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Abstract. In this paper we give an algorithm for computing the 2-Selmer group of
an elliptic curve

which has complexity 0(LD(O-5, ct)), where D is the absolute discriminant of the curve.
Our algorithm is unconditional but the complexity estimate assumes the GRH and a
standard conjecture on the distribution of smooth reduced ideals. This improves on the
corresponding algorithm of Birch and Swinnerton-Dyer, which has complexity of V

When trying to compute the Mordell-Weil group of an elliptic curve one normally
first computes the 2-Selmer group. This is a group which contains a subgroup isomorphic
to E(Q)/2E(Q). Whilst computing the 2-Selmer group is certainly an effective procedure
there is no known effective procedure for computing the subgroup isomorphic to
E(Q)/2E(Q), and thus for computing E(Q). However all is not lost as the 2-Selmer group
gives one an upper bound on the rank of the elliptic curve, and this upper bound is often
attained in practice. To measure the complexity of our algorithm we set

This is a function which interpolates between polynomial time, a = 0, and exponential
time, a = 1. In this note we show the complexity of computing the 2-Selmer group is
0(LD(O-5, Cj)), where D denotes the absolute discriminant of the elliptic curve, under the
assumption of the GRH and a standard conjecture on the distribution of reduced smooth
ideals.

Let E be our elliptic curve given by

We shall assume that the elliptic curve has no points of order 2 defined over Q. This is
certainly the most difficult case for finding the 2-Selmer group. The modern method of
computing the 2-Selmer group in this case goes back to the paper of Birch and
Swinnerton-Dyer [1]. In their method a search is carried out for the quartics which
represent the homogeneous spaces given their invariants. This method is certainly fast for
small values of D; however it is not hard to see that its complexity is at least O(VD); see
[1,11]. In the present paper we shall show that the "old-fashioned" technique, which uses
the arithmetic of number fields, combined with a method derived from a paper of Brumer
and Kramer [2] will determine the 2-Selmer group in our stated time. Our complexity is
therefore much better than the complexity of the algorithm of Birch and Swinnerton-
Dyer. However due to numerous improvements to the method of Birch and Swinnerton-
Dyer, most notably the ones due to Cremona [8], we expect that in practice the method of
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Birch and Swinnerton-Dyer will be much faster than the asymptotically faster method of
the current paper.

The authors would like to thank Ed. Schaefer for some helpful comments whilst this
paper was in preparation. The first author would like to thank his Ph.D. supervisor John
Cremona.

We let S denote the set of primes dividing 2D; we note that this has cardinality
O(log D). Let K denote the number field generated by 6 where d3 + Ad + B = 0. We shall
let R denote the set of primes of K lying above those in S as well as the infinite primes. As
usual we let K(R, 2) denote the group of all elements of K*/K*2 such that by adjoining a
square root of an element of K(R,2) to K one obtains an extension of K unramified
outside R. Equivalently we have

K(R,2) = {aeK*/K*2:or<ip(a) = 0 (mod2) i f** /?} . (1)

One can show (see for example [11]) that K(R,2) contains the 2-Selmer group. We first
find K(R,2) and then reduce it to the 2-Selmer group.

1. The method of Bnuner and Kramer. We define G to be the kernel of the
map K(R, 2) -• Q*/Q*2, given by a >-* Norm/f/Q(a). For each prime p e S U {=»} we define

Kp = Qp[T]/(f(T)) = Qp[t],

where (f(T)) is the ideal in QP[T] generated by f(T) = T3 +AT + B, and t = T + (f(T)).
Kp is an algebra over Qp and we can define a norm map KP—*QP as in [5, p. 66]. We can
now let Gp be the kernel of the analogous map from K*IK^2 to Q£/Q£2. Just as in the
classical case of 2-descent over Q we have an embedding

^GP. (2)

Here, for each prime p we have the following diagram

0 » E(Q)/2E(Q) - ^ G

I " I <3>
where we have denoted the natural map from G to Gp by ap.

For each prime p E S U {<»} we let Up be the image of E(QP)/2E(QP) in Gp under the
mapping (2). In [2] Brumer and Kramer showed that the Selmer group is the maximal
subgroup of K(R,2), whose image under the natural map ap is contained in Up for all
primes p e S U {<»}. Ostensibly, to use this method, one must first calculate E(QP)/2E(QP)
for each prime p e S U {<»}. However, we have found this mildly troublesome, and indeed
what is really needed is to compute the images Up. We note that the size of Gp is bounded
for all primes p and all (cubic) polynomials /.

