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RECURSIVELY GENERATED PERIODIC SEQUENCES 

R. P. KURSHAN AND B. GOPINATH 

1. Introduction. A sequence (xn) (n = 1, 2, . . .) is periodic if xn+p = xn 

for some p and all n. Periodic sequences arise naturally in geometry and arith
metic in the study of mosaic patterns [4], continued fractions and frieze 
patterns [3; 5]. Some digital oscillators and tone generators also generate 
periodic sequences. In these cases one computes the period p of the sequence in 
question. On the other hand, in pseudo random sequences and cryptography 
[8] it is required to recursively generate sequences of large periods. 

We say a sequence (xn)n=i of ^-dimensional vectors is recursively generated 
if there exists a (vector valued) function f such that xn+i = f(xw). This is a 
generalization of the more usual recursion 

(1.1) yn = g(yn-k, . . . , 3>w_i) (n > k) 

where the y / s are scalars. The f associated with (1.1) is 

(1.2) f (xi, . . . , xk) = (x2, . . . , * * , g(xu . . . , xk)). 

The advantage of the representation (1.2) is that the periodicity of (yn)n can 
be examined through the structure of g via periodicity of f : if yn+v = yn for all 
n (independent of the initial values yit . . . , yk), then p-io\d composition of f : 
fp = f o f o . . . o f satisfies P(x) = x; indeed, 

f*(yi, • • •, Jic) = fp-Hy2,..., y*, g(yu • • • , y*)) = . . . = 

f(yp,yp+u • • •,yp+k-i) = (yv+u • • •,yP+k) = (yi,... ,yk). 

In this paper we consider those recursions whose respective generators f 
have a power series expansion about a fixed point; in particular, it makes 
sense to consider the Jacobian of f at that point (i.e., the linear part of f with 
respect to its power series expansion). We show that one can determine the 
period of f by merely computing the period of the Jacobian at zero of f, a 
certain affine translation of f. Using this, we provide sharp bounds for the 
minimum k, given the period of f, and the maximum period of f, given k, when 
the ground field is the rationals. 

The theory is applied to differential equations; and some examples are 
discussed. 

Throughout, F will denote a subfield of the complex numbers. (Actually, it 
suffices to assume char F = 0, if all power series are either taken to be poly
nomials or are considered as formal series (''expanded" about 0)-thus obvi-

Received May 1, 1973 and in revised form, October 26, 1973. 

1356 

https://doi.org/10.4153/CJM-1974-129-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-129-6


PERIODIC SEQUENCES 1357 

ating (1.7) and concern about convergence.) Vectors and vector valued 
functions will be distinguished by natural bold face type, e.g., x is a vector, 
xt is the ith component of x and X = (xi, ...,xk); similarly, if U C Fk, f : U—» Fk

y 

then f = (/i, . . . , fk) where ft : U —> F. The dimension k of the underlying 
space will be called the memory of f (cf. (1.1)), and unless otherwise stated, 
we assume throughout that all vector valued functions are of memory k. 

Let N denote the nonnegative integers and let a = (ai, . . . , ak) £ Nh. 
Given a vector x £ Fk, we will use the notation x* to denote the scalar 
xf1 • . . . • xk

ak. We say that a scalar valued function g is analytic in a neighbor
hood U of a point x0 G F*, if there are scalars ca(a £ Nk) such that for each 
x £ U and each 1-1 onto map co: N —> Nk the series 

(1.3) É *.(f l(x-Xo)- ( i ) 

1 = 0 

converges to g(x). In this case, instead of (1.3) we can write 

(1.4) g(x) = £ c . (x -Xo) 

without ambiguity. Note that this is equivalent to the condition that (1.3) 
converges absolutely to g(x), and hence the power series expansion (1.4) is 
unique in the sense that if XXa(x ~~ xo)a also converges absolutely to g(x) in £/, 
then ca = Ca for all a. We say g is analytic in an open set if g is analytic in a 
neighborhood of each point of that open set. 

We say f is analytic in an open set U if each component ft is analytic there. 
If f is analytic in an open set U and g is analytic in an open set containing f(Z7), 
then g o f is analytic in U. The proofs of this and the preceding assertions can 
be found in [7, §9.1-9.3]. (All functions are single-valued.) 

One can alternatively view f in a formal sense. Let x be a ^-dimensional 
indeterminate, x = (xi, . . . , xk) and for ca Ç F let f be the formal power series 

(1.5) f(x) = £ cjt. 

(With formal power series, operations are performed term by term, and for 
fr(x) = S^a'x"» f = f if and only if each cj = ca.) The term analytic will 
also be used to designate the formal power series (1.5); this will not lead to 
confusion, as assertions regarding functions analytic (in the first sense) in a 
neighborhood of 0 remain true when "analytic" is construed in the second 
(formal) sense: one must merely disregard mention of neighborhoods and 
domains. For f the formal power series (1.5), we define f (0) to be the "constant" 
term C(0 o) ; the reader should construe the phrase "f is analytic in a neighbor
hood of a fixed point" as applied to (1.5), to mean merely: f (0) = 0. 

