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Multidimensional Vinogradov-type
Estimates in Function Fields
Wentang Kuo, Yu-Ru Liu, and Xiaomei Zhao

Abstract. Let Fq[t] denote the polynomial ring over the finite field Fq. We employ Wooley’s new ef-
ficient congruencing method to prove certain multidimensional Vinogradov-type estimates in Fq[t].
These results allow us to apply a variant of the circle method to obtain asymptotic formulas for a
system connected to the problem about linear spaces lying on hypersurfaces defined over Fq[t].

1 Introduction

One central problem in number theory is concerned with integral points lying on
hypersurfaces. In particular, for s, k ∈ N = {0, 1, 2, . . . } with k ≥ 2 and a =
(a1, . . . , as) ∈ (Z \ {0})s, we could ask how large s should be (in terms of k and
independent of a) so that the hypersurface

(1.1) a1wk
1 + · · · + asw

k
s = 0

contains a non-trivial integral point. Additionally, establishing an asymptotic for-
mula for the number of such points has become a substantial research area. For
P ∈ N, let Ms,k,a(P) denote the number of solutions of (1.1) with

w j ∈ [−P, P] ∩ Z, 1 ≤ j ≤ s.

A celebrated result of Wooley [10] states that, subject to a local solubility hypothesis,
whenever s ≥ k log k + O(k log log k), we have Ms,k,a(P) � Ps−k. His recent ground-
breaking work [12] can also be used to show that whenever s ≥ 2k2 + 2k − 3, we
can establish an asymptotic formula for Ms,k,a(P). In [13], Wooley further improved
his result and showed that if k ≥ 6, it suffices to take s ≥ 2k2 − 2k − 8. In this
case, no local solubility hypothesis is required (except for indefiniteness), since the
result of Davenport and Lewis in [3] shows that k2 + 1 variables suffice to satisfy the
congruence conditions.

Because of the homogeneity of (1.1), if a non-trivial integral point lies on (1.1),
then the hypersurface contains the line through the origin and that point. Thus, the
above problem can be viewed as a question about linear spaces of dimension 1. It is
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therefore natural to consider linear spaces of higher dimension. Results concerning
the existence of such spaces date back to work by Brauer [2] and Birch [1]. Asymp-
totic estimates for linear spaces on the hypersurface (1.1) were first established by
Parsell (see [7, 8]). More precisely, for d ∈ N with d ≥ 2, we find that the linear
spaces of dimension d are in correspondence with solutions of the system

(1.2) a1ui1
11 · · · u

id
d1 + · · · + asu

i1
1s · · · u

id
ds = 0, i1 + · · · + id = k.

Let Ms,k,d,a(P) denote the number of solutions of (1.2) with

ul j ∈ [−P, P] ∩ Z, 1 ≤ l ≤ d, 1 ≤ j ≤ s,

and let n1 =
(k+d

k

)
− 1. A result of Parsell [8] states that, subject to a local solubility

hypothesis, whenever s ≥ 2n1k((2/3) log n1 + (1/2) log k) + O(n1k log log k), we can
establish an asymptotic formula for Ms,k,d,a(P). By employing Wooley’s new efficient
congruencing method, Parsell, Prendiville, and Wooley [9] have further improved
the above bound to

(1.3) s ≥ 2n1k + 2n1 + 1.

The main result in [9] is indeed applicable to general translation-dilation invariant
systems (for definition, see [9, Section 2]).

Let Fq[t] be the ring of polynomials over the finite field Fq of q elements whose
characteristic is p. Since there exists remarkable similarity between Z and Fq[t], we
can formulate the above questions in function fields. Let k ∈ N with p - k. For
c = (c1, . . . , cs) ∈ (Fq[t] \ {0})s, consider the hypersurface defined by

(1.4) c1zk
1 + · · · + csz

k
s = 0.

For P ∈ N, let IP be the subset of Fq[t] containing all polynomials of degree < P. Let
Ns,k,c(P) denote the number of solutions of (1.4) with z j ∈ IP, 1 ≤ j ≤ s. A result by
Wooley and the second author [6] states that, subject to a local solubility hypothesis,
whenever s ≥ (4/3)k log k + O(k log log k), we have Ns,k,c(P) � (qP)s−k. Moreover,
under the same hypothesis, their recent work on Vinogradov’s mean value theorem
in function fields can be used to prove that whenever s ≥ 2n2k + 2n2 + 1, where
1 ≤ n2 = n2(k; p) ≤ k, we can establish an asymptotic formula for Ns,k,c(P). The
Lang–Tsen theory of Ci-fields (see [5, Theorem 8]) shows that (1.4) possesses a non-
trivial solution whenever s ≥ k2 +1. Thus, if 2n2k+2n2 ≥ k2, then the local solubility
hypothesis is automatically satisfied.

We now consider linear spaces of higher dimension in function fields. For d ∈ N
with d ≥ 2, let x1, . . . , xd ∈ Fq[t]s be linearly independent vectors and define

Span{x1, . . . , xd} =
{

f1x1 + · · · + fdxd

∣∣ f1, . . . , fd ∈ Fq(t)
}
.

Write xi = (xi1, . . . , xis), 1 ≤ i ≤ d. Then the hypersurface (1.4) contains the
d-dimensional linear space Span{x1, . . . , xd} if and only if

c1(f1x11 + · · · + fdxd1)k + · · · + cs(f1x1s + · · · + fdxds)
k = 0.
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By the multinomial theorem, we see that the above equation is true for every d-tuple
(f1, . . . , fd) ∈ Fq(t)d if and only if x1, . . . , xd simultaneously satisfy the equations

k!

i1! · · · id!

(
c1xi1

11 · · · x
id
d1 + · · · + csx

i1
1s · · · x

id
ds

)
= 0, i1 + · · · + id = k.

Since the characteristic of Fq is p, the above system is equivalent to the system

(1.5) c1xi1
11 · · · x

id
d1 + · · · + csx

i1
1s · · · x

id
ds = 0, (i1, . . . , id) ∈ L,

where the set L is defined by

L =
{

(i1, . . . , id) ∈ Nd
∣∣∣ i1 + · · · + id = k and p -

k!

i1! · · · id!

}
.

Let Ns,k,d,c(P) denote the number of solutions of (1.5) with

xl j ∈ IP, 1 ≤ l ≤ d, 1 ≤ j ≤ s.

For i = (i1, . . . , id) ∈ Nd, we write |i| = i1 + · · · + id, and write p - i if p - il for
some l with 1 ≤ l ≤ d. We abbreviate a monomial of the shape xi1

1 · · · x
id
d by xi.

For m ∈ N, write m in base p, say m = a0(m) + a1(m)p + · · · + aD(m)pD, where
ah(m) ∈ [0, p − 1] ∩ Z, 0 ≤ h ≤ D. In order to estimate Ns,k,d,c(P), we need to
estimate a Vinogradov-type system. Let

R0 ={
i ∈ Nd

∣∣ ∃n ∈ N with an(k) ≥ 1 and ah(i1) + · · · + ah(id) ≤ ah+n(k), h ∈ N
}

and R ′0 =
{

i ∈ R0 | p - i
}
. Let Js,k,d(P) denote the number of solutions of the

system
xi

1 + · · · + xi
s = yi

1 + · · · + yi
s, i ∈ R ′0,

with x j , y j ∈ Id
P for 1 ≤ j ≤ s. Write ι = cardL, the cardinality of the set L, and

µ = cardR ′0. A result of the third author [16] states that for k ≥ d + 2, subject to a
local solubility hypothesis, whenever s ≥ 2µk(log(ιµk) + log log(µk) + 10), we can
establish an asymptotic formula for Ns,k,d,c(P).

In this paper, we will employ Wooley’s new efficient congruencing method to im-
prove the aforementioned result in [16]. In addition to obtaining an upper bound for
Js,k,d(P), we will estimate a more general Vinogradov-type system. Our generalisa-
tion seems flexible and could be applied to various Diophantine problems in function
fields, including the multidimensional Waring problem and the Tarry problem. We
will return to these projects in future papers.

