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RECURSIVELY GENERATED PERIODIC SEQUENCES
R. P. KURSHAN AND B. GOPINATH

1. Introduction. A sequence (x,) (n = 1,2,...) is periodic if x,4, = x,
for some p and all #. Periodic sequences arise naturally in geometry and arith-
metic in the study of mosaic patterns [4], continued fractions and frieze
patterns [3; 5]. Some digital oscillators and tone generators also generate
periodic sequences. In these cases one computes the period p of the sequence in
question. On the other hand, in pseudo random sequences and cryptography
[8] it is required to recursively generate sequences of large periods.

We say a sequence (X,)m—1 of k-dimensional vectors is recursively generated
if there exists a (vector valued) function f such that x,,; = f(x,). This isa
generalization of the more usual recursion

(1.1) ¥ =gty Yu1)  (n > k)
where the y,’s are scalars. The f associated with (1.1) is
(1'2) f(xly LI} xk) = (ny ooy Xpy g(xly e ey xk))'

The advantage of the representation (1.2) is that the periodicity of (v,), can
be examined through the structure of g via periodicity of f: if y,., = v, for all
7 (independent of the initial values yi, ..., ¥:), then p-fold composition of f:
fo =fofo...of satisfies f?(x) = Xx; indeed,

Py =7 0 20, W) ==
£ Yorts oo oy Yorr—1) = Doty oo oy Yorr) = Y1y - ooy Yi)-

In this paper we consider those recursions whose respective generators f
have a power series expansion about a fixed point; in particular, it makes
sense to consider the Jacobian of f at that point (i.e., the linear part of f with
respect to its power series expansion). We show that one can determine the
period of f by merely computing the period of the Jacobian at zero of f’, a
certain affine translation of f. Using this, we provide sharp bounds for the
minimum £, given the period of f, and the maximum period of f, given k, when
the ground field is the rationals.

The theory is applied to differential equations; and some examples are
discussed.

Throughout, F will denote a subfield of the complex numbers. (Actually, it
suffices to assume char F = 0, if all power series are either taken to be poly-
nomials or are considered as formal series (‘‘expanded’ about 0)-thus obvi-
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ating (1.7) and concern about convergence.) Vectors and vector valued
functions will be distinguished by natural bold face type, e.g., X is a vector,
x; is the 1th component of X and X = (x1,...,%;); similarly, if U C F*, f: U— F¥,
then f = (f1, ..., fi) where f;: U— F. The dimension %k of the underlying
space will be called the memory of f (cf. (1.1)), and unless otherwise stated,
we assume throughout that all vector valued functions are of memory k.

Let N denote the nonnegative integers and let @ = (a1, ..., a;) € N*
Given a vector X € F*, we will use the notation x* to denote the scalar
x1%1 - ... - %k, We say that a scalar valued function g is analytic in a neighbor-

hood U of a point x, € F¥, if there are scalars ¢,(e € N*) such that for each
X € U and each 1-1 onto map w: N — N?* the series

@

(1.3) 2(:) Cotn (X — Xo)mm

converges to g(x). In this case, instead of (1.3) we can write
(14)  g(x) = 2 calx — Xo)
aeNk

without ambiguity. Note that this is equivalent to the condition that (1.3)
converges absolutely to g(x), and hence the power series expansion (1.4) is
unique in the sense that if 3 ¢’ (X — Xo)* also converges absolutely to g(x) in U,
then ¢, = ¢,/ for all @. We say g is analytic in an open set if g is analytic in a
neighborhood of each point of that open set.

We say f is analytic in an open set U if each component f; is analytic there.
If f is analytic in an open set U and g is analytic in an open set containing f (U),
then g o f is analytic in U. The proofs of this and the preceding assertions can
be found in [7, §9.1-9.3]. (All functions are single-valued.)

One can alternatively view f in a formal sense. Let x be a k-dimensional
indeterminate, X = (1, ..., %;) and for ¢, € F let f be the formal power series

1.5)  f(x) = 2 c.X.

(With formal power series, operations are performed term by term, and for
f'(x) = Y ¢,/x* £ = f if and only if each ¢y = ¢,.) The term analytic will
also be used to designate the formal power series (1.5); this will not lead to
confusion, as assertions regarding functions analytic (in the first sense) in a
neighborhood of 0 remain true when ‘‘analytic” is construed in the second
(formal) sense: one must merely disregard mention of neighborhoods and
domains. For f the formal power series (1.5), we define £ (0) to be the ‘‘constant’
term c.....0); the reader should construe the phrase “f is analytic in a neighbor-
hood of a fixed point’’ as applied to (1.5), to mean merely: £(0) = 0.