To determine Up it is sufficient to take each element of Gp and determine whether or
not it is in Up. As in the classical case (see, for example [5, p. 70]) this leads to a
homogeneous space as the intersection of 2 quadric surfaces, and here all that is required
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is to check their solubility over the local field Qp. Again just as in the classical case we can
reduce, in polynomial time, to considering whether a curve of the form Y2 = G(X) has a
point in Qp, where G(X) is a degree four polynomial but which has coefficients in Zp.
This can be done by the polynomial time algorithm given in [9]; this algorithm is
non-constructive (it does not give points on the homogeneous space but simply
determines whether or not it has a point over Qp, which is all that is needed here). The
usual method for this problem is constructive (see [7]), but has an exponential complexity.
The non-constructive method of [9] reduces the problem to extracting roots of
polynomials over finite fields. This problem is soluble in probabilistic polynomial time, or
alternatively in deterministic polynomial time assuming the GRH; see [6, pp. 31-37].

One should note that the above method of Brumer and Kramer has also been applied
to computing the Mordell-Weil group of Jacobians of hyperelliptic curves of higher genus
by Schaefer [10]. Our method for determining K(R,2) given below could also be used for
Schaefer's algorithm for higher genus curves.

2. Finding K(R,2). In this section we give an algorithm for computing K(R,2) in
time O(LD(0-5, C])), where D is the absolute discriminant of the K; the complexity
estimate assumes the conjectures mentioned previously. Nowhere do we assume that K is
a cubic field, and hence the algorithm in this section can be used for any number field K.

We shall assume that we are given an integral basis for the maximal order of K and
generators for the unit and class groups. To determine this information will take time
O(LD(0-5, c2)) as computing a basis for the maximal order can be done in time
O(LD(%,c3)), [4] (using the Number Field Sieve), and computing the unit and class
groups can be done in time O(LD(Q-5,c2)), [3], assuming the GRH and a certain
conjecture about the number of reduced smooth ideals of a number field. The class group
ClK is then presented as a set of ideals tu...,eg and integers s, with st-i \ st, such that, if
for an ideal a we denote by a the image of a in the class group, we have

with (Cj) = Z/SiZ. We denote by TJJ,. . . , 7jr a set of r fundamental units for K. Given an
ideal of K then using the basis of the relation lattice which was used in computing the
class group one can determine whether the ideal is principal and if so compute a
generator in time O(LD(0-5,c4)); (see [3] or [6, Algorithm 6.5.10]). We note that in
general one can not write down the elements we require in polynomial time when we
express them in standard representation and so throughout we assume all elements are in
a compact representation; see [12]. We now give the algorithm to compute K(R,2) as a
product of cyclic groups of order 2. Let the finite prime ideals in R be denoted p\,...,g)t.

Suppose a e K(R, 2). Then by the definition (1) above (a) = oi2, where o | (2D). Let
S' be the group of fractional ideals. We have a homomorphism

given by a-* (a)^2 . Clearly the image of (f> is contained in the group

Let
H2 = {t>92 e # i : W1 = (y)&2 for some y e K*}.

https://doi.org/10.1017/S0017089500032183 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032183


254 S. SIKSEK AND N. P. SMART

Clearly Im(<£) = H2. We want to show how to calculate H2 and then how to refine it to
obtain K(R,2) as a product of cyclic groups of order 2. We assume that for each p, that
we can write

This can be done by the method in [3] in time £>(LD(0-5, c4)). Suppose b&2 e H2; then we
n

can take b = II P?J. Hence
;=i

n

where e, = S atby. Suppose that Si,...,sk are odd, and sk+i,... ,sg are even. Then b ^ 2

lies in H2 if and only if 2 ajby = 0 (mod 2) for i = & + 1 , . . . , g.
y=i

By computing an F2-basis for the subspace of the vectors (flj,... ,an) in Fj> which
satisfy the congruences above, we get a basis for H2. Further we may replace the
representative of each element of this basis by one which is a principal ideal as follows.
Suppose b is such a representative which we want to replace by a principal ideal. By
construction of this basis we know b as a product of the pt and hence we can write
b = Ilc]Ul, where uk+u...,ug are even. Now since su...,sk are odd we can find
tu...,tk such that u(+2r,5s0 (mods,), for i = l,...,k. We take r, = - « ; / 2 for / =
k + 1 , . . . , g. Hence we have that

bftc2''=(a),

for some a e K*. This a can be computed in time O(LD(0>5, c4)) as we stated above.
Hence we can write

for some au... ,an e K*.

LEMMA 1. Let bu..., b, be an $2-basis for Cl[2]. Write b] = (/?,). Then

QlK*\...,anK*2, ^K*2 &K*2, mK*2
 VrK*2, r,r+1K*2

is a basis for K(R, 2), where TJJ, . . . , rjr w a system of fundamental units for K, and we take
Tjr+1 a generator for the roots of unity.