Let R be a finite subset of Nd satisfying the following condition:

Condition∗: for each j = ( j1, . . . , jd) ∈ R, if l = (l1, . . . , ld) ∈ Nd with
p -
( j1

l1

)
· · ·
( jd

ld

)
, then l ∈ R.
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Let Js(R; P) denote the number of solutions of the system

(1.6) uj
1 + · · · + uj

s = vj
1 + · · · + vj

s, j ∈ R,

with u j , v j ∈ Id
P , 1 ≤ j ≤ s. We will see in Lemma 3.2 that Condition∗ implies

that Js(R; P) satisfies a translation invariant property. This condition also plays an
important role in the process of efficient congruencing. Since p is the characteristic
of Fq, if there exist i, j ∈ R with j = pvi for some v ∈ N \ {0}, then we have

s∑
j=1

(uj
j − vj

j) =
( s∑

j=1

(ui
j − vi

j)
) pv

.

Thus, the equations in (1.6) are not always independent. The absence of indepen-
dence suggests that Vinogradov-type estimates for integers cannot be adapted di-
rectly into a function field setting. To regain independence, we instead consider

(1.7) R ′ =
{

i ∈ Nd | p - i and pvi ∈ R for some v ∈ N
}
.

Then we see that Js(R; P) also counts the number of solutions of the system

(1.8) ui
1 + · · · + ui

s = vi
1 + · · · + vi

s, i ∈ R ′,

with u j , v j ∈ Id
P , 1 ≤ j ≤ s. By extending Wooley’s efficient congruencing method,

we will prove the following theorem.

Theorem 1.1 Let r = cardR ′, φ = maxi∈R ′ |i|, and κ =
∑

i∈R ′ |i|. Suppose that
d ≥ 2, φ ≥ 2, and s ≥ rφ + r. Then for each ε > 0, there exists a positive constant
C1 = C1(s, d; r, φ, κ; q; ε) such that

Js(R; P) ≤ C1

(
qP
) 2sd−κ+ε

.

We notice here that although the equations in (1.8) are independent, the set R ′ is
not necessarily contained in R. This lack of inclusion prevents the transfer of certain
congruence relations between R and R ′. However, such a transition is necessary to
proceed with efficient congruencing. We address this issue by introducing an alterna-
tive set extending R ′ in Section 4. Since the new set satisfies Condition∗ and contains
R ′, it allows successful use of efficient congruencing.

By [16, Lemma A.4], we see that R0 satisfies Condition∗. It also follows from
[16, Lemma 8.1] that

R ′0 =
{

i ∈ R0

∣∣ p - i
}

=
{

i ∈ Nd
∣∣ p - i and pvi ∈ R0 for some v ∈ N

}
.

In addition, a straightforward calculation shows that k = maxi∈R ′0 |i| as p - k. Since
Js,k,d(P) = Js(R0; P), we can derive the following corollary from Theorem 1.1.
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Corollary 1.2 Let p be the characteristic of Fq, µ = cardR ′0 and K =
∑

i∈R ′0
|i|. Let

s, k, d ∈ N with d ≥ 2, k ≥ 2 with p - k and s ≥ µk + µ. Then for each ε > 0, there
exists a positive constant C2 = C2(s, d; k; q; ε) such that

Js,k,d(P) ≤ C2

(
qP
) 2sd−K+ε

.

Let Fq(t) be the fraction field of Fq[t]. For a place w ∈ Fq[t], let Fq(t)w denote
the completion of Fq(t) at w. By combining the above corollary with a variant of
the Hardy–Littlewood circle method, we can significantly improve the result in [16,
Theorem 1.1] as follows.

Theorem 1.3 Let p be the characteristic of Fq, ι = cardL and µ = cardR ′0. Let
s, k, d ∈ N with d ≥ 2, k ≥ 2 with p - k and s ≥ 2µk + 2µ + 1. Suppose that
the system (1.5) has non-trivial solutions in all completions Fq(t)w of Fq(t). Then there
exist positive constants C3 = C3(s, d; k; q; c) and η = η(d; k; q) such that

Ns,k,d,c(P) = C3(qP)sd−ιk + O
(

(qP)sd−ιk−η) .
An interested reader can find explicit calculations of ι and µ in [16, Lemmas 12.2

and 12.3]. It is worth remarking that when k is of certain form, both ι and µ are
independent of k. For example, when k = 1 + pE, E ∈ N \ {0}, we have that ι = d2

and µ = d(d + 1). In this case, the bound for s in Theorem 1.3 is sharper than its
integer analogue in (1.3). Moreover, we may save additional variables by employing
a new strategy, introduced in [12–14], for transforming Vinogradov-type estimates
to minor arc contributions. We will pursue this improvement in future work.

2 Preliminaries

We begin this section by introducing the Fourier analysis for function fields. Let
A = Fq[t], and let K = Fq(t) be the fraction field of A. Let K∞ = Fq((1/t)) be
the completion of K at∞. We may write each element α ∈ K∞ in the shape α =∑

i≤v ai(α)t i for some v ∈ Z and ai(α) ∈ Fq, i ≤ v. If av(α) 6= 0, we say that

ordα = v and we write 〈α〉 = qord α. We adopt the convention that ord 0 = −∞
and 〈0〉 = 0. It is also convenient to refer to a−1 as being the residue of α, denoted
by resα. Given that the characteristic of Fq is p, we are now equipped to define the
exponential function on K∞. Let e(z) denote e2πiz, and let tr : Fq → Fp denote the
familiar trace map. There is a non-trivial additive character eq : Fq → C× defined for
each a ∈ Fq by taking eq(a) = e(tr(a)/p). This character induces a map e : K∞ → C×

by defining, for each α ∈ K∞, the value of e(α) to be eq(resα). Let T = {α ∈ K∞ |
ordα < 0}. Given any Haar measure dα on K∞, we normalise it in such a manner
that

∫
T 1 dα. The orthogonality relation underlying the Fourier analysis of Fq[t],

established in [4, Lemma 1], takes the shape

∫
T

e(xα) dα =

{
1, when x = 0,

0, otherwise.
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Thus, for n ∈ N \ {0}, (x1, · · · , xn) ∈ An, and α = (α1, . . . , αn) ∈ Kn
∞, we have∫

Tn

e(x1α1 + · · · + xnαn) dα =
n∏

l=1

∫
T

e(xlαl) dαl

=

{
1, when xl = 0 (1 ≤ l ≤ n),

0, otherwise.

(2.1)

Let R be a finite subset of Nd satisfying Condition∗, and let R ′ be defined as in
(1.7). Recall that for i = (i1, . . . , id) ∈ Nd, we write |i| = i1 + · · ·+ id. We also denote

(2.2) r = cardR ′, φ = max
i∈R ′
|i|, and κ =

∑
i∈R ′
|i|.

For X ∈ R, let X̂ = qX . For P ∈ N, we recall that IP =
{

x ∈ A | 〈x〉 < P̂
}

. Let
Js(R; P) be defined as in (1.8). For h = (hi)i∈R ′ ∈

∏
i∈R ′ I|i|P, define Js(P; h) to be

the number of solutions of the system

s∑
j=1

(ui
j − vi

j) = hi, i ∈ R ′,

with u j , v j ∈ Id
P , 1 ≤ j ≤ s. Thus, Js(P; h) = Js(R; P) whenever hi = 0, i ∈ R ′. For

(α) = (αi)i∈R ′ ∈ Kr
∞, write

f (α; P) =
∑
x∈Id

P

e
( ∑

i∈R ′
αix

i
)
.

By (2.1), we have

Js(P; h) =

∫
Tr

∣∣ f (α; P)
∣∣ 2s

e
(
−
∑
i∈R ′

αihi

)
dα.

Since

Js(P; h) ≤
∫

Tr

∣∣ f (α; P)
∣∣ 2s

dα = Js(R; P),

it follows that

P̂2sd ≤
∑

h∈
∏

i∈R ′ I|i|P

Js(P; h) ≤
∑

h∈
∏

i∈R ′ I|i|P

Js(R; P) = P̂κ Js(R; P).

Thus, we have

(2.3) Js(R; P) ≥ P̂2sd−κ.

For s ∈ N, we say that λs is admissible for R if for any ε > 0 and P ∈ N sufficiently
large (in terms of s, d, r, φ, κ, q and ε), we have Js(R; P)� P̂λs+ε. Define λ∗s to be the
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infimum of the set of exponents λs admissible for R. Thus, for P sufficiently large,
we have

Js(R; P)� P̂λ
∗
s +ε.

