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CORRIGENDUM
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an acoustic field – CORRIGENDUM
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In Collis, Chakraborty & Sader (2017), the effect of Lagrangian motion of the particle on
its propulsion velocity, Uprop, was ignored and is now included. Qualitative features of the
propulsion remain unchanged, while some quantitative changes arise. All symbols are as
defined in Collis et al. (2017), unless otherwise specified.

(i) We rederive the key results of § 2, which replaces the derivation in Appendix A.
Consider a general rigid-body particle motion where the time-dependent position vector
of a material point on the particle surface (in an inertial frame), rp(t) ∈ Sp(t), is

rp(t) = X (t) + A(t) · r0, (1.1)

where X (t) is the displacement of the particle’s geometric centre, A(t) is the rotation tensor
and r0 ∈ S0 is the initial position of the same material point. The velocity of this material
point is therefore

Up(t) = U(t) + Ω(t) × (A(t) · r0), (1.2)

where U and Ω are the particle’s linear and angular velocities, respectively.
Axisymmetry of the particle ensures rotation can only occur about the y-axis and

small-amplitude motion in the far field constrains the angular displacement to be

θ(t) = ε Re[−iΩ̄pe−it] + o(ε), (1.3)

and hence
Ω(t) = Re[−Ω̄pe−it] j + o(ε), (1.4)

where Ω̄p is defined in (2.6). Note that the O(ε) term in (1.4), i.e. for steady and
twice-frequency rotations, is zero. Similarly,

X (t) = ε Re[iW̄pe−it]k + o(ε), U(t) = Re[W̄pe−it]k + εU (1)
p + o(ε), (1.5a,b)

with W̄p specified in (2.6). Substituting (1.3) and (1.5a) into (1.1), and Taylor expanding in
ε, gives

rp(t) = r0 + ε Re[r̄1e−it] + o(ε), (1.6)
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where r̄1 = i(W̄pk + Ω̄pr0 × j). Taylor expanding the fluid velocity field at the particle
surface yields

u|rp = u|r0 + ε Re[r̄1e−it] · ∇u|r0 + o(ε). (1.7)

Substituting (1.7) into the asymptotic expansion for the fluid velocity field, (2.4a), gives
the boundary conditions for the leading-order flow, (2.6), and the first-order flow,

ū(1)|r0 = Upropi − 1
4 (r̄1 · ∇ū(0)∗|r0 + r̄∗

1 · ∇ū(0)|r0), (1.8)

where ū(1) and Uprop are the steady components of u(1) and i · U (1)
p , respectively.

To determine the propulsion velocity, Uprop, we first calculate the force acting on the
moving particle, i.e. F ≡ ∫

Sp
n · σ dS. Expanding the normal vector, n, gives

n = n0 + ε Re[n̄1e−it] + o(ε), (1.9)

where n̄1 = iΩ̄pn0 × j and n0 is the normal vector to the surface, S0, defined in the text
immediately following (1.1). Substituting the asymptotic expansion for the fluid variables,
(2.4a,b), into the resulting expression for the force, and then Taylor expanding the surface
integral, gives F = F (0) + εF (1) + o(ε). The Fourier component of F (0) is non-zero in
the z-direction only, which is given by the left-hand side of (2.7a). Moreover, the steady
component of F (1) is

F̄ (1) =
∫

S0

n0 · σ̄ (1) + 1
4 [n̄1 · σ̄ (0)∗ + n̄∗

1 · σ̄ (0) + n0 · (r̄1 · ∇σ̄ (0)∗ + r̄∗
1 · ∇σ̄ (0))] dS,

(1.10)

which is non-zero in the x-direction only.
To evaluate i · ∫

S0
n0 · σ̄ (1) dS, we use the generalised Lorentz reciprocal theorem on the

fluid domain, V0, which is specified as the exterior of the surface defined by the particle’s
initial position, i.e. S0; not the true (time-dependent) fluid domain. The two flows used
in the reciprocal theorem are (a) the first-order steady Stokes flow with body force as in
(2.9b), but with boundary condition (1.8), and (b) an auxiliary (body-force-free) Stokes
flow, (u′, σ ′), specified by unitary translation of the particle in the x-direction. This gives
∫

S0

n0 · (i · σ̄ (1) − ū(1) · σ ′) dS = −β

4

∫
V0

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV. (1.11)

Conservation of the particle’s linear momentum (to first order in ε) requires F̄ (1) = 0.
Substituting (1.8) into (1.11) and its result into (1.10) gives the corrected expression for
(2.10):

Uprop = β

4Fp

∫
V0

u′ · (ū(0) · ∇ū(0)∗ + ū(0)∗ · ∇ū(0)) dV

+ 1
4Fp

∫
S0

(n0 · σ ′) · (r̄1 · ∇ū(0)∗ + r̄∗
1 · ∇ū(0))

− i · [n0 · (r̄1 · ∇σ̄ (0)∗ + r̄∗
1 · ∇σ̄ (0)) + n̄1 · σ̄ (0)∗ + n̄∗

1 · σ̄ (0)] dS; (1.12)

the surface integral in (1.12) must also be added to (2.11).
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Figure 2. Corrected: axis scales are identical to Collis et al. (2017).
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Figure 4. Corrected: axis scales are identical to Collis et al. (2017).

(ii) Corrected asymptotic forms for the propulsion velocity of the dumbbell, (3.6) and
(3.7), are, respectively,

Uprop = (κ − 1)(γ1 − 1)2

A

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 + κ4

243
β3

1 , β1 � 1,

45
√

2
(1 + 2γ1)3κ(1 + κ)

β
−1/2
1 , β1 � 1,

(1.13)

and

Uprop = (γ2 − γ1)

A

⎧⎪⎪⎨
⎪⎪⎩

−γ1 + γ2 − 2
486

β3
1 , β1 � 1,

3(4γ1γ2 − γ1 − γ2 − 2)

(1 + 2γ1)2(1 + 2γ2)2 , β1 � 1.

(1.14)
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End shape Material γ1 γ2 Uprop (×10−4)

Hemi-spherical Au 19.3 19.3 −6.2
RuAu 12.5 19.3 −26.0
AuRu 19.3 12.5 14.4

Hemi-spheroidal Au 19.3 19.3 −32.8
RuAu 12.5 19.3 −38.5
AuRu 19.3 12.5 −15.9

Table 1. Corrected.

(iii) Corrected figures 2 and 4 are similar to Collis et al. (2017), with quantitative changes
to the zero propulsion point. Corrected table 1 shows closer agreement with experiments,
which indicate that the concave and light end lead the motion; similar changes to figure 5
(not shown).

(iv) Changes to the caption of figure 3: (c) Non-zero contribution from the body force
is cancelled by that of the surface integrals in (2.10), giving Uprop = 0. ( f ) Combining
these two flows produces a jet that propels the sphere in the negative x-direction, with
Uprop = −0.039.
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