The function f will be said to have a fixed point x0 if there exists some vector 
x0 such that f(x0) = x0. We will use 1(1) to denote the identity function 
(matrix) I(x) = x(7x = x). The w-fold iteration of f : f o . . . o f will be 
denoted fn. Whenever we write in we assume there is some open set U C Fk 

https://doi.org/10.4153/CJM-1974-129-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-129-6


1358 R. P. KURSHAN AND B. GOPINATH 

such that f is defined on U t i V(U). Where there is a possibility of confusing 
fn(x) with the n-fold product/(x) -f(x) « . . . • / (#) , the latter will be denoted 

A sequence of vectors (xn)n is said to be periodic of period p if xn+p = xn for 
all ny and p is the smallest such positive integer. If the sequence is recursively 
generated by f (so xn+i = f (xw) for all n), f need not be periodic in the sense 
that for x in the domain of f, P(x) = x (for example, fix) = —x3 recursively 
generates the periodic sequence xn = ( — l) n , but is not itself periodic in any 
open set); however, if in some set U, P(x) = x, then for any initial vector 
Xi Ç U, the sequence (xn)n recursively generated by f is periodic. Notice that 
if for some set D, f is defined in U = U t î f ' C D ) and P = I in D, then f (U) = 
U and P = I in 17. 

We define the period of the generator f, denoted per f, to be the smallest 
positive integer^ such that P = I in the domain [/of f. If (xn)n is recursively 
generated by a periodic f, then the period p of (xn)n divides q = per f, as 
xn+p = xn = P{xn) = xn+Q for all w. Notice that if f is also continuous in U, 
then f is a homeomorphism between U and f (£/). Furthermore, if fp is analytic 
in a connected open set U, and f is periodic of period p in some nonempty open 
subset Ur C U, then f is periodic of period p in all of U: this follows by the 
"principle of analytic continuation" [7, 9.4.2] which in this case says that 
since P = I in U', this must hold throughout U. In fact, more can be said if f 
is a rational function (that is, each ft is a quotient of polynomials). In this 
case, suppose by means of a power series expansion valid in some neighborhood 
U, it is determined that f is periodic of period p in U. Then each component 
(P)i(i = 1, . . . , k) is a rational function, say P JQu and in U, P i{x)/Qt(x) — 
xt = 0; i.e., 

(1.6) Pt(x) - xtQt(x) = 0 

in the nonempty open set U. Hence (1.6) holds for all x Ç Fk, and thus f is 
periodic of period p in the complement of {x|<2(x) = 0}. 

On the other hand, one may think of (xn)n as a sequence of indeterminates, 
defined formally by xn+1 = f(xn) where f is now considered to be a formal 
power series. In this case, of course, the period of (xn)n and the period of f are 
identical. 

For X (E F we define per X to be the multiplicative order of X. 
The following proposition, of course, does not apply to formal power series. 

(1.7) PROPOSITION. Suppose f is periodic in a neighborhood U of a fixed point 
x0. Define f'(x) = f (x + x0) — x0; then tv(0) = 0 and V is analytic in a 
neighborhood Ur of 0. Furthermore, V is periodic in U' and the period of f in U is 
equal to the period of ff in U''. 

Proof. Clearly fr(0) = f(x0) — x0 = 0, and P is the composition of the 
analytic functions f, g(x) = x + x0, and g - 1 valid in the neighborhood U' = 
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U - Xo of 0. Furthermore, f 'n = (g-1 o f o g)n = g"1 o fn o g for all n, and the 
result follows. 

Hence, in order to determine the period of an analytic function f with a 
fixed point, it is sufficient to determine the period of the translated analytic 
function i! with fixed point 0. This is the crux of our analysis. 

Although not all periodic analytic functions have a fixed point, the counter
examples are fairly pathological. In fact, we have the following: 

(1.8) THEOREM. Let f be a periodic analytic junction with period p, memory k, 
and suppose that the underlying field F contains the real numbers. If p is a power 
of a prime, or k = 3 or 4, then f has a fixed point. 

The proof of (1.8), due to P. A. Smith, appears in [12, p. 350]. 

In what follows we consider analytic f with fixed point 0; this completely 
identifies the case when f is a function analytic in a neighborhood of 0, with 
the case when f is a formal power series. 