Write ηs = λ∗s − 2sd + κ. It follows from (2.3) that ηs ≥ 0.
In the following, we abbreviate Js(R; P) as Js(P). We will focus on estimating

Js+r(P) for s = ru with some u ∈ N satisfying u ≥ φ. Then Theorem 1.1 can be
established by showing that ηs+r = 0. Let N ∈ N be sufficiently large (in terms of
s, d, r, φ, κ and q). Let θ = N−1/2(r/s)N+2 and δ = (6sN)−(2N+3). Thus, we have

(2.4) δ < (2s/r)−Nθ/(6s).

By the infimal definition of λ∗s+r, there exists a sequence of non-negative integers
(Pm)∞m=1, tending to∞, such that

(2.5) Js+r(Pm) > P̂m
λ∗s+r−δ

, m ∈ N \ {0}.

If Pm is sufficiently large (in terms of s, d, r, φ, κ, q and N), then for any Q ∈ N with
δ2Pm < Q ≤ Pm, we have

Js+r(Q) < Q̂λ∗s+r+δ

For N sufficiently large, we have δ < (2(s + r)d)−1. Thus, for 0 < Q ≤ Pm, by the
trivial bound | f (α; P)| ≤ P̂d, we have

(2.6) Js+r(Q) < P̂m
2(s+r)dδ2

+ Q̂λ∗s+r+δ < 2P̂m
δ
Q̂2(s+r)d−κ+ηs+r .

In what follows, we consider a fixed element P = Pm of the sequence (Pm)∞m=1,
which is sufficiently large (in terms of s, d, r, φ, κ, q and N). Unless stated otherwise,
all implicit constants below may depend at most on s, d, r, φ, κ, q, and N. Since our
methods involve only a finite number of steps, these implicit constants are under
control. In addition, for X ∈ R, we write [X] for the greatest integer not exceeding
X. Finally, for a = (a1, . . . , an) ∈ An, b = (b1, . . . , bn) ∈ An and g ∈ A, we write
a ≡ b (mod g) if al ≡ bl (mod g), 1 ≤ l ≤ n. Then for a ′, b ′ ∈ Ad, we write
(a, a ′) ≡ (b, b ′) (mod g) if a ≡ b (mod g) and a ′ ≡ b ′ (mod g).

We recall that Js+r(P) counts the number of solutions of the system

(2.7)
r∑

i=1

(
yi

i − zi
i

)
=

s∑
j=1

(
ui

j − vi
j

)
, i ∈ R ′,

with yi , zi ,u j , v j ∈ Id
P , 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let w ∈ A be irreducible, and

let h, n, v ∈ N. Let (f) be a system of h many polynomials in A[t1, . . . , tn]. For
g1, . . . , gv ∈ An, let Jac(f; gl) denote the h × n Jacobian matrix of f evaluated at gl,
1 ≤ l ≤ n. We write rk Jac(f; g1, . . . , gv; w) for the rank of the h× nv Jacobian matrix(

Jac(f; g1), . . . , Jac(f; gv)
)
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over A/(w). In addition, write I∗(P; w) for the number of solutions

(yi , zi ,u j , v j), 1 ≤ i ≤ r, 1 ≤ j ≤ s,

counted by Js+r(P) for which

rk Jac
(

(xi)i∈R ′ ; y1, . . . , yr; w
)

= r.

To bound Js+r(P) in terms of I∗(P; w), we need the following lemma.

Lemma 2.1 Let v ∈ N with v ≥ r, and let w ∈ A be irreducible. Let S(w) denote the

set of v-tuples (g1, . . . , gv) with gl ∈
(

A/(w)
) d

, 1 ≤ l ≤ v, such that

rk Jac
(

(xi)i∈R ′ ; g1, . . . , gv; w
)
< r.

We have
card S(w)� 〈w〉v(d−1)+r−1,

where the implicit constant depends on v, φ, r, and d.

Proof This proof can be carried out by replacing R ′0 and k in the proof of [16,
Lemma 7.3] with R ′ and φ respectively.

Lemma 2.2 Let s = ru with u ∈ N and u ≥ φ, and let M = [θP] + 1. There exists
an irreducible polynomial w ∈ A with 〈w〉 = M̂ such that

Js+r(P)� I∗(P; w).

Proof For P sufficiently large, there exists a set P consisting of [θ−1] irreducible
polynomials of degree [θP] + 1. Let S1 denote the number of solutions

(yi , zi ,u j , v j), 1 ≤ i ≤ r, 1 ≤ j ≤ s,

counted by Js+r(P) such that for all w ∈ P,

rk Jac
(

(xi)i∈R ′ ; y1, . . . , yr, z1, . . . , zr; w
)
< r.

Let S2 denote the number of remaining solutions, i.e., the solutions for which

rk Jac
(

(xi)i∈R ′ ; y1, . . . , yr, z1, . . . , zr; w
)

= r

for some w ∈ P. Thus, we have

Js+r(P) = S1 + S2.

There are two cases.
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Case 1: Suppose that S2 ≤ S1. For every w ∈ P, by taking v = 2r in Lemma 2.1, we
see that the number of (y1, . . . , yr, z1, . . . , zr) ∈ (A/(w))2rd with

rk Jac
(

(xi)i∈R ′ ; y1, . . . , yr, z1, . . . , zr; w
)
< r

is O(〈w〉2rd−r−1). Let ρ =
∏

w∈P w. By the Chinese Remainder Theorem, in the
solutions counted by S1, the total number of choices for (y1, . . . , yr, z1, . . . , zr) ∈
(A/(ρ))2rd is O(〈ρ〉2rd−r−1). For each fixed choice (g1, . . . , gr,h1, . . . ,hr)(modρ),
there are at most (P̂/〈ρ〉)2rd choices for the (y1, . . . , yr, z1, . . . , zr) ∈ I2rd

P

with (y1, . . . , yr, z1, . . . , zr) ≡ (g1, . . . , gr,h1, . . . ,hr) (modρ). Thus, the num-
ber of (y1, . . . , yr, z1, . . . , zr) ∈ I2rd

P under consideration can be estimated by

O(P̂2rd〈ρ〉−r−1). Since 〈ρ〉 > (P̂θ)θ
−1−1 = P̂1−θ, we have

P̂2rd〈ρ〉−r−1 < P̂2rd−(r+1)(1−θ).

Thus, we have
Js+r(P) ≤ 2S1 � P̂2rd−(r+1)(1−θ) Js(P).

By Hölder’s inequality, we have

Js(P) =

∫
Tr

∣∣ f (α; P)
∣∣ 2s

dα ≤
( ∫

Tr

∣∣ f (α; P)
∣∣ 2(s+r)

dα
) s/(s+r)

= Js+r(P)s/(s+r).

On combining the above two estimates, we see that

Js+r(P)� P̂2rd−(r+1)(1−θ) Js+r(P)s/(s+r),

which implies that
Js+r(P)� P̂2(s+r)d−(r+1)(1−θ)(s+r)/r.

Notice that s ≥ rφ ≥ κ and

θ = N−1/2(r/s)N+2 ≤ φ−(N+2) ≤ (φ + r)
(

(r + 1)(φ + 1)
)−1

.

Thus, we have

(r +1)(1−θ)(s+r)/r ≥ (r +1)(1−θ)(φ+1) = rφ+φ+r +1−θ(r +1)(φ+1) ≥ κ+1.

It follows that
Js+r(P)� P̂2(s+r)d−κ−1,

which contradicts the lower bound in (2.3).

Case 2: Suppose that S1 ≤ S2. On noticng that P� 1, we see that there exists w ∈ P

such that S2 � S3(w), where S3(w) denotes the number of solutions (yi , zi ,u j , v j),
1 ≤ i ≤ r, 1 ≤ j ≤ s, counted by S2 for which

rk Jac
(

(xi)i∈R ′ ; y1, . . . , yr, z1, . . . , zr; w
)

= r.

After rearranging variables, we have

Js+r(P)� S3(w)� I∗(P; w).

On combining Cases 1 and 2, the lemma follows.
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In what follows, for a sufficiently large P = Pm (in terms of s, d, r, φ, κ, q, and N),
let M = [θP] + 1 and let w ∈ A satisfy all conditions in Lemma 2.2. For g ∈ A \ {0},
define

L(g) =
{

(a1, . . . , ad) ∈ Ad | deg ai < deg g, 1 ≤ i ≤ d
}
.

