially symmetric evolution in the following section.
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Early asymmetric growth of planetary stagnant lids

The results of the calculations in § 3.1 suggest that we may consider the evolution of the
stagnant lid and planetary interior to be approximately quasi-steady. Furthermore, we note
that the base state and the following stability analysis are not specific to the Moon, but are
generic to any spherical rocky planetary body with pressure- and temperature-dependent
viscosity in its convecting interior, provided it exhibits a conductive stagnant lid.

We assume that the stagnant-lid thickness h(t) does not vary spatially, but grows at a
slow rate dh/dt = V0. Similarly, the potential temperature Tp(t) of the convecting interior
is taken to be a function of time but not space. The mantle mixed interior temperature T̄
likewise varies slowly at the rate ˙̄T = dT̄/dt. For the purposes of our stability analysis,
the calculation of ˙̄T , as detailed in (2.30), is not as important as the resulting value. For
simplicity, we assume a quasi-steady stagnant-lid base-state temperature profile T0(z, t) of
the form

T0 = Ts + ΔTΘ0(η), (3.4)

where Ts is the fixed surface temperature at z = 0, ΔT = T̄ − δT − Ts and Θ0 is the
non-dimensional base-state temperature profile, which is a function of η = −z/h(t). As
in § 2.1, δT is the temperature difference across the unstable boundary layer. Including
the effects of thermal conduction and radiogenic heat production, the temperature in the
stagnant lid obeys

ρcp
∂T0

∂t
= ∇ · (k∇T0) + Qρ, (3.5)

where k = ρcpκ is the thermal conductivity, and κ is the thermal diffusivity. If k is
constant and we consider first a simpler, planar geometry, then (3.4) and (3.5) may be
written non-dimensionally as

d2Θ0

dη2 + Peη
dΘ0

dη
− τΘ0 + Q̃ = 0, Θ0(0) = 0, Θ0(1) = 1, (3.6a–c)

where

Pe = hV0/κ, (3.7)

is the Péclet number, which characterises the speed of lid growth compared with
thermal diffusion. The non-dimensional rate of change of the mixed interior’s potential
temperature is given by

τ = ˙̄Th2/(κΔT), (3.8)

and the non-dimensional rate of radiogenic heating is given by

Q̃ = Qh2/(cpκΔT). (3.9)

In general, (3.6a–c) cannot be solved analytically, but we plot numerically calculated
profiles of Θ0(η) in figure 7 for representative values of Pe, τ and Q̃. We find that
increasing Pe or, Q̃, or decreasing τ , gives rise to a negative second derivative of Θ0,
and correspondingly a smaller value of Θ ′

0(1). These curves represent non-dimensional
temperature profiles in the stagnant lid under various conditions. Their slope at η = 1 is
proportional to the conductive heat flux into the base of the stagnant lid, and so is important
to understanding its stability.
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Figure 7. Example plots of the non-dimensional thermal structure of the stagnant lid in planar geometry,
Θ0(η), for differing Péclet numbers Pe, rates of mixed interior temperature change τ and radiogenic heating
rates Q̃.

We also note that energy conservation in the unstable boundary layer may be written in
the form of an evolution equation for the growth of the stagnant lid. In dimensional form
this is

ρcpδTV0 = −k
∂T0

∂z

∣∣∣∣
z=−h

− FH(T̄, h), (3.10)

or non-dimensionally

Pe
δT
ΔT

= Θ ′
0(1) − FH(T̄, h)h0

kΔT
. (3.11)

If the convecting material is of roughly constant composition, the two main variables
affecting FH are temperature and pressure. Given that the pressure is hydrostatic to leading
order, we can replace pressure with depth below the surface in our calculation of FH .

The solution of (3.6a–c) and (3.10) allows us to determine the thermal structure,
and hence the heat flux during the symmetric, quasi-steady growth of the stagnant lid.
However, the heat flux is both pressure and temperature dependent, and hence may depend
on stagnant-lid thickness. In particular, the convective heat flux from the interior may
decrease with increasing stagnant-lid thickness and hence the growth rate of the stagnant
lid may increase with depth leading to the potential for instability. In what follows, we
consider spatial (azimuthal) perturbations to the evolving stagnant-lid thickness.