Any analytic function (or formal power series) f can be expressed as the sum 
of its homogeneous components: for i = 1, . . . , k let ht be the homogeneous 
component of ft of degree d ^ 0, if such exists, and otherwise let ht = 0; then 
h = (hi, . . . , hk) is the homogeneous component of f of degree d unless h = 0, 
in which case we say that f has no homogeneous component of degree d. We 
will reserve 1 to denote the homogeneous component of degree 1 ; in the case of 
analytic functions, 1 is precisely the Jacobian of f, evaluated at 0. In any case 
1 will be called the linear part of f. For a nonzero f with polynomial components, 
we define deg f to be the maximum of the (total) degrees of the components/*, 
and we define md f to be the degree of the homogeneous component of f of 
minimal degree; we define the base of f to be the homogeneous component of f 
of minimal degree > 1 if such exists, and 0 otherwise. Hence, if f has a linear 
part 1 and f = 1 + g, then either g = 0 or md g ^ 2 and in that case we 
can write g = h + (p where h is the base of g and either <p = 0 or md <p > md 
h = deg h = md g; in other words, either <p j = 0 or deg <pj > deg h, for each j . 

2. The one-dimensional case. We start by considering an example. 
Clearly the sequence (xn)n, generated by the recursion xn+i = l/xn, is periodic 
of period 2. Here k = 1, f(x) = l/x, and p e r / = 2. Obviously/(l) = 1 and 
therefore/ has a fixed point; a n d / is analytic in a neighborhood of 1. Trans
lating (xn) to a neighborhood of 0, let yn = xn — 1; then yn is periodic of 
period 2, and 

yn+1 = 1/CVn + l ) - 1. 

The generator / ' of the translated recursion (yn) is 

f'(y) = l/(y + l)-l; 

furthermore/ '(0) = 0 a n d / ' is analytic in a neighborhood of 0. 
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In a neighborhood of 0, 

/'GO = -y + y2-y° + -... 
Obviously the linear part /' o f / ' satisfies V(y) = —y; and the nonlinear part 
&' (y) = y2 ~ y3 + • • • has base h' (y) = y2; and md gf — 2. Notice here that 
2 = per /' = per / ' = per / . Hence, in this example, to find per / , it suffices 
to find per V. This behavior happily occurs in all dimensions k, as we shall see 
in the next section. 

Although the following two results fail in higher dimensions, one might find 
in them a suggestion of what is to follow. 

(2.1) PROPOSITION. Suppose f(x) and g(x) are two polynomials. Then deg 
/ o g = deg / • deg g. 

Proof. Let 

m n 

/ (*) = Z) aix\ g(x) = H OjX\ambn j* 0; 

then (f o g)(x) = ambn
mxnm + terms of lower degree. 

(2.2) COROLLARY. If fix) is a periodic polynomial, then fix) is linear. 

Proof. We get ( d e g / ) p e r / = d e g / p e r / = deg I = 1. 

Notice, then, that every periodic polynomial is of the form fix) = ax + b 
where aper / = 1; b can be arbitrary unless a = 1, in which case we must 
have b = 0. Indeed, fvix) = avx + 6(1 + a + . . . + av~l) = avx + 
biav — l ) / ( a — 1) whenever Û ^ 1 (where fp is the £-fold iteration). 

3. The multidimensional case. It happens that some features of the one 
dimensional recursion remain intact in the higher dimensional cases. 

Our point of departure is the fact that the Corollary (2.2) fails in general 
for both memory larger than 1 (i.e., f a vector-vector valued polynomial) and 
/ a scalar valued power series of infinite degree (valid somewhere). An example 
of the former with k = 2 is 

(3.1) f (x) = (*x + x2\ - * 2 ) , 

as f2(x) = (xi + x2
3 + (—x2)

3, — ( — x2)) = x. For the latter case, fix) = 
1/x clearly has period 2 (and is of infinite degree). 

What remains intact in higher dimensions is first of all the ability to compute 
the period of f by computing the period of a linear function. The following 
theorem applies identically to formal power series or analytic functions (in a 
neighborhood of 0), and the term "analytic" may be inferred either way. 

(3.2) THEOREM. Let f be analytic (in a neighborhood U of 0), suppose 
f (0) = 0 and suppose f is periodic (in U). Then f has a periodic linear part 
(Jacobian) whose period is exactly equal to the period off. 
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The above theorem allows the following restatement of (1.7): 

(3.3) COROLLARY. Suppose f is a periodic function analytic in a neighborhood 
of a fixed point x0. Then per f is exactly equal to the period of the Jacobian of 
f '(x) = f (x + x0) ~

 xo> evaluated at 0. 

(Of course, a periodic Jacobian does not imply a periodic f.) 
We need some further results to obtain the proof of (3.2). 

(3.4) LEMMA. If f and g are functions, g analytic in some neighborhood of a 
vector u and f analytic in some neighborhood of g (u ) , and if g> f ° ê ^ 0, then 
md f o g ^ md f • md g. 