For c ∈ N and ξ ∈ Ad, denote by Ξc(ξ; w) the set of r-tuples (ξ1, . . . , ξr) with ξi ∈
L(wc+1) and ξi ≡ ξ (mod wc), 1 ≤ i ≤ r, such that

rk Jac
(

(xi)i∈R ′ ; [ξ1], . . . , [ξr]; w
)

= r,

where for η ≡ ξ (mod wc), write [η] = [η]c,w,ξ = w−c(η − ξ). Let R = cardR.
In the following sections, we will frequently apply the multinomial theorem stated
in Lemma 3.1 to treat certain congruence conditions. Since system (2.7) does not
necessarily contain all equations that are needed to use the theorem, we consider
instead the equivalent definition of Js+r(P) that counts the number of solutions of the
system

r∑
i=1

(
yj

i − zj
i

)
=

s∑
j=1

(
uj

j − vj
j

)
, j ∈ R

with yi , zi ,u j , v j ∈ Id
P , 1 ≤ i ≤ r, 1 ≤ j ≤ s. Thus, in what follows, we will integrate

over TR instead of Tr. For α = (αj)j∈R ∈ KR
∞ and σ ∈ Σr = {1,−1}r, define

fc(α; ξ) =
∑
x∈Id

P
x≡ξ (mod wc)

e
(∑

j∈R

αjx
j
)

and

Fσ
c (α; ξ) =

∑
(ξ1,...,ξr)∈Ξc(ξ;w)

r∏
i=1

fc+1(σiα; ξi).

Let s = ru with u ∈ N and u ≥ φ. For a, b ∈ N, ξ, η ∈ Ad and σ, τ ∈ Σr, define

Iσa,b(P; ξ, η) =

∫
TR

∣∣Fσ
a (α; ξ)2fb(α; η)2s

∣∣dα
and

Kσ,τ
a,b (P; ξ, η) =

∫
TR

∣∣Fσ
a (α; ξ)2Fτ

b (α; η)2u
∣∣dα.

We then define
Ia,b(P) = max

ξ∈L(wa)
max
η∈L(wb)

max
σ∈Σr

Iσa,b(P; ξ, η)

and
Ka,b(P) = max

ξ∈L(wa)
max
η∈L(wb)

max
σ,τ∈Σr

Kσ,τ
a,b (P; ξ, η).

To obtain Theorem 1.1, we will iterate among the mean values Js+r(P), Ia,b(P)
and Ka,b(P). The first step is to estimate Js+r(P) in terms of K0,1(P) by imposing some
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initial efficient congruence conditions to the variables. Then we extract stronger con-
gruence conditions from K0,1(P) and estimate it in terms of Ka,b(P) for some b > a.
On repeating such a process, we can bound Js+r(P) by a sequence of mean values
Ka,b(P). A major difficulty in each stage is to well-condition the variables such that
the next efficient congruence can be extracted. We overcome this difficulty by making
use of the mean values Ia,b(P).

3 The Conditioning Process

For a, b, c ∈ N, the goal of this section is to associate Ia,b(P) with Ka,c(P) in the
way that the variables are well-conditioned in view of the definition of Ka,c(P). In
addition, in Lemma 3.6, we complete the initial step by relating Js+r(P) to K0,1(P).

Lemma 3.1 For j = ( j1, . . . , jd) ∈ Nd and l = (l1, . . . , ld) ∈ Nd, write(
j

l

)
=

(
j1

l1

)
· · ·
(

jd

ld

)
.

For j ∈ Nd, define

Rj =
{

l ∈ Nd
∣∣∣ p -

(
j

l

)}
.

Then for x, y ∈ Ad, we have

(x + y)j =
∑
l∈Rj

(
j

l

)
xlyj−l.

Proof This is [16, Lemma 3.2].

We remark that Condition∗ implies that Rj ⊆ R for each j ∈ R. We are now in
a position to deduce a translation invariance of the Diophantine system underlying
the mean value Jn(P).

Lemma 3.2 Let c ∈ N with c ≤ θ−1 − 1. For n ∈ N, we have

max
ξ∈L(wc)

∫
TR

∣∣ fc(α; ξ)
∣∣ 2n

dα = Jn(P − cM).

Proof We observe first that for c ≤ θ−1 − 1 and M = [θP] + 1, if P is sufficiently
large (in terms of s, r,N), then P − cM > 0. For ξ ∈ L(wc), by the definition of
fc(α; ξ), we have

fc(α; ξ) =
∑

y∈Id
P−ord wc

e
(∑

j∈R

αj(wcy + ξ)j
)
.

By (2.1), the integral
∫

TR

∣∣ fc(α; ξ)
∣∣ 2n

dα counts the number of solutions of the system

n∑
i=1

(wcyi + ξ)j =

n∑
i=1

(wczi + ξ)j, j ∈ R

https://doi.org/10.4153/CJM-2013-014-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-014-9


Multidimensional Vinogradov-type Estimates in Function Fields 855

with yi , zi ∈ Id
P−ord wc , 1 ≤ i ≤ n. By Lemma 3.1 and Condition∗, we see that the

above system is equivalent to

n∑
i=1

yj
i =

n∑
i=1

zj
i , j ∈ R.

On recalling that ord w = M, the lemma follows.

Lemma 3.3 Let a, b ∈ N with b > a. We have

Ia,b(P)� Ka,b(P) + M̂2s(d−1)+r−1Ia,b+1(P).

Proof For ξ ∈ L(wa), η ∈ L(wb) and σ ∈ Σr, we see from (2.1) that Iσa,b(P; ξ, η)
counts the number of solutions of the system

r∑
i=1

σi

(
yj

i − zj
i

)
=

s∑
j=1

(
uj

j − vj
j

)
, j ∈ R,

with

yi , zi ∈ Id
P, yi ≡ ξi (mod wa+1), zi ≡ ζ i (mod wa+1), 1 ≤ i ≤ r,

for some (ξ1, . . . , ξr), (ζ1, . . . , ζr) ∈ Ξa(ξ; w), and with

u j , v j ∈ Id
P, u j ≡ v j ≡ η (mod wb) (1 ≤ j ≤ s).

For γ ≡ η (mod wb), write [γ] = w−b(γ−η). Let T1 denote the number of solutions
(yi , zi ,u j , v j), 1 ≤ i ≤ r, 1 ≤ j ≤ s counted by Iσa,b(P; ξ, η) for which

rk Jac
(

(xi)i∈R ′ ; [u1], . . . , [us], [v1], . . . , [vs]; w
)
< r.

Let T2 denote the number of remaining solutions, i.e., the solutions for which

rk Jac
(

(xi)i∈R ′ ; [u1], . . . , [us], [v1], . . . , [vs]; w
)

= r.

Thus, we have Iσa,b(P; ξ, η) = T1 + T2.
To estimate T1, let

C =
{

(u1, . . .us, v1, . . . , vs) (mod wb+1) | (yi , zi ,u j , v j) counted by T1

}
and

C ′ =
{

([u1], . . . , [us], [v1], . . . , [vs]) (mod w) | (u1, . . . ,us, v1, . . . , vs) ∈ C
}
.

Consider the bijection from C to C ′ defined by

(u1, . . . ,us, v1, . . . , vs) 7−→
(

[u1], . . . , [us], [v1], . . . , [vs]
)
.
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By the definition of T1, it follows from Lemma 2.1 that

cardC = cardC ′ � 〈w〉2s(d−1)+r−1.

On considering the underlying Diophantine system, we have

T1 ≤
∑

(η ′1 ,...,η
′
2s)∈C

∫
TR

|Fσ
a (α; ξ)|2

s∏
j=1

fb+1(α; η ′j)fb+1(−α; η ′j+s)dα.

By Hölder’s inequality, we have∫
TR

∣∣Fσ
a (α; ξ)

∣∣ 2 2s∏
j=1

∣∣ fb+1(α; η ′j)
∣∣dα ≤ 2s∏

j=1

( ∫
TR

|Fσ
a (α; ξ)|2|fb+1(α; η ′j)|2sdα

) 1/(2s)

≤ Ia,b+1(P).

It follows that
T1 � M̂2s(d−1)+r−1Ia,b+1(P).