4. Growth of variations in the stagnant lid

4.1. Planar perturbations
To examine the possibility of instabilities in the growth of the stagnant lid, we consider
a perturbation to the quasi-steady symmetric base state with planar geometry described
in § 3. This is a simplification of the more realistic spherical geometry covered in § 4.2.
Here, we consider perturbations to a uniform thickness h = h0 such that h = h(x, t) for
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Early asymmetric growth of planetary stagnant lids

horizontal coordinate (x) and time (t). We assume that any changes to the amplitude
of perturbations occur quickly compared with changes in the base state. A non-uniform
perturbation may be caused by external forcing, such as spatially variable surface heating
or impacts, or internally by chemical differentiation or hot plumes in the convecting
interior. However, we neglect any long-term local effects of any such plumes, with the
convective heat flux remaining a function of h and T̄ only. With this perturbation, energy
conservation at the base of the stagnant lid may now be written as

ρcpδT(V − V0) = −k

[
∂

∂z

∣∣∣∣
z=−h

(T − T0) + ∂T0

∂z

∣∣∣∣
z=−h

− ∂T0

∂z

∣∣∣∣
z=−h0

]

− [
FH(T̄, h) − FH(T̄, h0)

]
, (4.1)

where V = ∂h/∂t denotes the stagnant-lid growth rate in the perturbed state. We consider
small-amplitude perturbations to the stagnant-lid thickness of the form

h = h0[1 + ε(t) cos(ax)], (4.2)

for wavenumber a > 0 and dimensionless perturbation amplitude ε(t) � 1. A positive
value of a is chosen to ensure the overall convective heat flux from the interior is
unchanged to leading order, avoiding the more complicated case in which perturbations
to the stagnant lid significantly affect the interior temperature. As we study linear
perturbations here, we may assume that ε = ε0 exp(σκt/h2

0) for some non-dimensional
growth rate σ and initial amplitude ε0.

To first order in ε this suggests a stagnant-lid thermal profile determined by the
quasi-steady condition

T = Ts + [T̄(t) − δT − Ts]Θ(η), (4.3)

together with the thermal diffusion equation

∂T
∂t

∣∣∣∣
z
= κ∇2T + Q

cp
, (4.4)

and boundary conditions

T(0, t) = Ts, (4.5)

T(−h0, t) = T̄ − δT + [h(x) − h0]
∂T0

∂z

∣∣∣∣
z=−h0

. (4.6)

Thus the perturbed temperature profile may be written as

T = T0(z) − ΔTΘ ′
0(1)ε(t) cos(ax)Θa(η), (4.7)

where again η = −z/h0, and the vertical structure of the perturbed thermal field, Θa(η),
obeys

d2Θa

dη2 + Pe η
dΘa

dη
− [(ah0)

2 + τ ]Θa = 0, (4.8)

subject to boundary conditions (4.5) and (4.6), which may be written as

Θa(0) = 0, (4.9)

Θa(1) = 1, (4.10)
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respectively. Substituting the form of thermal perturbations, (4.7), into a statement of
energy conservation, (4.1), we see that the dimensionless growth rate σ is given by

σ = h2
0
κ

1
ε

dε

dt
= ΔT

δT

[
Θ ′′

0 (1) − Θ ′
0(1)Θ ′

a(1) − h2
0

kΔT
∂FH

∂h

∣∣∣∣
T̄,h0

]
. (4.11)

This gives the growth rate of the perturbations as a function of the diffusive thermal profile
in the stagnant lid, and the depth dependence of the convective heat flux from the mantle
below. Equation (4.11) implies that these modes grow if and only if the heat flux increases
with stagnant-lid thickness at a greater rate than the temperature gradient in the stagnant
lid,

h2
0

kΔT
∂FH

∂h

∣∣∣∣
T̄,h0

< Θ ′′
0 (1) − Θ ′

0(1)Θ ′
a(1). (4.12)

4.2. Spherical geometry
To improve the applicability of these results in planetary settings, we recalculate the
growth rate of perturbations to the stagnant-lid thickness in a spherical geometry. We let
the surface be at radius r = R, and redefine a spherical η = (R − r)/h.