The function f will be said to have a fixed point X, if there exists some vector
Xo such that f(x¢) = Xo. We will use I(I) to denote the identity function
(matrix) I(x) = x(Ix = x). The n-fold iteration of f:fo...of will be
denoted f*. Whenever we write f* we assume there is some open set U C F*
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such that f is defined on %=1 f1(U). Where there is a possibility of confusing
f™(x) with the n-fold product f(x) - f(x) - . .. - f(x), the latter will be denoted
J)m

A sequence of vectors (X,), is said to be periodic of period p if X,,, = X, for
all n, and p is the smallest such positive integer. If the sequence is recursively
generated by f (so X,+1 = f(x,) for all #), f need not be periodic in the sense
that for x in the domain of f, f?(x) = x (for example, f(x) = —x? recursively
generates the periodic sequence x, = (—1)*, but is not itself periodic in any
open set); however, if in some set U, f?(x) = x, then for any initial vector
X, € U, the sequence (X,), recursively generated by f is periodic. Notice that
if for some set D, f is defined in U = U%=3f*(D) and f* = Iin D, then f(U) =
Uandf? =Iin U.

We define the period of the generator f, denoted per f, to be the smallest
positive integer p such that f = I in the domain U of f. If (x,), is recursively
generated by a periodic f, then the period p of (X,), divides ¢ = per f, as
Xnip = %, = £9(X,;) = x,4, for all n. Notice that if f is also continuous in U,
then f is a homeomorphism between U and f(U). Furthermore, if f? is analytic
in a connected open set U, and f is periodic of period p in some nonempty open
subset U’ C U, then f is periodic of period p in all of U: this follows by the
“principle of analytic continuation’ [7, 9.4.2] which in this case says that
since f? = I in U’, this must hold throughout U. In fact, more can be said if f
is a rational function (that is, each f; is a quotient of polynomials). In this
case, suppose by means of a power series expansion valid in some neighborhood
U, it is determined that f is periodic of period p in U. Then each component
(f7),(z = 1,..., k) isarational function, say P,/Q;, andin U, P;(x)/Q;(x) —
x; = 05 i.e.,

(1.6) Pix) —x,0.x) =0

in the nonempty open set U. Hence (1.6) holds for all x € F¥*, and thus f is
periodic of period p in the complement of {x|Q(x) = 0}.

On the other hand, one may think of (x,), as a sequence of indeterminates,
defined formally by X,,; = f(x,) where f is now considered to be a formal
power series. In this case, of course, the period of (x,), and the period of f are
identical.

For N € F we define per \ to be the multiplicative order of A.

The following proposition, of course, does not apply to formal power series.

(1.7) PROPOSITION. Suppose £ is periodic in a neighborhood U of a fixed point
Xo. Define £'(x) = £(x + Xo) — Xo; then '(0) = 0 and ' is analytic in a
neighborhood U’ of 0. Furthermore, f' is periodic in U’ and the period of fin U is
equal to the period of t' in U’.

Proof. Clearly f'(0) = f(xo) — Xo = 0, and f’ is the composition of the
analytic functions f, g (X) = X + X¢, and g~! valid in the neighborhood U’ =
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U — x¢ of 0. Furthermore, f* = (g-1ofog)" = g-1of” o g for all , and the
result follows.

Hence, in order to determine the period of an analytic function f with a
fixed point, it is sufficient to determine the period of the translated analytic
function t’ with fixed point 0. This is the crux of our analysis.

Although not all periodic analytic functions have a fixed point, the counter-
examples are fairly pathological. In fact, we have the following:

(1.8) THEOREM. Let f be a periodic analytic function with period p, memory k,
and suppose that the underlying field F contains the real numbers. If p is a power
of a prime, or k = 3 or 4, then f has a fixed point.

The proof of (1.8), due to P. A. Smith, appéars in [12, p. 350].

In what follows we consider analytic f with fixed point 0; this completely
identifies the case when f is a function analytic in a neighborhood of 0, with
the case when f is a formal power series.