We now consider the solutions counted by T2. Since

rk Jac
(

(xi)i∈R ′ ; [u1], . . . , [us], [v1], . . . , [vs]; w
)

= r,

after rearranging variables, we can assume that

rk Jac
(

(xi)i∈R ′ ; [u1], . . . , [ur]; w
)

= r.

Thus, there exists (η1, . . . , ηr) ∈ Ξb(η; w) such that ui ≡ ηi (mod wb+1), 1 ≤ i ≤ r.
On considering the underlying Diophantine system, we see that

T2 �
∫

TR

|Fσ
a (α; ξ)|2F1

b(α; η)fb(α; η)s−rfb(−α; η)sdα,

where 1 = (1, . . . , 1) ∈ Σr. On recalling that s = ur, it follows from Hölder’s
inequality that

T2 �
( ∫

TR

|Fσ
a (α; ξ)2F1

b(α; η)2u|dα
) 1/(2u)( ∫

TR

|Fσ
a (α; ξ)2fb(α; η)2s|dα

) 1−1/(2u)
.

Thus, we have

T2 �
(

Ka,b(P)
) 1/(2u)(

Ia,b(P)
) 1−1/(2u)

.

On combining the above upper bounds for T1 and T2, we obtain

Ia,b(P)� M̂2s(d−1)+r−1Ia,b+1(P) +
(

Ka,b(P)
) 1/(2u)(

Ia,b(P)
) 1−1/(2u)

,

which implies that

Ia,b(P)� M̂2s(d−1)+r−1Ia,b+1(P) + Ka,b(P).

This completes the proof of the lemma.
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We remark here that by repeated applications of Lemma 3.3, whenever a, b,H ∈ N
with b > a, we have

(3.1) Ia,b(P)�
H−1∑
h=0

M̂h(2s(d−1)+r−1)Ka,b+h(P) + M̂H(2s(d−1)+r−1)Ia,b+H(P).

Lemma 3.4 Let a, b,H ∈ N with 0 < b− a ≤ H ≤ θ−1 − 1− b. We have

M̂H(2s(d−1)+r−1)Ia,b+H(P)� M̂−H/2
(

P̂/M̂b
) 2sd(

P̂/M̂a
) 2rd−κ+ηs+r

.

Proof For ξ ∈ L(wa), η ∈ L(wb+H) and σ ∈ Σr, by the definition of Iσa,b+H(P; ξ, η),
we see that

Iσa,b+H(P; ξ, η) ≤
∫

TR

|fa(α; ξ)2rfb+H(α; η)2s|dα.

By Hölder’s inequality and Lemma 3.2, we have

Iσa,b+H(P; ξ, η) ≤
( ∫

TR

|fa(α; ξ)|2(s+r)dα
) r/(s+r)( ∫

TR

|fb+H(α; η)|2(s+r)dα
) s/(s+r)

�
(

Js+r(P − aM)
) r/(s+r)(

Js+r(P − (b + H)M)
) s/(s+r)

.

It follows from (2.6) that

Ia,b+H(P)� P̂δ
(

(P̂/M̂a)r/(s+r)(P̂/M̂b+H)s/(s+r)
) 2(s+r)d−κ+ηs+r

� P̂δ(P̂/M̂a)2rd−κ+ηs+r (P̂/M̂b)2sdΥ,

where
Υ = (M̂b−a+H)κs/(s+r)M̂−2sdH .

Notice that s ≥ rφ ≥ κ. Since H ≥ b− a, we see that

H
(

2s(d− 1) + r − 1
)

+ (b− a + H)κs/(s + r)− 2sdH

≤ H
(
− 2s + r − 1 + 2κs/(s + r)

)
= −H + (−2s− r + r2/s + 2κ)Hs/(s + r)

≤ −H.

Thus, we have
P̂δM̂H(2s(d−1)+r−1)Υ� M̂−H/2.

On combining the above estimates, the lemma follows.

Lemma 3.5 Let a, b,H ∈ N with a < b and H = b−a. Suppose that b+H ≤ θ−1−1.
Then there exists h ∈ N with h < H such that

Ia,b(P)� M̂h(2s(d−1)+r−1)Ka,b+h(P) + M̂−H/2
(

P̂/M̂b
) 2sd(

P̂/M̂a
) 2rd−κ+ηs+r

.
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Proof By (3.1) and Lemma 3.4, the lemma follows.

Lemma 3.6 For s = ru with u ≥ φ, we have Js+r(P)� M̂2sdK0,1(P).

Proof For α ∈ KR
∞, define

F(α) =
r∏

i=1
f0(α; 0) and I∗(P) =

∫
TR

F1
0(α; 0)F(−α)

∣∣ f0(α; 0)
∣∣ 2s

dα,

where 1 = (1, . . . , 1) ∈ Σr. Since the fixed w ∈ A satisfies all conditions in
Lemma 2.2, we have

Js+r(P)� I∗(P; w) = I∗(P).

By Cauchy’s inequality, we obtain

I∗(P) ≤
( ∫

TR

∣∣F(α)
∣∣ 2∣∣ f0(α; 0)

∣∣ 2s
dα
) 1/2( ∫

TR

∣∣F1
0(α; 0)

∣∣ 2∣∣ f0(α; 0)
∣∣ 2s

dα
) 1/2

.

It follows from (2.1) that the first integral above is equal to Js+r(P). Thus, we have

Js+r(P)� I1
0,0(P; 0, 0).

Notice that
f0(α; 0) =

∑
ξ∈L(w)

f1(α; ξ).

By Hölder’s inequality, we have

I1
0,0(P; 0, 0) ≤ 〈w〉d(2s−1)

∑
ξ∈L(w)

∫
TR

∣∣F1
0(α; 0)

∣∣ 2∣∣ f1(α; ξ)
∣∣ 2s

dα,

which implies that

I1
0,0(P; 0, 0)� 〈w〉2sd max

ξ∈L(w)

∫
TR

∣∣F1
0(α; 0)

∣∣ 2∣∣ f1(α; ξ)
∣∣ 2s

dα.

Since 〈w〉 = M̂, we have

Js+r(P)� I1
0,0(P; 0, 0)� M̂2sdI0,1(P).

When a = 0 and b = 1, we see that H = b− a = 1. Thus, by Lemma 3.5, we have

I0,1(P)� K0,1(P) + M̂−1/2
(

P̂/M̂
) 2sd

P̂2rd−κ+ηs+r .

By (2.4), δ is small enough such that M̂1/2 > P̂2δ . It follows that

Js+r(P)� M̂2sdI0,1(P)� M̂2sdK0,1(P) + P̂2(s+r)d−κ+ηs+r−2δ.

On the other hand, we see from (2.5) that

Js+r(P) > P̂2(s+r)d−κ+ηs+r−δ.

Thus, we have
Js+r(P)� M̂2sdK0,1(P) + P̂−δ Js+r(P),

which implies that
Js+r(P)� M̂2sdK0,1(P).

This completes the proof of the lemma.
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4 The Efficient Congruencing Process

The goal of this section is to provide an iterative relation among the mean values
Ka,b(P). Before proceeding, we need to estimate some auxiliary systems of congru-
ences.

Proposition 4.1 For n,m ∈ N \ {0}, let Υ1, . . . ,Υm be polynomials in A[z1, . . . , zn]
with degrees k1, . . . , km in z = (z1, . . . , zn) respectively. Let w ∈ A be irreducible. For
l ∈ N \ {0} and a = (a1, . . . , am) ∈ Am, let Dl,m,n(Υ; a; w) denote the set of solutions
of the system of congruences

Υi(z1, . . . , zn) ≡ ai (mod wl), 1 ≤ i ≤ m,

with zl ∈ A/(wl), 1 ≤ l ≤ n, and rk Jac(Υ; z; w) = m. Then we have

cardDl,m,n(Υ; a; w) ≤ C4〈wl〉n−m,

where C4 =
(

n!/(m!(n−m)!)
)

k1 · · · km.

Proof It follows from similar arguments as in [11, Theorem 1]. For more details, see
also [15, Appendix].