We again assume a quasi-steady thermal profile given by (3.4) and hence solve for
thermal diffusion, given by (3.5) now in spherical coordinates. Along with boundary
conditions at the surface and base of the stagnant lid, the thermal perturbations therefore
satisfy

d2Θ0

dη2 +
[

Peη − 2
ζ−1 − η

]
dΘ0

dη
− τΘ0 + Q̃ = 0, (4.13)

Θ0(0) = 0, (4.14)

Θ0(1) = 1. (4.15)

The primary effect of this coordinate change is to introduce the additional ((2/r)(∂T/∂r))
term that must be added to the Laplacian of the temperature field, in order to account for
the curvature inherent in spherical coordinates. Here, ζ = h0/R is the ratio of the stagnant
lid’s thickness to the planetary radius, so that the limit ζ → 0 recovers the planar case.

We consider perturbations to the uniform stagnant-lid thickness h0, in the form of a
spherical harmonic function of degree l ∈ N,

h = h0

[
1 + ε0 exp(σκt/h2

0)Ylm(θ, ϕ)
]
. (4.16)

As with the planar case, this spherical wavenumber l is non-zero in order to have an
unchanged mean stagnant-lid thickness, so that we cover cases in which the interior
temperature is not affected to leading order in ε by perturbations to the stagnant lid’s
thickness. Equation (4.8) can thus be written, with appropriate boundary conditions, as

d2Θl

dη2 +
[

Pe η − 2
ζ−1 − η

]
dΘl

dη
−
[
τ + l(l + 1)(

ζ−1 − η
)2
]

Θl = 0, (4.17)

Θl(0) = 0, (4.18)

Θl(1) = 1. (4.19)

Note that, in the limit of small ζ and large l, we recover (4.8) with ah0 replaced by lζ .
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Figure 8. Comparison of temperature profiles from numerical calculations with those from the equivalent
quasi-steady calculations, at t = 250 Ma.

In figure 8, we show a comparison of temperature profiles derived from our numerical
calculations in § 3.1 with quasi-steady results from a calculation of the base state in
spherical geometry. While there remains a difference between these two profiles, the
quasi-steady approximation provides a significant improvement on a linear temperature
profile in both cases. The instability condition (4.12) and growth rate equation (4.11) hold
irrespective of whether the temperature profiles are truly quasi-steady – the quasi-steady
calculations of the temperature profiles in (3.6a–c), (4.8), (4.13) and (4.17) are simply used
to give values for the derivatives of Θ at η = 1.

The planar equations, (4.11) and (4.12), describing the evolution of the perturbations
and the conditions for growth, may now be written as

σ = ΔT
δT

[
Θ ′′

0 (1) − Θ ′
0(1)Θ ′

l (1) − h2
0

kΔT
∂FH

∂h

∣∣∣∣
T̄,h0

]
, (4.20)

and again we find that the stagnant lid is unstable to the growth of perturbations when
(σ > 0), that is when

h2
0

kΔT
∂FH

∂h

∣∣∣∣
T̄,h0

< Θ ′′
0 (1) − Θ ′

0(1)Θ ′
l (1). (4.21)

Again, from (4.21) we see that instabilities grow when the depth dependence of the
convective heat flux is less than the depth dependence of the conductive heat loss
through the stagnant lid, thus leading to the possibility of enhanced growth. If Θ ′′

0 (1) −
Θ ′

0(1)Θ ′
l (1) is increased, then the conductive heat flux depends less strongly on the

amplitude of the perturbation, so the instability is possible for a wider range of possible
rheologies. The occurrence of this difference in the depth dependence of convective and
conductive fluxes having smaller magnitude may be approximated for a quasi-steady
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Figure 9. Example plots of Θ ′′
0 (1) − Θ ′

0(1)Θ ′
l (1), for ζ = 0.1, τ = 0.1, Q̃ = 0.5. Larger values of the

spherical wavenumber l give rise to a larger absolute value of Θ ′′
0 (1) − Θ ′

0(1)Θ ′
l (1), and hence result in a

greater likelihood of stability via (4.21).