Proof. For each j = 1, . . . , k we can express the j th component of f o g as 

a 

Thus, a nonzero monomial summand m of lowest degree, of a component of 
f o g will be of the form m = cjat(mu • . . . • miai) . . . (mkl • . . . • rato) for 
some j and some a, where w ^ is a monomial summand of gt. Hence 

deg mit ^ md g and md fj o g = deg m = deg mn + . . . + deg mlai 

+ . . . + deg wti + . . . + deg mkak ^ «i md g + . . . 

+ ak md g = (ai + . . . + ak) • md g ^ md f • md g. 

(3.5) COROLLARY. Suppose 1 and V are respectively the linear parts off = 
1 + g and V = 1' + g', both f and V are analytic in a neighborhood of 0, and 
f (0) = g(0) = 0. Then the linear part of tot' is 1 o V. 

Proof. f o f = (l + g ) o (1' + gr) = l o l ' + l o g ' + g o f ; by (3.4), 
l o g ' and g o f ' have no linear part. 

(3.6) COROLLARY. With f as in (3.5), the linear part of fn is \n\ if f has no 
linear part, then neither does in. 

(3.7) PROPOSITION. Let f be analytic (in a neighborhood of 0), suppose 
f (0) = 0, and suppose f has linear part 1 and base h. Then for any n = 1, 2, 
. . . , the base of fn is 

èl-'ohol*"1. 

Proof. We may assume h ^ O . For some n let H be the base of fn. For 
some i|r, >̂, we may write fw+1 = f o fn = (1 + h + it) o (ln + H + >̂) where 
either i|r = 0 or else md i|r > deg h, and either <p = 0, or H = (p = 0 or else 
md (f > deg H = deg h. Expanding, we obtain fw+1 = \n+l + l o H + l o ^ + 
h o (lw + H + (p) + ifc o ln. Furthermore, h o (ln + H + <p) = h o Y + 0 
where for each m, 6m is a sum of terms of the form T = c(SitiUi) . . . (sktkuk); 
here Uj is a power of <pj (unless <p = 0 in which case, Uj = 1) and ^ is a power 
of Hj. Not both powers are zero, and if <p = 0 , tj must be a nonzero power; 
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Sj is a power of (lw)y, c is a scalar, and since deg h > 1, the sum of the expo
nents of siy /i, uu . . . , s*» 4, Wfc must be greater than 1. Assume T is of lowest 
possible degree. Then either H = 0 in which case (by the above) 6 = 0, or 
else md 0 = md T > deg H = deg h. Furthermore, md 1 o <p and md ijr o fn 

are both greater than deg h by (3.4), unless the respective function is zero. 
Thus the base of fn+1 is 1 o H + h o ln. The proposition follows by induction 
on n. 

Proof of (3.2). By (3.6), f has a linear part 1 and the linear part of I = fp is 
lp, i.e., lp = I. Consequently, per l\p. Let q = per 1, qr = p. The linear part of 
fq is lq = I; suppose p ^ q} and let fQ = I + ê- Let h be the base of g. By 
(3.7), the base of (fq)n(x) is wh(x) for all ». Thus x = (f*)r(x) = x + rh(x) 
+ cp where (p = 0 or md ^ > deg h. But the base of x is 0, so rh(x) = 0; 
it follows that <p = h = 0 and p = q. 

(3.8) PROPOSITION. Suppose the field F is algebraically closed, and let f be 
as in (3.2), with f = 1 + g. Let h be the base of g, 

A,CO = E ^ ( U ; | i ) , 
a 

awd /e£ L Z?e the matrix associated with 1 with respect to some basis for Fk. Then L 
can be diagonalized so that it has the form 

L 0 pSk J 

where p 6 F and sly . . . , sk are positive integers. Furthermore, Sj ^ s^x + . . . 
+ skak (mod p) for each a such that aj(t y^ 0. 

Proof. Since F is algebraically closed, L is diagonalizable (see [1, p. 252]); 
the diagonal elements will all be pih roots of unity, and hence can each be 
written as a power of a primitive pth root of unity—p say. By (3.7), 

0= t l H h ( L w x ) 

and thus for each j = 1, . . . , k 

o = è p 5 y ( p -%(p s i ( ' - i , *i , 

E sjiv—i) aisi(i-l) 
a fop P 

PM^xt) 

a*s*(f—1) ai a* 
p Xi . . . Xk . 
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Fixing a, set 5 = SKXI + . . . + skak. Then either 

aja = 0 or 0 = £ p ^ V * - 0 = p*>*- £ p
(-«>«. 

i=0 i=l 

This will (always) be true unless p\s — sjt 

4. Minimum k for given p. In the case when the characteristic poly
nomial of L (a matrix representation of 1) has rational coefficients, we can 
determine the minimum possible memory k necessary for a function f to be 
periodic of period p. Hence we also find the maximum period attainable for 
a given k. 