Any analytic function (or formal power series) f can be expressed as the sum
of its homogeneous components: for 2 = 1, ..., k let &, be the homogeneous
component of f; of degree d = 0, if such exists, and otherwise let k; = 0; then
h = (hy, ..., k) is the homogeneous component of f of degree d unless h = 0,
in which case we say that f has no homogeneous component of degree d. We
will reserve 1 to denote the homogeneous component of degree 1; in the case of
analytic functions, 1 is precisely the Jacobian of f, evaluated at 0. In any case
1 will be called the linear part of f. For a nonzero f with polynomial components,
we define deg f to be the maximum of the (total) degrees of the components f,,
and we define md f to be the degree of the homogeneous component of f of
minimal degree; we define the base of f to be the homogeneous component of f
of minimal degree > 1 if such exists, and 0 otherwise. Hence, if f has a linear
part l and f =14 ¢, then either § = 0 or md ¢ = 2 and in that case we
can write ¢ = h 4+ ¢ where h is the base of ¢ and either ¢ = 0 or md ¢ > md
h = degh = md g;in other words, either ¢; = 0 or deg ¢; > deg h, for each j.

2. The one-dimensional case. We start by considering an example.
Clearly the sequence (x,),, generated by the recursion x,+1 = 1/x,, is periodic
of period 2. Here £ = 1, f(x) = 1/x, and per f = 2. Obviously f(1) = 1 and
therefore f has a fixed point; and f is analytic in a neighborhood of 1. Trans-
lating (x,) to a neighborhood of 0, let y, = x, — 1; then y, is periodic of
period 2, and

Ynt1 = 1/(yn + 1) - L

The generator f' of the translated recursion (y,) is

') =1/0+1) -1
furthermore f’(0) = 0 and f ' is analytic in a neighborhood of 0.
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In a neighborhood of 0,

') = —y+y»*—»+....

Obviously the linear part /' of f’ satisfies I’(y) = —y; and the nonlinear part
g (y) = y2 — ¥* 4+ ... has base #'(y) = »?; and md g’ = 2. Notice here that
2 = per I’ = per f’ = per f. Hence, in this example, to find per f, it suffices
to find per I’. This behavior happily occurs in all dimensions k, as we shall see
in the next section.

Although the following two results fail in higher dimensions, one might find
in them a suggestion of what is to follow.

(2.1) PrOPOSITION. Suppose f(x) and g(x) are two polynomials. Then deg
fog =degf-degg.
Proof. Let

n

j(x) = Z a; xiy g(x) = Z bjxjy by # 0;
i=0

=0

then (fog)(x) = au.b,™x"™ + terms of lower degree.
(2.2) CoROLLARY. If f(x) s a periodic polynomial, then f(x) is linear.
Proof. We get (deg f )P™/ = deg fr*"/ = degl = 1.

Notice, then, that every periodic polynomial is of the form f(x) = ax 4+ b
where a®®™/ = 1; b can be arbitrary unless ¢ = 1, in which case we must
have b = 0. Indeed, f?(x) =a’x+ b1 +a—+ ...+ o) = a?’x +
b(a® — 1)/(a — 1) whenever a 5 1 (where f? is the p-fold iteration).

3. The multidimensional case. It happens that some features of the one
dimensional recursion remain intact in the higher dimensional cases.

Our point of departure is the fact that the Corollary (2.2) fails in general
for both memory larger than 1 (i.e., f a vector-vector valued polynomial) and
fascalar valued power series of infinite degree (valid somewhere). An example
of the former with & = 2 is

(3.1)  f(x) = (x1 + x5, — x2),

as f2(x) = (%1 + x2® + (—x2)3, — (—x2)) = X. For the latter case, f(x) =
1/x clearly has period 2 (and is of infinite degree).

What remains intact in higher dimensions is first of all the ability to compute
the period of f by computing the period of a linear function. The following
theorem applies identically to formal power series or analytic functions (in a
neighborhood of 0), and the term “‘analytic’’ may be inferred either way.

(3.2) THEOREM. Let f be analytic (in a neighborhood U of 0), suppose
£(0) = 0 and suppose £ is periodic (in U). Then £ has a periodic linear part
(Jacobian) whose period is exactly equal to the period of f.
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The above theorem allows the following restatement of (1.7):

(8.3) COROLLARY. Suppose f is a periodic function analytic in a neighborhood
of a fixed point Xo. Then per f is exactly equal to the period of the Jacobian of
f’'(x) =f(x + X0) — X, evaluated at 0.

(Of course, a periodic Jacobian does not imply a periodic f.)
We need some further results to obtain the proof of (3.2).

(3.4) LemMA. If f and g are functions, 8 analytic in some neighborhood of a
vector U and £ analytic in some neighborhood of g(u), and if 8, f o g = 0, then
mdfog =2mdf-mdg.