temperature profile by rearranging (4.13) and (4.17) at the base of the stagnant lid (η = 1)
from which we find that

Θ ′
0(1) = τ − Q̃ − Θ ′′

0 (1)

Pe − 2
ζ−1 − 1

, (4.22)

Θ ′
l (1) =

τ + l(l + 1)(
ζ−1 − 1

)2 − Θ ′′
l (1)

Pe − 2
ζ−1 − 1

. (4.23)

Changes to Pe, τ , Q̃ and ζ may have complicated effects on Θ0 and Θl, and hence on
the growth rate of this instability. However, an increase in the spherical degree l will, for
a given value of Θ ′′

l (1), cause an increase in Θ ′
l (1), resulting in a lower threshold value

of (h2
0/kΔT)(∂FH/∂h) (see figure 9). Thus small but non-zero spherical wavenumbers

promote this instability.

5. Results and discussion

We compare the results of this stability analysis with the series of full numerical
calculations described in § 3.1. To make this comparison we must calculate the
non-dimensional parameters as functions of values available from the simulations. For
given values of the base-state stagnant-lid thickness h0, the temperature T̄ at the top of
the mixed interior, and the rate Q of radiogenic heating, we calculate the non-dimensional
parameters ζ and Q̃. We then calculate the parameter τ using (2.30), and solve (3.10) and
(4.13) to find the Péclet number Pe and the temperature profile in the stagnant lid, assuming
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Figure 10. Absolute value of the Péclet number as a function of stagnant-lid thickness and mixed interior
potential temperature, calculated using (4.13) and (3.10), for Q = 2 × 10−11 W kg−1. The Péclet number is
positive to the left of the dashed line and negative to the right.

a fixed surface temperature. We thus obtain the value of the Péclet number and interior
cooling rate, as plotted in figures 10 and 11, and hence the growth rate of perturbations as
plotted in figure 12. A comparison of the trajectories in figure 5 shows that for hundreds of
Ma the simulations with Q0 ≥ 2.0 × 10−11 W kg−1 sustain positive growth rates for l = 1
and many higher spherical harmonics. Figure 13 shows a selection of such growth rates as
a function of time for two numerical simulations, clearly showing the positive growth rates
in the case with the higher rate of radiogenic heating. The primary reason for the difference
in growth rates between simulations with different rates of radiogenic heating is that
those with more heating retain stagnant-lid thicknesses and interior potential temperatures
corresponding to the critical solid fraction φ*, at which suspended crystals begin to lock
together. The depth dependence of the convective heat flux, ∂FH/∂h, is correspondingly
large in magnitude during this onset. Figure 14 shows a comparison of growth rates for a
wide range of wavenumbers. At larger wavenumbers, or smaller wavelengths, growth rates
are negative due to the increased effectiveness of conductive cooling through the stagnant
lid. Similarly, lower temperatures promote stability by being associated with solid fractions
far above the critical value, and hence less strongly temperature- and pressure-dependent
viscosities and heat fluxes.

However, these higher wavenumbers do have lower growth rates than l = 1, leading
to dominance of a hemispherical dichotomy, at least during the initial growth of the
instability.

It is worth noting that we have not calculated the nonlinear growth of these modes, so
cannot draw a clear conclusion on the effect of finite amplitude perturbations. However,
we do now have a potential mechanism for the growth of a small-scale perturbation to
a full hemispheric dichotomy. Additionally, there remains the possibility that the l = 1
mode was initially excited to a much larger amplitude than higher-wavenumber modes by
some other mechanism, for example by radiative heat from the Earth, a large impact, or
long-term convective modes in the mixed interior. This initial dichotomy would then be
amplified by the instability of the stagnant lid.
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Figure 11. Absolute value of the rate of change of mixed interior potential temperature τ as a function of
stagnant-lid thickness and mixed interior potential temperature, calculated using (4.13), (3.10) and (2.30), for
Q = 2 × 10−11 W kg−1. Here, τ is positive to the left of the dashed line and negative to the right.
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Figure 12. Growth rate for l = 1, for Q = 2 × 10−11 W kg−1. The maroon line is the trajectory of the
numerical calculation with Q0 = 2 × 10−11 W kg−1. The growth rate is positive to the right of the dashed
line and negative to the left.