The Euler function <p has value <p(n) equal to the number of integers less 
than and relatively prime to n; (ra, n) denotes the greatest common divisor 
of m and n. 

(4.1) LEMMA. If n, m > 2 then <p(n)<p(m) ^ <p(n) + <p(m). 

Proof. If n, m > 2 then (cp(n) — l)(<p(m) — 1) > 0 and <p(n)<p(ni) = 
(<p{n) — l)(<p(m) — 1) + <p(n) + <p(m) — 1 > <p(n) + <p(m) — 1. 

Suppose now f is analytic and periodic in a neighborhood of a fixed point x0. 
Let 

p = ri pr 
be the canonical prime decomposition of the integer p = per f, and (as always) 
let k be the memory of f. Let L be a matrix representation of the linear part 
T of f'(x) = f (x + x0) — x0 (cf. (1.7)) and suppose the coefficients of the 
characteristic polynomial of L are rational (this could be verified directly if 
Xo = 0 whence f' = f; and, in any case, this would be satisfied if F were 
the field of rational numbers). Under these conditions we obtain the following 

(4.2) THEOREM. 

(a) k ^ j : <p(pD - 1 
t=i 

and if (p, 4) ^ 2, the inequality is strict. 
(b) There exists an integer q(k) (dependent on k) such that for any cor

responding period p, p ^ q(k). 

Proof, (a) Since k and p are invariants under the translation f —•> f', we may 
as well assume f = V so f (0) = 0. Then L is the matrix of the linear part of f ; 
and per L = p by (3.2). Let x be the characteristic polynomial of L; all the 
eigenvalues of L, and hence all the roots of % are £th roots of unity. Since the 
coefficients of x a r e rational, x is a product of cyclotomic polynomials. Let 
Xi, . . . , \k be the eigenvalues of L and let ru . . . , rm(m ^ k) be the distinct 
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values assumed by per Xi, . . . , per \k; let cf be the (unique) cyclotomic poly
nomial having roots of order rt(i = 1, . . . , m). Then each ct\x and since 
Ci, . . . , cm are distinct, Il7=iC*|x- Furthermore, since L is diagonalizable (see 
[1, p. 252]) with Xi, . . . , A* on the diagonal, p = per L = 1cm {ri, . . . , rm\ 
and hence each pfi: (i = 1, . . . , t) must appear as a factor of one or more of 
the integers t\y . . . , rm. If (p, 4) T^ 2 then each £/**' > 2, and using the well 
known fact that if (w, m) = 1 then <p(nm) = <p(tt)<p(m), we obtain 

7ft f 

£ *(r,) â Z «>(*>"') 
i= l 1=1 

by repeated use of (4.1). If (p, 4) = 2 then for exactly one i, £f
ai' = 2, say 

i = 1. Then as, in the first case, 

m t 

Z *»(»-«) ^ Z *(*>"')• 
i= l r=2 

Set ô = 1 if (p, 4) = 2 and 5 = 0 otherwise. Then 

m m m t 

k = deg x è deg f j c* = Z deg C< = Z <p(rt) è Z *>(#>/") - 8. 
4 = 1 4 = 1 4 = 1 4 = 1 

(b) Let qi, . . . , qr be the primes less than or equal to (k + 2) and let 

B = \5 e i v r | z <p(s(
Si) g * + i} . 

Then \B\ is finite; choose § (z B such that g / 1 • . . . • q/r is maximal. Setting 
g(&) equal to this last number proves the theorem. 

(4.3) PROPOSITION. Given a positive integer p with prime decomposition 
p = W\=ip{li

J there exists a periodic function of finite degree, with period p, 
integer coefficients and memory ^i=i<p(piai) — ô where Ô = 1 if (p} 4) = 2 and 0 
otherwise. 

Proof. If p = 1 or p = 2 then g(x) = x or g(x) = —x, respectively, does 
the job. Otherwise, if (p, 4) ^ 2 let * = 2'=i<p(£ia0 and let c,(i = 1, . . . , t) 
be the cyclotomic polynomial with roots of order piai; if (p, 4) = 2 we may 
assume pf1 = 2, and we let k = J2i=2<p(Piai)> w e define Ci = 1, and let c2 be 
the cyclotomic polynomial with roots of order 2p2

a2; let ct be as above for 
i > 2. Note that (p(2p2

a2) = <p(2)v(p2
a2) = <p(p2a2) and hence in either case, 

k = deg LI Utfi. Write 

f i ct = X* + aX'1 + . . . + ak s x 
i= i 

(the a / s are integers, since the coefficients of each ct are integers), and let 1 be 
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the (linear) periodic function having k X k matrix 

0 1 

(4.3.1) L = 

0 1 

-ak 

0 
-a2 

1 
-aim 

As L is similar to the diagonal matrix D = diag (Xi, . . . , \k) where the X/s are 
the roots of x (L is the rational canonical form of D), 1 has period p (and 
memory k). 