We recall that Js(R; P) counts the number of solutions of the system

uj
1 + · · · + uj

s = vj
1 + · · · + vj

s, j ∈ R,

with u j , v j ∈ Id
P , 1 ≤ j ≤ s. It also represents the number of solutions of the system

ui
1 + · · · + ui

s = vi
1 + · · · + vi

s, i ∈ R ′,

with u j , v j ∈ Id
P , 1 ≤ j ≤ s. Although the second system consists of independent

equations, it does not necessarily contain all equations of certain auxiliary congru-
ences that are used to well-condition variables. More precisely, since R ′ is not neces-
sarily contained in R, for any g ∈ A \ {0}, the system of congruences

uj
1 + · · · + uj

s ≡ vj
1 + · · · + vj

s (mod g), j ∈ R,

does not always imply that

ui
1 + · · · + ui

s ≡ vi
1 + · · · + vi

s (mod g), i ∈ R ′.

To resolve the difficulty, we consider an alternative system. We recall that φ =
maxi∈R ′ |i|. Let

S =
{

pni | i ∈ R ′, n ∈ N, and pn|i| ≤ φ
}
.

In Lemma 4.2 we will prove that S satisfies Condition∗. In addition, since R ′ ⊆ S,
we see that the above system of congruence shares the same solutions with the system
of congruences

uj
1 + · · · + uj

s ≡ vj
1 + · · · + vj

s (mod g), j ∈ S.

This equivalence is essential in our proof of Lemma 4.3.
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Lemma 4.2 For each j = ( j1, . . . , jd) ∈ S, if l = (l1, . . . , ld) ∈ Nd with
p -
( j1

l1

)
· · ·
( jd

ld

)
, then l ∈ S.

Proof Let j = ( j1, . . . , jd) ∈ S. Then there exist i ∈ R ′ and n ∈ N such that j = pni.
Let l = (l1, . . . , ld) ∈ Nd with p -

( j1

l1

)
· · ·
( jd

ld

)
. By Lucas’ criterion, we have

(4.1) ah(l1) ≤ ah( j1), . . . , ah(ld) ≤ ah( jd), h ∈ N.

Since ah( j1) = · · · = ah( jd) = 0, 0 ≤ h ≤ n− 1, we see from (4.1) that

ah(l1) = · · · = ah(ld) = 0, 0 ≤ h ≤ n− 1.

It follows that pn|l1, . . . , pn|ld, i.e., there exists m = (m1, . . . ,md) ∈ Nd such that
l = pnm. Since j = pni and l = pnm, we obtain

ah+n( j1) = ah(i1), . . . , ah+n( jd) = ah(id), h ∈ N

and
ah+n(l1) = ah(m1), . . . , ah+n(ld) = ah(md) h ∈ N.

Then it follows from (4.1) that

ah(m1) ≤ ah(i1), . . . , ah(md) ≤ ah(id), h ∈ N.

Since i ∈ R ′, there exists v ∈ N such that pvi ∈ R. It follows from the above
inequalities that

ah(pvm1) ≤ ah(pvi1), . . . , ah(pvmd) ≤ ah(pvid), h ∈ N,

which implies that

p -
(

pvi1

pvm1

)
· · ·
(

pvid

pvmd

)
.

In view of the property of R, since pvi ∈ R, we have pvm ∈ R. Thus, there exist
u ∈ R ′ and c ∈ N such that pvm = pcu. Since p - u, we have v ≤ c and m = pc−vu.
This implies that l = pnm = pn+c−vu. On recalling (4.1), we have |l| ≤ |j| ≤ φ and
hence l ∈ S. This completes the proof of the lemma.

Let Rj be defined as in Lemma 3.1. We remark that by Lemma 4.2, we have Rj ⊆ S

for each j ∈ S.

Lemma 4.3 Let a, b ∈ N with b > a, and let w ∈ A be irreducible. For σ ∈ Σr,
m = (mi)i∈R ′ ∈ Ar, ξ ∈ L(wa) and η ∈ L(wb), let Bσ

a,b(m; ξ, η; w) denote the set of
solutions of the system of congruences

r∑
i=1

σi(zi − η)i ≡ mi (mod w|i|b), i ∈ R ′,

with zi ∈ L(wφb) and zi ≡ ξi (mod wa+1), 1 ≤ i ≤ r, for some (ξ1, . . . , ξr) ∈ Ξa(ξ; w).
Then we have

cardBσ
a,b(m; ξ, η; w) ≤ C5〈w〉(rφd−κ)b+(κ−rd)a,

where C5 = ((rd)!/(r!(rd− r)!)
) ∏

i∈R ′ |i|.
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Proof Let D1(n) denote the set of solutions of the system of congruences

r∑
i=1

σi(zi − η)i ≡ ni (mod wφb), i ∈ R ′,

with zi ∈ L(wφb) and zi ≡ ξi (mod wa+1), 1 ≤ i ≤ r, for some (ξ1, . . . , ξr) ∈
Ξa(ξ; w). Define

N =
{

n = (ni)i∈R ′ | ni ∈ A, deg ni < deg wφb and ni ≡ mi (mod w|i|b), i ∈ R ′
}
.

By (2.2), we have

cardBσ
a,b(m; ξ, η; w) ≤

∑
n∈N

cardD1(n) ≤ 〈w〉(rφ−κ)b max
n∈N

cardD1(n).

It remains to estimate D1(n). Let (z1, . . . , zr) ∈ D1(n) and write

zi = wahi + ξ, 1 ≤ i ≤ r.

Since zi ≡ ξi (mod wa+1), 1 ≤ i ≤ r, for some (ξ1, . . . , ξr) ∈ Ξa(ξ; w), we see that

w−a(zi − ξ) ≡ w−a(ξi − ξ) (mod w).

Thus, we have

rk Jac
(

(xi)i∈R ′ ; h1, . . . ,hr; w
)

= rk Jac
(

(xi)i∈R ′ ; [ξ1], . . . , [ξr]; w
)

= r,

where [ξi] = w−a(ξi − ξ), 1 ≤ i ≤ r. Let (y1, . . . , yr) ∈ D1(n) and write yi =
wagi + ξ, 1 ≤ i ≤ r. We have

r∑
i=1

σi(wahi + ξ − η)i ≡
r∑

i=1

σi(wagi + ξ − η)i (mod wφb), i ∈ R ′.

Let S be defined as in Lemma 4.2. We see from the definition of S that the above
system implies that

r∑
i=1

σi(wahi + ξ − η)j ≡
r∑

i=1

σi(wagi + ξ − η)j (mod wφb), j ∈ S.

On combining Lemma 3.1 with Lemma 4.2, since R ′ ⊆ S, the above system implies
that

r∑
i=1

σih
i
i ≡

r∑
i=1

σig
i
i (mod wφb−|i|a), i ∈ R ′.
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For u = (ui)i∈R ′ ∈ Ar, we write D2(u) for the set of solutions of the system of
congruences

r∑
i=1

σih
i
i ≡ ui (mod wφb−|i|a), i ∈ R ′,

with hi ∈ L(wφb−a) and rk Jac
(

(xi)i∈R ′ ; h1, . . . ,hr; w
)

= r. Then it follows from
the above argument that there exists some u such that cardD1(n) ≤ cardD2(u).
Define

V ={
v = (vi)i∈R ′ | vi ∈ A, deg vi < deg wφb−a and vi ≡ ui(mod wφb−|i|a)(i ∈ R ′)

}
.

For v ∈ V, denote by D3(v) the set of solutions of the system of congruences

r∑
i=1

σih
i
i ≡ vi (mod wφb−a), i ∈ R ′,

with hi ∈ L(wφb−a) and rk Jac
(

(xi)i∈R ′ ; h1, . . . ,hr; w
)

= r. Thus, we have

cardD2(u) ≤ 〈w〉(κ−r)a max
v∈V

cardD3(v).

By Proposition 4.1, we have

cardD3(v) ≤ C5〈wφb−a〉rd−r,

where C5 = ((rd)!/(r!(rd − r)!))
∏

i∈R ′ |i|. On combining the above estimates we
have

cardBσ
a,b(m; ξ, η; w) ≤ C5〈w〉(rφ−κ)b+(κ−r)a+(φb−a)(rd−r) = C5〈w〉(rφd−κ)b+a(κ−rd).

This completes the proof of the lemma.

Lemma 4.4 Let a, b ∈ N with a < b ≤ θ−1 − 1. We have

Ka,b(P)� M̂(rφd−κ)b+a(κ−rd)M̂(φb−a)dr
(

Js+r(P − bM)
) 1−r/s(

Ib,φb(P)
) r/s

.