The most important factor in promoting this instability is having a sufficiently large
negative value for the non-dimensional depth (and hence pressure) dependence of the
convective heat flux, the left-hand side of the inequality that is the condition for
perturbations to grow

h2
0

kΔT
∂FH

∂h

∣∣∣∣
T̄,h0

< Θ ′′
0 (1) − Θ ′

0(1)Θ ′
l (1). (5.1)
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Figure 13. Growth rate as a function of time during the numerical calculation for
(a) Q0 = 1.0 × 10−11 W kg−1, and (b) Q0 = 3.0 × 10−11 W kg−1.

0 20 40

l
60 80 100

−0.5

0

0.5

1.0

1.5

2.0

Potential temperature (K)

1690

1692

1694

1696

1698

1700

ε· /
ε 

(M
a–

1
)

Figure 14. Growth rate as a function of l, for a range of potential temperatures T̄ , with radiogenic heating rate
Q = 2 × 10−11 W kg−1, and unperturbed stagnant lid thickness h0 = 100 km.

This occurs when the solid fraction is around the value that causes the most rapid change
in viscosity (see figure 2). Other parameters which may affect the rapidity and likelihood
of the growth of the instability are τ corresponding to heating and cooling of the mixed
interior, the Péclet number Pe corresponding to growth and shrinkage of the stagnant
lid and the monotonic effect of the spherical wavenumber l – larger values suppress the
instability.

The condition (4.21) may also be expressed in a dimensional form. If we define the
quantity Tl by the relationship

Tl(r)ε(t)Ylm(θ, ϕ) = T(r, θ, ϕ) − T0(r), (5.2)
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or equivalently

Tl(r) = ΔTΘ ′
0(1)Θl

(
R − r

h0

)
, (5.3)

then (4.21) is equivalent to

∂FH

∂h
< −Fcond

h0
= k

h0

[
∂Tl

∂r

∣∣∣∣
r=R−h

+
(

∂T0

∂r

∣∣∣∣
r=R−h

− ∂T0

∂r

∣∣∣∣
r=R−h0

)]
. (5.4)

While stagnant-lid convection has been studied for decades in the context of solid state
mantle convection (e.g. Davaille & Jaupart 1994), our study relies on the application
to a stagnant-lid-type model to partial melts around the critical solid fraction. As such,
it is particularly applicable to the solidification of a cooling planetary magma ocean.
The rheology of the partial melt in such circumstances is highly complex (Costa et al.
2009; Keller & Suckale 2019), with considerable uncertainty and likely non-Newtonian
behaviour, meaning our model is certainly simplified in this regard. Nevertheless, the
instability of stagnant-lid growth for rheologies which are both pressure and temperature
dependent is generic, and hence we anticipate that our results will be applicable to similar
rheological models.

This model also assumes that solids remain fully entrained during convection. This
condition has been considered unlikely in the absence of local entrainment mechanisms
(Solomatov & Stevenson 1993), but these may be provided by turbulent flow. In particular,
the authors of Solomatov & Stevenson (1993) note in a later paper that crystal entrainment
is very likely in magma oceans (Solomatov, Olson & Stevenson 1993) due to the high
Rayleigh numbers, which may be up to 1030 in the case of Earth’s moon (Elkins-Tanton
2012).

The model may be further extended with more complicated factors relating to planetary
solidification that are not covered here. Radiogenic elements are thought to have been
enriched in the last material to solidify in the lunar crust (Wieczorek et al. 2006), meaning
they were far from a uniform distribution. A move of radioactive material from the interior
to the stagnant lid would affect our non-dimensional parameters by reducing the interior
heating rate τ and increasing the stagnant-lid radiogenic heating rate Q̃, with both effects
promoting a stronger concavity of the temperature profile in the stagnant lid. Non-uniform
heating within the stagnant lid would lead to a more complicated temperature profile, or
in the event of horizontal variations would require an altogether different model, as in
Laneuville et al. (2013). Additionally, strong contrasts in viscosity in the planetary interior
may preclude it from being fully mixed, resulting in a separation into multiple mixed shells
(Lebrun et al. 2013). In this case, the heat flux from below into the outermost mixed shell
may be merged into the calculation of ˙̄T , and hence its non-dimensional analogue τ . Thus
such a scenario does not have a major effect on our stability analysis.