(4.4) Notes, (i) Let L and % be as in the proof of (4.3), let {X^}^ be the 
roots of Ci and let Df = diag (X0);-, for each i — 1, . . . , / (if {\ij}j = 0, Di is 
0 X 0 matrix). Then L is similar to the diagonal matrix diag (Du . . . , Dt) and 
each Di is similar to a matrix Lt of the form (4.3.1), i.e., its rational canonical 
form. In this case the a / s of (4.3.1) (considered now as the matrix Lt) are the 
coefficients of cu and if (p, 4) ^ 2 they are all 0 or 1 (see [11, p. 206]) since 
the roots of each ct are of prime power order; if (p, 4) = 2 then the coefficients 
are 0 or ± 1 . In fact, for large at (the exponent of pi) the preponderance of the 
coefficients are 0: indeed, if Fn(\) is the cyclotomic polynomial with roots of 
order n, then for a prime q and integer a > 0, Fq(\) = Xç_1 + . . . + X + 1, 
Fqa(\) = FçÇk*"-1) and if q ^ 2, F2(Za(X) = Ffla( —X). Hence the matrix L is 
similar to the matrix 

" i i 

(4.4.1) 

whose elements are all 0 or ± 1 . 
(ii) When .F is a finite field, if we minimize k with respect to the class of f's 

which are periodic of period p over all finite fields, we also obtain the in
equalities of (4.2). 

(iii) The periodic function 1 with matrix representation (4.3.1) is of the 
form of f in (1.2), with associated g(x) = — akxi + ak^ix2 — . . . — a\xk. 

The following two propositions were communicated to the authors by 
N. J. A. Sloane. 
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(4.5) PROPOSITION. Given an even integer k ^ 2, there exists an integer p ?£ 2 
{modulo 4) with prime decomposition p = TLpf*, such that k = J2<p(Piai)-

Proof. If k — 2 or 4, we may take p = 3 or 8 respectively. For k ^ 6, we 
form two sequences ko = k, ki, . . . , &r_i and n0 = 1, wi, . . . , nr = p satis
fying 

2 ^ ki+l g &î72 for 0 g i < r - 1, 

2 g fer_i g 4, 

where £ has the property in the statement of the theorem. The sequences are 
constructed as follows. Bertrand's postulate [9, p. 371] implies that for kt ^ 6, 
there exists a prime pt such that 

(kt + l ) / 2 < Pi g *,. 

We take &i+i = &* — £* + 1 and w<+i = pMi. Then 2 g fei+i :g ki/2 and the 
£* are distinct and greater than 3. We repeat this step until a kt+i = &r_i is 
obtained which is less than 5. For kr_± = 2 or 4, let / = 3 or 8 and let p = 
nr = lnT-\. Then p has the desired property. 

(4.6) PROPOSITION. Let 

Mk = max {p\k = 2 <P (Ptai), where p = irpi
di}; 

then 

l im SUp 7 7 - f TTT = 1. 
* ^ (&log&)* 

The proof of (4.6) is a modification of the proof in [10, § 61] of Landau's 
theorem on the maximum order of a permutation of k letters. 

Actual computations have been made of Mk for k ^ 201, and of Np = 
min {k\k = !>(£/**')} torp = ^Piai ^ 10,004. 

5. Examples. First, we describe how our previous results could be used to 
compute the period of an analytic f. Then we illustrate this through explicit 
computations in two examples. 

(5.1) Computation of the period of an f analytic in a neighborhood of a 
fixed point, in five steps: 

(1st) Translate f —» f' (see (1.7)) analytic in a neighborhood of 0. 
(2nd) Compute the Jacobian of f evaluated at 0: this is the linear part of 

the power series expansion about 0 of f', and is equal to the k X k matrix 

\ dXj | x _ o / 

(3rd) Compute the characteristic polynomial of L: %(X) = det (L — \I) 
(see (5.2.i) below). 
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(4th) Find the k roots of x- î> • • • , X ;̂ if the modulus of any X* is other 
than 1, f cannot be periodic. I f | \ i | = l ( i = l, . . . , £ ) , and if x has rational 
coefficients, are all the X/s of finite order, less than or equal to q(k) (see 
(4.2.b))? That is, for each i = 1, . . . , k is there an integer nu 0 < nt ^ q(k) 
such that \ini = 1? If not, then f is not periodic. In any case, let p be the least 
common multiple of {per Xi, . . . , per \k} ; if x has rational coefficients and 
P > #(&)> then f is not periodic. 

(5th) Test: is ffp = I? The original f is periodic if and only if the answer is 
yes (see (5.2.ii) below). 