Proof. For each j = 1, ..., k we can express the jth component of f 0 g as

fio8 =2 ciugit ... gt

o

Thus, a nonzero monomial summand m of lowest degree, of a component of
fog will be of the form m = ¢cju(mir ... Migy) ... Mg1+ ...  Mya) for
some j and some «, where m;, is a monomial summand of g,. Hence

degm;, =2 mdgand mdf;o0g = degm = deg m1; + ... + deg Mmia,
+ ...+ degmy + ...+ deg My, =2 aymd g + ...
+omdg = (a1 +...+a) mdg =2mdf-mdg.

(3.5) CoRrOLLARY. Suppose 1 and 1 are respectively the linear parts of f =
1+gandt =1 + g, both f and ' are analytic in a neighborhood of 0, and
f(0) =g(0) = 0. Then the linear part of fof’ islol’.

Proof. fof' = (1+g)o(l'+g)=10l+10g +gof’; by (3.4),
log’ and ¢ o f’ have no linear part.

(3.6) CoroLLARY. With f as in (3.5), the linear part of f* is 1*; if £ has no
linear part, then neither does f".

(38.7) ProrosiTioN. Let f be analytic (in a neighborhood of 0), suppose
£(0) = 0, and suppose £ has linear part 1 and base h. Then for any n = 1, 2,
..., the base of " is

n

> 1" %0hol™?
i=1
Proof. We may assume h # 0. For some # let H be the base of f*. For
some 1, ¢, we may writef**! = fof" = 1+ h 4+ ¢) o (I" 4+ H + ¢) where
either ¢ = 0 or else md ¢ > deg h, and either ¢ = 0, or H = ¢ = 0 or else
md ¢ > deg H = deg h. Expanding, we obtain f*t1 = 1"*1 + 1o H + lo ¢ +
ho(I"+ H+ ¢) + ¢ of*. Furthermore, ho (I"+ H+¢) =hol*+ ¢
where for each m, 6,, is a sum of terms of the form T = c(sifiu1) . . . (sptytr);
here u; is a power of ¢; (unless ¢ = 0 in which case, #; = 1) and ¢, is a power
of H; Not both powers are zero, and if ¢ = 0, ¢{; must be a nonzero power;
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s; 1s a power of (I*);, ¢ is a scalar, and since deg h > 1, the sum of the expo-
nents of sy, {1, %1, . . ., Sk, &, %, must be greater than 1. Assume T is of lowest
possible degree. Then either H = 0 in which case (by the above) 6 = 0, or
else md 8 = md T > deg H = deg h. Furthermore, md 10 ¢ and md ¢ o f*
are both greater than deg h by (3.4), unless the respective function is zero.
Thus the base of f*+1 is 1 o H 4+ h o I". The proposition follows by induction
on 7.

Proof of (3.2). By (3.6), f has a linear part 1 and the linear part of I = 7 is
I?, i.e., I = 1. Consequently, per 1|p. Let ¢ = per 1, gr = p. The linear part of
feis 12 = I; suppose p # ¢, and let f¢ =1 4 g. Let h be the base of g. By
(3.7), the base of (f9)*(x) is nh(x) for all #n. Thus x = (f9)"(x) = x + rh(x)
+ ¢ where ¢ = 0 or md ¢ > deg h. But the base of x is 0, so rh(x) = 0;
it follows that ¢ = h = 0 and p = ¢.

(3.8) PRrROPOSITION. Suppose the field F is algebraically closed, and let f be
as in (3.2), withf = 1+ g. Let h be the base of g,

hiX) = D anx (1 <j<k),

and let L be the matrix associated with 1 with respect to some basis for F*. Then L
can be diagonalized so that it has the form

]
Lo

where p € F and sy, ..., S are positive integers. Furthermore, s; # sio1 =+ . . .
~+ swo (mod p) for each « such that a, #= 0.

Proof. Since F is algebraically closed, L is diagonalizable (see [1, p. 252]);

the diagonal elements will all be pth roots of unity, and hence can each be
written as a power of a primitive pth root of unity—p say. By (3.7),

ya
0= )Y L 'h(L"'x)
i=1

and thus foreachj=1,...,%
< j(p—1) (-1 (i—1)
0= Z pti? k(™ X1, .., 0 Xk)
=1
sj(p—1) ar1s1(i—1) agsk(i—1) a1 ak
= AP’ p el p X1 .o X .

iy

L
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Fixing e, set s = sija; + ... + s;a;. Then either

P Y4
. 1 . s
Qg = 0 or 0= }: sz(P—i)ps(l ) ps;P s z: p(s s;)i'
=0 i=1

This will (always) be true unless p|s — s,.

4. Minimum % for given p. In the case when the characteristic poly-
nomial of L (a matrix representation of 1) has rational coefficients, we can
determine the minimum possible memory & necessary for a function f to be
periodic of period p. Hence we also find the maximum period attainable for
a given k.

