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1. Introduction

Let v be a discrete random variable taking on nonnegative integer
values and set P{v = k} = Pk, k = 0, 1, • • •. Suppose that the binomial
moments

are finite. Frequently the problem arises under what conditions the prob-
abilities Pk, k = 0, 1, • • •, can be determined uniquely by the sequence
of moments Br, r = 0, 1, • • •, and how it can be done.

In what follows we shall show that if lim sup^^ B)lr < oo, then
{Pk} can be determined uniquely by {Br} and we shall give an explicit
formula for Ph, k = 0, 1, • • •. If limsup,_00 B\lr = oo, then, in general,
{P4} cannot be determined uniquely by {Br}.

2. An inversion formula

The probabilities Pk, k = 0, 1, • • •, can be determined in several
possible ways, but formula (2) seems to be the most convenient one.

THEOREM. Let v be a discrete random variable taking on nonnegative
integer values and set P{v = k} = Pk, h = 0, 1, • • •. / / the binomial moments
BT = £{(")}, r = 0, 1, • • •, are finite and if p = l i m s u p ^ ^ B\lr < oo, then

where q is nonnegative and greater than (p2—1). / / , in -particular,
p = lim supr^oo B\lr < 1, then we can always choose q — 0 and (2) reduces to

(3) P. = | (-.)'- Qfl,
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PROOF. The generating function

(4) P(z)=ZP,z'

is uniformly convergent in the circle \z\ < 1 and P(z) is regular if \z\ < 1.
Hence

(5) " ( i l / - x " " "^
dz"

for k = 0, 1, • • • and |2| < 1. If z = 0 in (5), then we get

(6) Ph = — P<*>(0).

Thus the problem of finding Pfc can be reduced to finding P(z) in a neigh-
borhood of z = 0.

If Br is finite, then

(7)

and for \z—1| < 1/p
00

r=0

The right hand side of (8) is uniformly convergent in the circle \z—1| < 1/p
and P(z) is regular if |z—1| < 1/p. Hence

(9) P<*>(*) =
HZ'

for k = 0, 1, • • •, and \z—1| < 1/p.
If p < 1, and we put z = 0 in (9), then by (6) we get (3). We note that

(3) is an oscillating series which is convergent if and only if limr_00 r"BT ~ 0.
If p < oo, then (9) is a regular function of z in the circle \z—1| < 1/p.

By analytical continuation we can extend the definition of (9) to the
domain \z\ < 1 and in this domain (9) agrees with (5). Now we shall show
that the definition of (9) can easily be extended to a neighborhood of
z = 0 by using Euler's transformation of series. (Cf. Hardy [2], Chapter
VIII.) Let q ^ 0 and form the ^-transform of (9),

0 (0 •~<-
For \z—1| < 1/p we have P^{z) = Pm{z) given by (9) because Euler's
transformation is consistent. Now by using a theorem of Knopp [6] we can
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establish the domain Rq in which (10) is convergent and represents a regular
function of z. Suppose that P^'(z) is analytically extended along every ray
of origin z = 1 until we reach the first singular point (if any) of P^*'(z)
on the ray. Denote by F the set of all singular points obtained in this way.
Then i?a can be represented as the set of points common to all the circles
\z-\-\-q{y-\)\ < ( l+? ) | y - l | for y e F. Evidently | y - l | ^ 1/p and
\y\ ;> 1 for all y e F and there exists a y e f such that \y—1| = 1/p. Hence
it follows that Rq always contains the point z = 0 if q > (p2— 1) and RQ

never contains z = 0 if q sS (p—1)/2. For example, if \y\ 2; (l-|-p)/p for
every y eF, then we can choose q as any nonnegative number greater
than (p—1)/2, however, if F contains a y for which |y—1| = 1/p and
\y\ = 1, then q must be chosen greater than (p2—1) in order that Ra contain
z = 0. Accordingly if q > (pa—1), then in some neighborhood of z = 0
we have Pt

k)(z) = Pw(z) given by (5). Thus by (6) we have
pk = P<€*>(0)/A!, ft = 0, 1, • • -, which yields (2).

3. Examples

(i) Suppose that BT = E{(1)} = aT\r\, r = 0, 1, • • •, where a is a
positive number. Then lim,.,,,,, B\lr = 0 and p = 0. By (3)

I") P'=1<-1>'
(ii) Suppose that BT = £{(J)} = ar, r = 0, 1, • • •, where a is a positive

number. Then lini,..,^ B\lT = a and p = a. If a < 1, then we can apply
formula (3) to obtain

If a < oo, then we obtain by (2) that
-* gk

^ = (1+«)*+!' A = = 0 > 1 > >"'

where y > (a—1)/2. The best choice is q = a.
(iii) Let Alt A2, • • •, -4n, • • • be an infinite sequence of events. Denote

by v the number of events occurring among Alt A2>- • •, An, —.I t can easily
be seen that

(14) BT = £ ( ( " ) ) = 2 P{AiAii---Air}.

If p = lim sup^^, B\lr < 1, then the probability that exactly ft events
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occur among Alt A2, • • •, An, • • • is given by (3), Formula (3) was found
first by Jordan [3], [4], [5], for the case when An+1 = -4n+a = • • • = 0,
the impossible event. (Cf. also [8].)

If p = lim supMOO B\lT < oo, then the probability that exactly k events
occur among Alt A2, • • •, An, • • • is given by (2) with q > (p2—1). In
some particular cases we can choose q > (p—1)/2.

(iv) Consider the previous example. The probability that at least one
event occurs among Alt A2, • • •, An, • • • is given by P{Al-\-Ai-\- • -+An-\-
• • •} = 1-PO. If p < 1, then by (3)

(15) P{AX+AZ+- |

If p < oo, then by (2)

where q > (p2—1). In some particular cases we can choose q > (p—1)/2.
Formula (15) was found first by Poincare" [7] for the case when

An+1 = An+i = • • • = 0, the impossible event. Dvoretzky [1] proved that
(15) holds if UmM00 BT = 0.

(v) It is interesting to mention also the following simple example. A
balanced coin is tossed repeatedly. We say that event An occurs if head
does not appear among the first n tossings. Denote by v the number of
events occurring among Alt Alt • • •, An, • • •. By (14) Br = E{(")} = 1
for r = 0,1, • • •. In this case (3) is divergent, but by (2) with g > 0 w e get
that Ph = P{v = k} = l/2*+1 for k = 0, 1, • • •, in agreement with a direct
calculation.
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