(5.2) Notes, (i) Suppose f has the form (1.2). Then the Jacobian of f has 
the simple form 

L = 

0 1 
0 0 

0 
ak-i 

1 

(i = 1, . . . , k) (i.e., where the linear part of g: 
the characteristic polynomial of L is x(^) = 

. — a±. Furthermore, any fixed point x0 of f must 
. . , a) for some a Ç F. Hence, it is necessary and 

ai - • 

where at = (dg(x)/dXi)\x=0 

Z(x) = aiXi + • • • + akxk); 
X* - a^X*-1 - a*_iX*-2 - . . 
have the form x0 = (a, a, . 
sufficient for f to have a fixed point, that the function of a: G (a) = 
g(a, a, . . . , a) — a have a solution G (a) = 0. If g is a polynomial, this will 
always obtain (in the completion of F), unless g (a, a, . . . , a) = a + c for 
some nonzero c in F, i.e., unless a = a±a + . . . + aka = {^ai)a. This will 
happen only if ^at = 1, i.e., if x ( l ) = 0. Thus, when g is a polynomial, f has 
a fixed point if no eigenvalue of the linear part of f is 1. 

(ii) To determine if lfp = I (or equivalently, if fp = I) , one could, of course, 
perform the p iterations, and see what happens. On the other hand, if fp ^ I, 
then the algebraic surface defined by fp(x) — x = 0 is of measure zero, and 
hence by simply testing 

(5.2.1) fp(x0) - Xo = 0? 

at a single point x0 selected from a nonlattice distribution one can determine 
with probability one whether or not fp = I. (Certainly, if fp(x0) 9e x0, we 
know f cannot be periodic.) 

S. P. Lloyd has kindly pointed out to us that if each component of f is a 
polynomial of degree less than or equal to d, then each component of fp is a 

polynomial of degree less than or equal to d! = dp, and there are N = I , I 
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terms in each component (fp) t. Hence, by choosing N vectors 

l 

x, 
N 

, X 

such that 

det 

l 

l 

X2 

(xiy 

l l 
XiX 2 

2 

Xi 

2 

X2 

( * i ) 2 

2 2 

N 
Xi 

N 

X2 

N 

( * i ) 2 

N N 
X&2 

* 0 , 

fv — I vanishes on x ( ^ x [ only if it is identically zero. Hence, it suffices 

to test (5.2.1) at N points. 

Consider the recursion 

(5.3) un+2 = (1 + un+1)/uH. 

This example arises in frieze patterns [5]. One of the first published accounts of 
the periodicity of (5.3) is due to Lyness [13], although the earliest reference to 
the pattern that gives rise to it is in 1602 by Nathaniel Torporley (see DeMorgan 
[6]). 

We shall now examine (5.3) in terms of our preceding analysis. Set g (xi, x2) = 
(1 + x2)/xi, fi(xi, X2) = X2, /2(x) = g(x) (here k = 2.) Then (5.3) is a re
cursion generated by g, of the type (1.1), and the corresponding function (1.2) 
is f = C/1,/2). We see that f has a fixed point x0 = (a, a) (with respect to the 
completion of F — cf. (5.2.i)), where a is any root of 

(5.3.1) (1 + a)/a - a = 0. 
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We define V(x) = f (x + x0) - x0 (cf. (1.7)), so f'(x) = (x2, g'(x)) where 

#'(x) = g(x + x0) - a = g(xi + a,x2 + a) - a = 

where (in a neighborhood of 0) (1 + %i/a)~l = 1 — Xi/a + . . . and so the 
linear part I of g' is 

u \ ( 1 + a ) , 1 , 1 
l(X) = 2 #1 + -X2 = — Xi + -X2 

a a a 
by (5.3.1). By (5.2.i) we see that the characteristic polynomial of the linear 
part of f ' is 

(5.3.2) X2 - X/a + 1. 

We will prove that if X is a root of (5.3.2), then X is a primitive fifth root of 
unity. From (5.3.2) we get X3 = - X ( l - X/a),X4 = -X 2 ( l - X/a), and hence 

(5.3.3) X4 + X3 + X2 + X + 1 = ^ £ X 2 - - X + 1 = X 2 - - X + 1. 
a a a 

Since any root of (5.3.3) is a primitive fifth root of unity, the result follows. 
Hence, if f is periodic, its period must be 5. Iteration of f five times shows 

that indeed f5 = I. (Note that since <p(5) > 2, the coefficients of (5.3.2) cannot 
be rational, by (4.2.a).) 

J. H. Conway (private communication) conveyed the following example of 
a periodic recursion: 

(5.4) an+i = anan+s/ (anan+2 — an+i). 

Its period can be determined as in (5.3). The memory of this recursion is 4, 
i.e., k = 4, the generator is g(xi, x2, x3, x4) = X\xJ(xixz — x2), and the 
associated f (cf. (1.2)) has fixed point x0 = (2, 2, 2, 2). 