The Euler function ¢ has value ¢(n) equal to the number of integers less
than and relatively prime to #; (m, n) denotes the greatest common divisor
of m and .

(4.1) LEMMA. If n, m > 2 then o (n)p(m) = ¢(n) + ¢(m).

Proof. If n, m > 2 then (¢(n) —1)(e(m) — 1) >0 and o¢(n)e(m) =
(¢(n) — 1)(e(m) — 1) + ¢(n) + ¢(m) — 1 > o(n) + ¢(m) — 1.

Suppose now f is analytic and periodic in a neighborhood of a fixed point x,.
Let

i
p= E[l pet

be the canonical prime decomposition of the integer p = per f, and (as always)
let & be the memory of f. Let L be a matrix representation of the linear part
1" of f'(x) = f(x + X¢) — Xo (cf. (1.7)) and suppose the coefficients of the
characteristic polynomial of L are rational (this could be verified directly if
Xo = 0 whence f' = f; and, in any case, this would be satisfied if F were
the field of rational numbers). Under these conditions we obtain the following

(4.2) THEOREM.

(a) kz Z_‘{ e(pi") — 1

and if (p, 4) # 2, the inequality is strict.
(b) There exists an integer q(k) (dependent on k) suck that for amy cor-
responding period p, p = q(k).

Proof. (a) Since k and p are invariants under the translation f — £/, we may
as well assume f = £/ so£f(0) = 0. Then L is the matrix of the linear part of f;
and per L = p by (3.2). Let x be the characteristic polynomial of L; all the
eigenvalues of L, and hence all the roots of x are pth roots of unity. Since the
coefficients of x are rational, x is a product of cyclotomic polynomials. Let
N1, . .., A\ be the eigenvalues of L and let 74, ..., 7,(m = k) be the distinct
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values assumed by per A\, . .., per \;; let ¢, be the (unique) cyclotomic poly-
nomial having roots of order 7;(+ = 1, ..., m). Then each ¢yx and since
¢, ..., Cm are distinct, II7,c,|x. Furthermore, since L is diagonalizable (see
[1, p. 252]) with N4, ..., A\ on the diagonal, p = per L = lcm {ry, ..., 7,}
and hence each p#¢ (1 = 1, ..., t) must appear as a factor of one or more of
the integers 71, ..., 7,. If (p, 4) ¥ 2 then each p=¢ > 2, and using the well
known fact that if (#, m) = 1 then ¢(nm) = ¢(n)e(m), we obtain

t

> o)z % et

f=

by repeated use of (4.1). If (p, 4) = 2 then for exactly one 7, p#¢ = 2, say
1 = 1. Then as, in the first case,

m t

2 or) = X eolp™).

i=1 =2

%

Set 6 = 1if (p,4) = 2 and § = 0 otherwise. Then

m t

k = deg x = deg I:Il i = Zl degc; = Z e(ry) =z Zl e(pi") — 6.

i=1 i=

(b) Let ¢1, ..., g, be the primes less than or equal to (¢ + 2) and let
B = {g €N’ Z}l o(g’) <k + 1}.

Then |B]| is finite; choose 3 € B such that ¢,#'- ... - ¢/ is maximal. Setting
q(k) equal to this last number proves the theorem.

(4.3) PROPOSITION. Given a positive integer p with prime decomposition
p = Iliipai, there exists a periodic function of finite degree, with period p,
integer coefficients and memory Y i_1p(p#%) — & where § = 1if (p,4) = 2and 0

otherwise.
Proof. If p =1 or p = 2 then g(x) = x or g(x) = —x, respectively, does
the job. Otherwise, if (p, 4) = 2letk = Y {_jo(p#i) andletc,(i = 1,...,1¢)

be the cyclotomic polynomial with roots of order p#i; if (p, 4) = 2 we may
assume p! = 2, and we let £ = X/ _,0(p i), we define ¢; = 1, and let ¢, be
the cyclotomic polynomial with roots of order 2p:*%; let ¢; be as above for
1 > 2. Note that ¢(2p:*?) = ¢(2)e(p*?) = ¢(p222) and hence in either case,
k = deg II'_ic,. Write

12

H cy = )\k—i—al)\k_l—{-...-l-akE X

i=1

(the a,'s are integers, since the coefficients of each ¢; are integers), and let 1 be
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the (linear) periodic function having & X k matrix

© o 1 -
0 1 0
4.3.1) L=
0 0 1
L —ax o —a: —a_|
As L is similar to the diagonal matrix D = diag (A, ..., \;) where the \,'s are

the roots of x (L is the rational canonical form of D), 1 has period p (and
memory k).