Proof. It is clear that the elements of the list above generate K(R,2). What remains
is to show that these are independent. Suppose that

where the a's, fe's, c's, are in {0,1}. Then II ((«,)^2)fll = ( l )^ 2 , which implies that at = 0
for / = 1 , . . . , n. Hence we can now assume that
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Hence II &P1' = (e)2, where e e K*; i.e. II 6f' = (e), and so b, = 0. The result now
follows. •

LEMMA 2. The complexity of finding K(R, 2) as a product of cyclic groups of order 2 is
given by O(LD(0-5,Ci)).

Proof. We note that the number of ideals pt dividing (2D) is O(logZ)). The number
of elements in a basis of Cl[2] is O(log(hK)) = O(log(£>)). Hence the number of ideals
that we need to check to be principal is a polynomial function in log/). As we stated
earlier for each ideal this can be done in time O(LD(0-5,c4)) by an algorithm which will
also produce a generator of any principal ideal found. The desired complexity then
follows. •

3. Computing the 2-Selmer group. Having determined K(R,2) we then need to
determine a basis of the F2 vector subspace G; recall that G is the kernel of the
homomorphism K(R,2)—*Q*/Q*2 given by ai->Nonn/f/Q(a). Clearly determining a
basis for G is elementary linear algebra over F2, and so can certainly be accomplished in
polynomial time.

We wish to eliminate from the group G every element whose image under ap does
not lie in Up for any p e 5 U {°°}. Suppose we know that the Selmer group is a subgroup of
some group

where the (k,) are cyclic groups of order 2; (it is understood that the kt are in fact
Consider any prime p e 5 U {°°}. Recall that we denoted the image of the map

by Up. To determine the Selmer group we want to determine the maximal subgroup of
(k\) X . . . x (kv) whose image under a is in Up for all primes p\ obviously we need only
consider those primes which divide 2D and the infinite prime. This idea we find explained
in [2] or [10] as we stated above.

LEMMA 3. The image of an element ofK{R, 2) under ap can be checked to lie in Up in
polynomial time.

Proof. Suppose X3 + AX + B has three roots in Qp and p > 2; then

Up < Q*/Q*2 X Q*/Q*2 X Q*/Q*2.

There are at most four elements of Q*/Q*2 and \UP\ has order 0(1) as E(QP)/2E(QP)
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also has order 0(1). We therefore have 0(1) tests to perform as to whether an element of
Qp is a p-adic square. This can certainly be done in polynomial time. The other cases are
similar. D

For i = 1 , . . . , v, we define the subgroup St of (/c,) x . . . x (kt) to be the maximal
subgroup of (ki) x . . . x (&,) whose image under ap is in Up. To simplify the notation, we
will for now write a for ap. We let

be such that

//,. := <6,S/> x . . . x (bjJS,) = «*,> x . . . x (kt))/S,

Notice that \H,\ < O(l). This is because \E(QP)/2E(QP)\ = 0(1). Hence if there were too
many bj then there would exist a relation of the form

o-(fei')... o-(fê ) = identity of Gp,

where the Sj e {0,1} and not all Sj = 0. But certainly the identity is in the image of the
map (2). Hence bl*... b$p is in 5(, giving a contradiction. Hence, as we claimed,
\H\ = O(l).

Now we determine the S, and Ht recursively. To determine Si simply check if the
image of kx is in Up. If it is, then Sx = (ki) and //j = {5J. If it is not, then 5, = identity and

Suppose we have determined 5, and the Hh To determine 5,+1 and H,+i we check if

*(bV)...<r(b'jj>Mkl+i) (4)

is in Up for any Sj = 0 or 1. If none of these are in Up, then Si+i = 5(, and

Hi+l = <6,5/+1> x . . . x (bjSl+i) x (ki+1Sl+1).

If, on the other hand, the expression (4) is in Up for some choice of Sj = 0 or 1 (there can
be at most one such choice), then

and

The number of choices of bj that we have is 0(1) as \H,\ = 0(1). Hence we can determine
Sk as a product of cyclic groups all of order 2. The time to do this is then polynomial in
log D via Lemma 3.

Now to determine the Selmer group, we start with G expressed as a product of cyclic
groups. For our bad primes pu...,prv/e start with p\ and we determine as above the
maximal subgroup VPi ^ G, whose image under a = o-pi is contained in UPl. Our
construction will give us VPi as a product of cyclic groups of order 2. This will certainly
contain the Selmer group. We now discard G and find the maximal subgroup of VPl whose
image under aP2 is contained in UPl. Doing this recursively we arrive at the Selmer group
as soon as we have carried out the construction above for all the bad primes pu... ,pr

and also the infinite prime.
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If we have K(R,2) as a product of cyclic groups of order 2 then we will find the
Selmer group in polynomial time. Hence the total complexity is given by the complexity
of finding K(R, 2).
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