The translated f'(x) = f (x + x0) — x0 has fourth component 

, t / \ 21X1X4 X1X3 ~f~ X4 ^X3 ~j~ X 2 Xi 

1 — (\x2 — xi — x3 — ixix3) 

= -Xi + x2 - 2x3 + x4 + (higher order terms) 

and thus the characteristic polynomial of the matrix representation (5.2.ii) of 
the linear part of f ' is 

(5.4.1) xOO = X4 - X3 + 2X2 - X + 1 = (X2 + 1)(X2 - X + 1). 

The roots of X2 + 1 = 0 are clearly fourth roots of unity, and the roots of 
\2 _ x + 1 = 0 satisfy X3 - X2 + X = 0, i.e., X3 = - 1 , so the roots of 
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X2 — X + 1 are sixth roots of unity. Hence, given that (5.4) is periodic, its 
period is 1cm {4, 6} = 12. 

Other periodic recursions such as (5.4) can be found in [2]. 
Conway (in his private communication) suggested that for periodic recur

sions such as (5.4), where the associated g is a rational function, the period p 
may satisfy the inequality 3k ^ p. Notice that the characteristic polynomial 
has integer coefficients. We know from (4.2) that 

* + 1 = E <P{PÏ") 

where TLpfi is the canonical prime decomposition of p and in fact, for any 
such k and p, an f with memory k and period p exists. From this we can see 
that the conjecture 3k ^ p is false (it fails for the first time for p = 20, with 
£ = 2 + 4 = 6). However, when the associated x (5.4.1) has rational coeffi
cients, the inequalities of (4.2) apply. 

6. Differential equations. For R+ the nonnegative real numbers, let 

(6.1) x(0 = f (x(0) t G R+ 

x(0) = X 

be a system of first order differential equations ("•" denotes differentiation 
with respect to i). (We assume here that the solutions for (6.1) exist and are 
unique, and that the solution x(t) depends analytically on the initial condition 
x; (cf. [7, 10.7.5]).) As before let 1 be the linear part of f. Assume f (0) = 0 
and f analytic in a neighborhood of 0. Let 0 ( X , t) = x(t) where x(0) = X. 
Therefore 0 (X , t) represents the dependence of the solution x(t) on the initial 
condition x(0) = X; in particular 

(6.2) 0 ( 0 ( X , t), t') = 0 ( X , t + / ' ) . 

It can be proved that if L is the matrix representation of 1 then 

oo f i j i 

exp [Lt] = E "Tr 
z=0 *-! 

is the matrix representation of A (t), the linear part of 0 (X, t) ; and 0 (0, /) = 0. 

(6.3) LEMMA. The set of points t such that 0 ( X , t) = X is discrete, provided L 
has at least one nonzero eigenvalue. 

Proof. Let X be any nonzero eigenvalue of L. Then exp [ht] is an eigenvalue of 
A(t) = exp [Lt] and hence exp [ht] = 1 for every t such that 0 ( X , t) = X. 
This completes the proof. 

The system (6.1) is periodic if there exists a / p̂  0 such that 0 ( X , t) = X. 
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The period of the system (6.1) is t* where 

/* = m i ^ { 0 ( X , O = X} 

which, by (6.3) always exists if (6.1) is periodic. It is clear then that 
if ® (X, t) = X, then t = mt* for some positive integer m. 

(6.4) THEOREM. If the system (6.1) is periodic, then its period is the period of 
the linear system 

(6.4.1) i(t) = l (z(0) 

where 1 is the linear part of f, provided L has at least one nonzero eigenvalue. 

Proof. Let t* be the period of system (6.4.1); then z(t) = z(t + t*), and 
therefore exp [Lt*] = / . Therefore the linear part of 0 (X , t*): A(t*) is equal 
to I. Hence the period of (6.1) must be an integer multiple of t*, say rt*. There
fore the function 0 (X , t*) has period r; that is, if 

xn = 0(xw_i, t*), Xo = x(0) = X 

then xr = x(rt*) = X. But from (3.2) r = 1. Hence the period of (6.1) is t*. 

Remarks. The period of the linear system (6.4.1) is easily computed from 
its eigenvalues. 

Also when all the eigenvalues of L are zero, it is easily proved using Jordan 
canonical form that 0 (X , t) — I for some t ^ 0. Hence L is diagonalizable, 
and therefore L iz zero. Furthermore by (6.2), 0 (X , t/n) is periodic of period 
n. But the linear part of 0 (X , t/n) is I (since L = 0). Therefore as in the proof 
of (3.2), it is clear that 0 (X , t/n) — X for every n. Since t/n —» 0 as n —•> co , 
and 0 ( X , t) is assumed analytic in s® (X, s) = X for all s, it follows that 
f (X) = 0. 
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