(4.4) Notes. (i) Let L and x be as in the proof of (4.3), let {\;;}; be the
roots of ¢; and let D; = diag (\y;);, foreachs = 1,...,¢ (if {\;}; = 0, Dy is
0 X 0 matrix). Then L is similar to the diagonal matrix diag (Di, ..., D;) and
each D; is similar to a matrix L, of the form (4.3.1), <.e., its rational canonical
form. In this case the a;'s of (4.3.1) (considered now as the matrix L,) are the
coefficients of ¢;, and if (p, 4) % 2 they are all 0 or 1 (see [11, p. 206]) since
the roots of each c; are of prime power order; if (p,4) = 2 then the coefficients
are 0 or 1. In fact, for large a; (the exponent of ;) the preponderance of the
coefficients are 0: indeed, if F,(\) is the cyclotomic polynomial with roots of
order #n, then for a prime ¢ and integer & > 0, F,(\) = N1 4 ... 4+ XN+ 1,
Fu(\) = F,(N=1) and if ¢ # 2, Fy.u(N) = Fu(—N\). Hence the matrix L is
similar to the matrix

L,

(4.4.1)

L,

whose elements are all 0 or £1.

(ii) When F is a finite field, if we minimize k& with respect to the class of f’s
which are periodic of period p over all finite fields, we also obtain the in-
equalities of (4.2).

(iii) The periodic function 1 with matrix representation (4.3.1) is of the
form of f in (1.2), with associated g(x) = —awx1 + ag—rxe — ... — a1%.

The following two propositions were communicated to the authors by
N. J. A. Sloane.
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(4.5) PROPOSITION. Given an even integer k = 2, there exists an integer p = 2
(modulo 4) with prime decomposition p = Ilp i, such that kb = S (p23).
Proof. If & = 2 or 4, we may take p = 3 or 8 respectively. For & = 6, we
form two sequences ko = k, ky, ..., k,_yand no =1, ny, ..., n, = p satis-
fying
zéki+lékil2 fOr 0§1<7’_1,
2 é kr—l é 47
where p has the property in the statement of the theorem. The sequences are

constructed as follows. Bertrand’s postulate [9, p. 371] implies that for k; = 6,
there exists a prime p; such that

(ki +1)/2 < pi = ks

We take kjy1 = k; — P+ 1 and #n;41 = pmy. Then 2 < ki = kyj2 and the
p 4 are distinct and greater than 3. We repeat this step until a &y = k. is
obtained which is less than 5. For k,_; = 2 or 4, let / = 3 or 8 and let p =
#n, = In,—1. Then p has the desired property.

(4.6) ProposITION. Let

M, = max {plk = D o(p), where p = m,,%};
then

. log M,

llmksup T log k) log &)*

The proof of (4.6) is a modification of the proof in [10, § 61] of Landau’s
theorem on the maximum order of a permutation of % letters.

= 1.

Actual computations have been made of M, for & = 201, and of N, =
min {klk = 2o (poi)] for p = mp i £ 10,004.

5. Examples. First, we describe how our previous results could be used to
compute the period of an analytic f. Then we illustrate this through explicit
computations in two examples.

(5.1) Computation of the period of an f analytic in a neighborhood of a
fixed point, in five steps:

(1st) Translate f — 1’ (see (1.7)) analytic in a neighborhood of 0.

(2nd) Compute the Jacobian of f’ evaluated at 0: this is the linear part of
the power series expansion about 0 of f’, and is equal to the & X k matrix

()

0x ;
(8rd) Compute the characteristic polynomial of L: x(\) = det (L — A)
(see (5.2.7) below).
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(4th) Find the k roots of x: Ay, ..., A; if the modulus of any A\, is other
than 1, f cannot be periodic. If [\;] =1 (¢ = 1, ..., k), and if x has rational
coefficients, are all the \,’s of finite order, less than or equal to ¢(k) (see
(4.2.b))? That is, for each 7 = 1, ..., k is there an integer n;, 0 < n; < q(k)
such that A*¢ = 1? If not, then f is not periodic. In any case, let p be the least
common multiple of {per Ay, ..., per A; if x has rational coefficients and
p > q(k), then £ is not periodic.

(5th) Test: is f’? = I? The original f is periodic if and only if the answer is
yes (see (5.2.ii) below).