Proof For ξ ∈ L(wa), η ∈ L(wb) and σ, τ ∈ Σr, we see from (2.1) that Kσ,τ
a,b (P; ξ, η)

counts the number of solutions of the system

(4.2)
r∑

i=1

σi

(
yj

i − zj
i

)
=

u∑
l=1

r∑
m=1

τm

(
uj

l,m − vj
l,m

)
, j ∈ R,

with

yi , zi ∈ Id
P, yi ≡ ξi (mod wa+1), zi ≡ γi (mod wa+1) (1 ≤ i ≤ r)
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for some (ξ1, . . . , ξr), (γ1, . . . , γr) ∈ Ξa(ξ; w), and with

ul,m, vl,m ∈ Id
P, ul,m ≡ ηl,m (mod wb+1),

vl,m ≡ ν l,m(mod wb+1), 1 ≤ l ≤ u, 1 ≤ m ≤ r,

for some (ηl,1, . . . , ηl,r), (ν l,1, . . . , ν l,r) ∈ Ξb(η; w). On combining Lemma 3.1 with
Condition∗, we see that (4.2) is equivalent to the system

r∑
i=1

σi

(
(yi − η)j − (zi − η)j

)
=

u∑
l=1

r∑
m=1

τm

(
(ul,m − η)j − (vl,m − η)j

)
, j ∈ R.

Then by the definition of R ′, it follows that

r∑
i=1

σi

(
(yi − η)i − (zi − η)i

)
=

u∑
l=1

r∑
m=1

τm

(
(ul,m − η)i − (vl,m − η)i

)
, i ∈ R ′.

Given a solution (yi , zi ,ul,m, vl,m), 1 ≤ i ≤ r, 1 ≤ l ≤ u, 1 ≤ m ≤ r, counted by
Kσ,τ

a,b (P; ξ, η), we have ul,m ≡ vl,m ≡ η (mod wb). Thus, the above system implies that

(4.3)
r∑

i=1

σi(yi − η)i ≡
r∑

i=1

σi(zi − η)i (mod w|i|b), i ∈ R ′.

Let B(m) = Bσ
a,b(m; ξ, η; w) be defined as in Lemma 4.3. Write

Gσ
a,b(α; ξ, η; m) =

∑
(ζ1,...,ζr)∈B(m)

r∏
i=1

fφb(σiα; ζ i).

Notice that for each m = (mi)i∈R ′ ∈ Ar, the integral∫
TR

∣∣Gσ
a,b(α; ξ, η; m)2Fτ

b (α; η)2u
∣∣dα

denotes the number of solutions (yi , zi ,ul,m, vl,m), 1 ≤ i ≤ r, 1 ≤ l ≤ u, 1 ≤ m ≤ r,
counted by Kσ,τ

a,b (P; ξ, η) in which (y1, . . . , yr) (mod wφb) and (z1, . . . , zr) (mod wφb)
lie in B(m). Thus, by (4.3), we have

Kσ,τ
a,b (P; ξ, η) ≤

∑
deg mi<deg w|i|b

i∈R ′

∫
TR

∣∣Gσ
a,b(α; ξ, η; m)2Fτ

b (α; η)2u
∣∣dα.

By Lemma 4.3 and Cauchy’s inequality, we have∣∣Gσ
a,b(α; ξ, η; m)

∣∣ 2 ≤ cardB(m)
∑

(ζ1,...,ζr)∈B(m)

r∏
i=1

∣∣ fφb(α; ζ i)
∣∣ 2

� M̂(rφd−κ)b+(κ−rd)a
∑

(ζ1,...,ζr)∈B(m)

r∏
i=1

∣∣ fφb(α; ζ i)
∣∣ 2
.
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It follows that

Kσ,τ
a,b (P; ξ, η)

� M̂(rφd−κ)b+(κ−rd)a
∑

deg mi<deg w|i|b

i∈R ′

∑
(ζ1,...,ζr)∈B(m)

∫
TR

( r∏
i=1

∣∣ fφb(α; ζ i)
∣∣ 2
)∣∣Fτ

b (α; η)
∣∣ 2u

dα

� M̂(rφd−κ)b+(κ−rd)a
∑

ζ i∈L(wφb)
ζ i≡ξ (mod wa)

1≤i≤r

∫
TR

( r∏
i=1

∣∣ fφb(α; ζ i)
∣∣ 2
)∣∣Fτ

b (α; η)
∣∣ 2u

dα.

By Hölder’s inequality, we see that∑
ζ i∈L(wφb)

ζ i≡ξ (mod wa)
1≤i≤r

r∏
i=1

∣∣ fφb(α; ζ i)
∣∣ 2

=
( ∑

ζ∈L(wφb)
ζ≡ξ (mod wa)

∣∣ fφb(α; ζ)
∣∣ 2
) r

≤ 〈w〉d(φb−a)(r−1)
∑

ζ∈L(wφb)
ζ≡ξ (mod wa)

∣∣ fφb(α; ζ)
∣∣ 2r
.

Thus, we have

(4.4) Kσ,τ
a,b (P; ξ, η)�

M̂(rφd−κ)b+(κ−rd)aM̂rd(φb−a) max
ζ∈L(wφb)

∫
TR

∣∣ fφb(α; ζ)2rFτ
b (α; η)2u

∣∣dα.
On recalling that s = ru, it follows from Hölder’s inequality that∫

TR

∣∣ fφb(α; ζ)2rFτ
b (α; η)2u

∣∣dα ≤ U 1−r/s
1 U r/s

2 ,

where

U1 =

∫
TR

∣∣Fτ
b (α; η)

∣∣ 2u+2
dα and U2 =

∫
TR

∣∣Fτ
b (α; η)2fφb(α; ζ)2s

∣∣dα.
On considering the underlying Diophantine system, we can deduce from Lemma 3.2
that

U1 ≤
∫

TR

∣∣ fb(α; η)
∣∣ 2s+2r

dα� Js+r(P − bM).

On noticing that U2 = Iτb,φb(P; η, ξ), we have∫
TR

∣∣ fφb(α; ζ)2rFτ
b (α; η)2u

∣∣dα ≤ ( Js+r(P − bM)
) 1−r/s(

Ib,φb(P)
) r/s

.

On combing the above estimate with (4.4), the lemma follows.
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For a, b ∈ N with a < b, we define the normalised magnitude of Ka,b(P) as follows:

[[Ka,b(P)]] = Ka,b(P)(P̂/M̂b)−2sd(P̂/M̂a)κ−2rd.

Lemma 4.5 Let a, b ∈ N with a < b ≤ θ−1 − 1. We have

[[Ka,b(P)]]� P̂ηs+r+δ(M̂b−a)κ.

Proof For ξ ∈ L(wa), η ∈ L(wb) and σ, τ ∈ Σr, on considering the underlying
Diophantine system, we see from Hölder’s inequality that

Kσ,τ
a,b (P; ξ, η) ≤

∫
TR

∣∣ fa(α; ξ)2rfb(α; η)2s
∣∣dα

≤
( ∫

TR

∣∣ fa(α; ξ)
∣∣ 2(s+r)

dα
) r/(s+r)( ∫

TR

∣∣ fb(α; η)
∣∣ 2(s+r)

dα
) s/(s+r)

.

Since a < b ≤ θ−1 − 1, by Lemma 3.2, we have

Ka,b(P) ≤
(

Js+r(P − aM)
) r/(s+r)(

Js+r(P − bM)
) s/(s+r)

.

Thus, it follows from (2.6) that

[[Ka,b(P)]] = Ka,b(P)(P̂/M̂b)−2sd(P̂/M̂a)κ−2rd

� P̂δ
(

(P̂/M̂a)r/(s+r)(P̂/M̂b)s/(s+r)
) 2(s+r)d−κ+ηs+r

(P̂/M̂b)−2sd(P̂/M̂a)κ−2rd

� P̂ηs+r+δ(M̂b−a)κs/(s+r).

This completes the proof of the lemma.

Lemma 4.6 Let a, b,H ∈ N with a < b ≤ (2φθ)−1 and H = (φ − 1)b. Then there
exists h ∈ N with h < H such that

[[Ka,b(P)]]�(
P̂/M̂b

) ηs+r
M̂−rH/(3s) + P̂δM̂−(2s−r+1)hr/s

(
P̂/M̂b

) ηs+r(1−r/s)
[[Kb,φb+h(P)]]r/s.