At large absolute values of Pe and τ , rapid changes in the stagnant lid’s thickness
and the interior temperature may lead to the non-dimensional parameters Pe, τ , ζ and Q̃
changing on relatively rapid time scales. In this event the approximation of a quasi-steady
temperature profile in the base state will break down. However, the condition (4.21) for the
onset of growth of the instability remains the same, provided Θ0 and Θl are adjusted to
non-quasi-steady forms.

An interesting extension is suggested by the recent analysis of Vilella et al. (2018),
who demonstrate a deviation from classical adiabatic temperature profiles in a convecting
isoviscous mantle if the heating rate from radiogenic heating is comparable to or
greater than the magnitude of the rate of temperature changes due to compression and
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decompression of a fluid parcel moving vertically. In our study the rate of change of
temperature from radiogenic heating is Q/cp, and from compression is

wTgα/cp. (5.5)

Here,

w = FH

Tμρ0cp
(5.6)

is the convective vertical velocity scale. For our calculations the ratio between these rates

QTμρcp

TgαFH
, (5.7)

is below 0.03 at all times. In the cases with Q0 ≥ 2.0 × 10−11 W kg−1, namely those in
which the instability is found, this ratio has a mean value below 3 × 10−3. In the case of
a larger ratio, Vilella et al. (2018) suggest an increase in temperature at the upper part of
the mixed interior, weakening or reversing the temperature gradient found in the adiabatic
case. This suggests that rapid stagnant-lid growth would result in the base of the stagnant
lid encountering cooler, more viscous material lower in the mixed interior, corresponding
to lower convective heat flux and enhancing any instability.

While the pressure-dependent rheology this instability relies on is unlikely to be found
on scales smaller than those of planetary mantle/magma ocean convection, it does have
analogies in other areas of fluid mechanics, in particular in the solidification of binary
alloys. Chemical gradients and their effect on the liquidus play a role similar to that of
pressure in our analysis. In what is known as constitutional supercooling, a region adjacent
to the solidification front may become locally cooler than the liquidus, due to thermal
diffusion outpacing chemical diffusion. A protusion of solid material will extend into this
region, resulting in a locally increased solidification rate in a positive feedback loop, with
sinusoidal perturbations growing exponentially (Mullins & Sekerka 1964).

The instability covered in this paper relies on the planet or satellite being studied having
a stagnant lid and being large enough to be spherical, and having a rocky composition.
In terms of the present-day composition of the solar system, this restricts the instability
to Earth’s moon, Mars and Mercury. Smaller bodies such as Ceres have much smaller
lithostatic pressure gradients, thus implying that they may not have a sufficiently strong
depth dependence to any convective heat flux. Venus and Io are both very different
from the scenario of a conductive stagnant lid, as their high rates of vulcanism result
in heat release, in what is known as heat piping (O’Reilly & Davies 1981; Turcotte
1989; Kankanamge & Moore 2016). In comparison, Earth’s surface plate tectonics involve
significant surface divergence and recycling, and are hence in a very different fluid
dynamical regime from stagnant-lid scenarios.

6. Conclusions

Here we have shown that the pressure dependence of the solidus and liquidus of
silicates leads to a strong pressure on the viscosity of a well-mixed partial melt,
and hence on the heat flux from convecting planetary interiors. In cases where this
convective heat flux changes more rapidly with depth than the conductive heat flux
in the lithosphere, we have shown that a spherically symmetric stagnant lid will
become unstable to asymmetric perturbations to its thickness. This instability provides a
potential mechanism for small-amplitude initial variations in thickness to grow to a much
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larger scale. Smaller-wavenumber modes grow fastest at infinitesimal amplitude, leading to
the promotion of degree-1 perturbations in particular. We suggest that this may lead to the
development of hemispherical dichotomies seen in the crusts of Earth’s moon and Mars,
and may reconcile weak and short-lived forcing with the strong hemispherical differences
seen in their lithospheres at present.
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