(5.2) Notes. (i) Suppose f has the form (1.2). Then the Jacobian of f has
the simple form

0 1
0 1 0
L =
0 0 1
| a1 st QAg—1  Qar_]
where a; = (0g(x)/0x:)|x=0 (¢ = 1, ..., k) (i.e., where the linear part of g:
I(X) = aix1 + ...+ apxy); the characteristic polynomial of L is x(\) =
N — @ N1 — g N2 — . — a;. Furthermore, any fixed point X, of f must
have the form xq = (a, a, ..., a) for some a € F. Hence, it is necessary and
sufficient for f to have a fixed point, that the function of a: G(a) =
gla, a, ..., a) — a have a solution G(a) = 0. If g is a polynomial, this will
always obtain (in the completion of F), unless g(a, a, ..., a) = a + ¢ for
some nonzero ¢ in F, i.e., unless ¢ = a;a + ...+ a;a = (X a)a. This will

happen only if >-a; = 1, i.e., if x(1) = 0. Thus, when g is a polynomial, f has
a fixed point if no eigenvalue of the linear part of f is 1.

(ii) To determine if f’7 = I (or equivalently, if f# = I), one could, of course,
perform the p iterations, and see what happens. On the other hand, if 2 = I,
then the algebraic surface defined by f?(x) — x = 0 is of measure zero, and
hence by simply testing

(521) fp(Xo) — X0 =0?

at a single point X, selected from a nonlattice distribution one can determine
with probability one whether or not f? = I. (Certainly, if f7(x,) % xy, we
know f cannot be periodic.)

S. P. Lloyd has kindly pointed out to us that if each component of f is a
polynomial of degree less than or equal to d, then each component of 7 is a
kE+ d’)

polynomial of degree less than or equal tod’ = d”, and there are N = ( &
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terms in each component (f?),. Hence, by choosing N vectors

1 N
X,...,X
such that
1 1 1
1 2 N
X1 X1 ... X1
1 2 N
X2 X2 [SES X2
det 1 9 N # 0;
(x1)2 (x1)2 e (x1)2
11 2 2 N N
X1X2 X1X2 e . X1X2
. 1 N p e e . .
f? — I vanishes on 3x, e X% only if it is identically zero. Hence, it suffices

to test (5.2.1) at N points.

Consider the recursion

(6.3)  ttar2 = (1 + tpy1)/thn

This example arises in frieze patterns [5]. One of the first published accounts of
the periodicity of (5.3) is due to Lyness [13], although the earliest reference to
the pattern that gives rise to it is in 1602 by Nathaniel Torporley (see DeMorgan
[6]).

We shall now examine (5.3) in terms of our preceding analysis. Set g (x1, x2) =
(1 + x2) /%1, f1(x1, x2) = %2, f2(X) = g(x) (here & = 2.) Then (5.3) is a re-
cursion generated by g, of the type (1.1), and the corresponding function (1.2)
isf = (f1, f2). We see that f has a fixed point X, = (a, a) (with respect to the
completion of F — cf. (5.2.2)), where a is any root of

5.3.1) (1+4+a)/a—a=0.
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We define f'(x) = f(x + x¢) — X0 (cf. (1.7)), so f'(x) = (x2, g’(x)) where
gx)=gx+x) —a=gx+ax+a)—a=

(1 1 +’ﬁ)(1 +’ﬂ)—1

a T al '’

where (in a neighborhood of 0) (1 + x,/a)! =1 — x;/a + ... and so the
linear part [ of g’ is

I(x) = “‘(1_};'22951"'%902 = —x1+éx2

by (5.3.1). By (5.2.7) we see that the characteristic polynomial of the linear
part of f' is
(5.3.2) A — Na + 1.

We will prove that if X is a root of (5.3.2), then \ is a primitive fifth root of

unity. From (5.8.2) weget A3 = —\(1 — Na), M = —\2(1 — M\/a), and hence

1 '{; a )\2
a

(5.33) MNMENFNFA+1= —}lx+1=>\2—i>\+1.
Since any root of (5.3.3) is a primitive fifth root of unity, the result follows.
Hence, if f is periodic, its period must be 5. Iteration of f five times shows
that indeed f5 = I. (Note that since ¢(5) > 2, the coefficients of (5.3.2) cannot
be rational, by (4.2.a).)
J. H. Conway (private communication) conveyed the following example of
a periodic recursion:

(5.4)  @urs = Alnrs/ (@alnyr — Qny1)-

Its period can be determined as in (5.3). The memory of this recursion is 4,
i.e., B = 4, the generator is g(xi, X2, X3, %4) = x1xs/ (x1%3 — x2), and the
associated f (cf. (1.2)) has fixed point x, = (2, 2, 2, 2).

The translated f'(x) = f(x + X,) — X, has fourth component

I01%s — X1x3 + X4 — 23 + X2 — X1
1 — (%2 — %1 — X3 — $21%3)

14 (x)

= —x; + x2 — 2x; + x4 + (higher order terms)

and thus the characteristic polynomial of the matrix representation (5.2.ii) of
the linear part of f’ is

(541) x(\) =M =N 4+222=N4+1= A2+ 1)A2—x+1).

The roots of A2 4+ 1 = 0 are clearly fourth roots of unity, and the roots of
AN — A4+ 1=0 satisfy A3 — A2+ N =0, i.e.,, N3 = —1, so the roots of
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A2 — X\ + 1 are sixth roots of unity. Hence, given that (5.4) is periodic, its
period is lcm {4, 6} = 12,

Other periodic recursions such as (5.4) can be found in [2].

Conway (in his private communication) suggested that for periodic recur-
sions such as (5.4), where the associated g is a rational function, the period p
may satisfy the inequality 32 = p. Notice that the characteristic polynomial
has integer coefficients. We know from (4.2) that

T

E+12= 2 o

i=

where IIp ¢ is the canonical prime decomposition of p and in fact, for any
such k and p, an f with memory & and period p exists. From this we can see
that the conjecture 3k = p is false (it fails for the first time for p = 20, with
k =2+ 4 = 6). However, when the associated x (5.4.1) has rational coeffi-
cients, the inequalities of (4.2) apply.

6. Differential equations. For R* the nonnegative real numbers, let
(6.1) x(¢) =f(x(t)) t€ Rt
x(0) =X

be a system of first order differential equations (‘“‘-”’ denotes differentiation
with respect to ¢). (We assume here that the solutions for (6.1) exist and are
unique, and that the solution x (¢) depends analytically on the initial condition
x; (cf. [7, 10.7.5]).) As before let 1 be the linear part of f. Assume f(0) = 0
and f analytic in a neighborhood of 0. Let @ (X, ¢) = x(¢) where x(0) = X.
Therefore @ (X, ¢) represents the dependence of the solution x(¢) on the initial
condition x(0) = X; in particular

(6.2) 0O(X, 1),y =0X,t+1t).
It can be proved that if L is the matrix representation of 1 then
© t‘l i
exp [Lt] = Z T
=0 1.

is the matrix representation of A (¢), the linear part of ® (X, ¢);and @(0,¢) = 0.

(6.3) LEMMA. The set of points t such that @(X, t) = X 1s discrete, provided L
has at least one nonzero eigenvalue.

Proof. Let X be any nonzero eigenvalue of L. Then exp [\] is an eigenvalue of
A (t) = exp [Lt] and hence exp [M] = 1 for every ¢ such that @(X, ¢) = X.
This completes the proof.

The system (6.1) is periodic if there exists a ¢ 3 0 such that @(X, ¢) = X.
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The period of the system (6.1) is £* where
t* = mip {®0(X, t) = X}
>0

which, by (6.3) always exists if (6.1) is periodic. It is clear then that
if (X, t) = X, then t = mt* for some positive integer m.

(6.4) THEOREM. If the system (6.1) is periodic, then its period is the period of
the linear system

(6.4.1) z(t) = 1(z())
where 1 is the linear part of £, provided L has at least one nonzero eigenvalue.

Proof. Let t* be the period of system (6.4.1); then z(¢) = z(¢t 4+ *), and
therefore exp [Lt*] = I. Therefore the linear part of @ (X, t*): A (t*) is equal
to I. Hence the period of (6.1) must be an integer multiple of ¢*, say rt*. There-
{ore the function @ (X, ¢*) has period 7; that is, if

X, = 0X,—1, t*), Xo=x0) =X
then x, = x(rt*) = X. But from (3.2) r = 1. Hence the period of (6.1) is ¢*.

Remarks. The period of the linear system (6.4.1) is easily computed from
its eigenvalues.

Also when all the eigenvalues of L are zero, it is easily proved using Jordan
canonical form that @(X, t) = I for some ¢ % 0. Hence L is diagonalizable,
and therefore L iz zero. Furthermore by (6.2), ® (X, ¢/n) is periodic of period
n. But the linear part of @ (X, ¢t/n) isI (since L = 0). Therefore as in the proof
of (3.2), it is clear that ® (X, ¢{/n) = X for every #. Since t/n — 0 as n — ©,
and O (X, ¢) is assumed analytic in s® (X, s) = X for all s, it follows that
f(X) =0.
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