Proof It follows from Lemma 4.4 that

[[Ka,b(P)]] = Ka,b(P)(P̂/M̂b)−2sd(P̂/M̂a)κ−2rd

� (M̂b)2sd(M̂a)2rd−κM̂(rφd−κ)b+(κ−rd)aM̂(φb−a)drV 1−r/s
1 V r/s

2 ,

where
V1 = Js+r(P − bM)P̂κ−2(s+r)d and V2 = Ib,φb(P)P̂κ−2(s+r)d.

By (2.6), we see that

V1 < P̂δ(M̂−b)2(s+r)d−κ(P̂/M̂b)ηs+r .
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Since H = (φ− 1)b, we have

φb + H = φb + (φ− 1)b ≤ 2φb− 1 ≤ θ−1 − 1.

It follows from Lemma 3.5 that there exists h ∈ N with h < H such that

V2 � M̂h(2s(d−1)+r−1)Kb,φb+h(P)P̂κ−2(s+r)d

+ M̂−H/2
(

P̂/M̂bφ
) 2sd(

P̂/M̂b
) 2rd−κ+ηs+r

P̂κ−2(s+r)d.

Thus, we have

V2 �
(

M̂−φb
) 2sd(

M̂−b
) 2rd−κ

V3,

where
V3 = M̂h(−2s+r−1)[[Kb,φb+h(P)]] + M̂−H/2

(
P̂/M̂b

) ηs+r
.

On combining the above upper bounds for [[Ka,b(P)]], V1 and V2, we have

[[Ka,b(P)]]� M̂ΩP̂δ
(

P̂/M̂b
) (ηs+r)(1−r/s)

V r/s
3 ,

where

Ω = b(2sd) + a(2rd− κ) + (rφd− κ)b + (κ− rd)a + (φb− a)dr

+ (−b)
(

2(s + r)d− κ
)

(1− r/s) +
(
− (φb)(2sd)− b(2rd− κ)

)
(r/s).

A straightforward computation shows that Ω = 0. Thus, we obtain

[[Ka,b(P)]]� P̂δ
(

P̂/M̂b
) ηs+r(

M̂−H/2
) r/s

+ P̂δM̂(−2s+r−1)hr/s
(

P̂/M̂b
) ηs+r(1−r/s)

[[Kb,φb+h(P)]]r/s.

By (2.4), we have δ < θ/(6s) and hence P̂δ < M̂rH/(6s). Thus, we have

[[Ka,b(P)]]�
(

P̂/M̂b
) ηs+r

M̂−rH/(3s)

+ P̂δM̂−(2s−r+1)hr/s
(

P̂/M̂b
) ηs+r(1−r/s)

[[Kb,φb+h(P)]]r/s.

This completes the proof of the lemma.

5 Proof of Theorem 1.1

We begin by establishing the following iterative process.

Lemma 5.1 Let a, b ∈ N with a < b ≤ (2φθ)−1. Suppose that there exist ψ ≥ 0,
γ ≥ 0, and c ≥ 0 with c ≤ (2s/r)N such that

P̂ηs+r(1+ψθ) � P̂cδM̂−γ[[Ka,b(P)]].
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Then there exists h ∈ N with h ≤ (φ− 1)b such that

P̂ηs+r(1+ψ ′θ) � P̂c ′δM̂−γ
′
[[Ka ′,b ′(P)]],

where

ψ ′ = (s/r)ψ + (s/r − 1)b, c ′ = (s/r)(c + 1), γ ′ = (s/r)γ + (2s− r + 1)h,

a ′ = b and b ′ = φb + h.

Proof By Lemma 4.6, there exists h ∈ N with h < (φ− 1)b such that

[[Ka,b(P)]]� P̂ηs+r M̂−1/(3s) + P̂δM̂−(2s−r+1)hr/s
(

P̂/M̂b
) ηs+r(1−r/s)

[[Kb,φb+h(P)]]r/s.

Since θ = N−1/2(r/s)N+2, by (2.4), we have cδ < θ/(6s) and hence P̂cδ < M̂1/(6s). We
also have δ < θ/(6s) and hence P̂δ < M̂1/(6s). Then by the hypothesis on P̂ηs+r(1+ψθ),
we see that

P̂ηs+r(1+ψθ) � P̂ηs+r−δ + P̂(c+1)δM̂−γ−(2s−r+1)hr/s
(

P̂/M̂b
) ηs+r(1−r/s)

[[Kb,φb+h(P)]]r/s.

Thus, we have

P̂ηs+r(r/s+(ψ+(1−r/s)b)θ) � P̂(c+1)δM̂−γ−(2s−r+1)hr/s[[Kb,φb+h(P)]]r/s,

which implies that

P̂ηs+r(1+ψ ′θ) � P̂c ′δM̂−γ
′
[[Kb,φb+h(P)]].

This completes the proof of the lemma.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 We recall that to prove the theorem, it suffices to show that
for d ≥ 2, φ ≥ 2, and s ≥ rφ, we have ηs+r = 0. By (2.3), we have ηs+r ≥ 0 for s ≥ rφ.

We first consider the cases that s = ru with u ∈ N and u ≥ φ. Suppose that ηs+r >
0. Define the sequences of non-negative integers (an)N

n=0 and (bn)N
n=0 by setting a0 =

0 and b0 = 1. Then for 0 ≤ n < N, we fix hn ∈ N (which will be chosen later) with
hn ≤ (φ− 1)bn and define

an+1 = bn and bn+1 = φbn + hn.

We now define the auxiliary sequences of non-negative real numbers (ψn)N
n=0, (cn)N

n=0,
(γn)N

n=0 by setting ψ0 = 0, c0 = 1 and γ0 = 0. Then for 0 ≤ n < N, we define

ψn+1 = (s/r)ψn +(s/r−1)bn, cn+1 = (s/r)(cn +1), γn+1 = (s/r)γn +(2s−r+1)hn.

The above sequences satisfy the following properties.
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Claim

(a) ψn ≥ n(φ− 1)φn−1, 0 ≤ n ≤ N.
(b) cn ≤ (n + 1)(s/r)n, 0 ≤ n ≤ N.
(c) γn ≥ (2s− r + 1)(bn − φn), 0 ≤ n ≤ N.
(d) For N sufficiently large (in terms of s and r), there exists a sequence (hn) such

that for 0 ≤ n ≤ N, we have

(5.1) bn <
√

N(s/r)n

and

(5.2) P̂ηs+r(1+ψnθ) � P̂cnδM̂−γn [[Kan,bn (P)]].

Proof of the Claim (a) Notice that bn ≥ φn, 0 ≤ n ≤ N. Since s ≥ rφ, we have

ψn+1 ≥ φψn + (φ− 1)bn ≥ φψn + (φ− 1)φn.

By induction, the result follows.
(b) The upper bounds follow from a straightforward inductive argument.
(c) Since bn+1 = φbn + hn, we see that

γn+1 − (s/r)γn = (2s− r + 1)(bn+1 − φbn).

On recalling that s/r ≥ φ, we have

γn+1 − (2s− r + 1)bn+1 = (s/r)γn − φ(2s− r + 1)bn ≥ φ
(
γn − (2s− r + 1)bn

)
.

Since b0 = 1 and γ0 = 0, it follows by induction that

γn ≥ (2s− r + 1)bn +φn
(
γ0− (2s− r + 1)b0

)
= (2s− r + 1)

(
bn−φn

)
, 0 ≤ n ≤ N.

(d) We now apply an inductive argument on (5.1) and (5.2) simultaneously. Re-
call that a0 = 0, b0 = 1, ψ0 = 0, c0 = 1, and γ0 = 0. On combining (2.3) with
Lemma 3.6, we have

P̂ηs+r < P̂δ−2(s+r)d+κ Js+r(P)� P̂δ−2(s+r)d+κM̂2sdK0,1(P) = P̂δ[[K0,1(P)]].

Thus, (5.2) is true for n = 0. We notice that (5.1) is also true for n = 0 as b0 = 1.
Suppose that (5.1) and (5.2) are true for n with 0 ≤ n < N. By Claim (b), we have
cn < (2s/r)n. On recalling that θ = N−1/2(r/s)N+2, we see from the hypothesis of
(5.1) that

φbnθ ≤ φ(s/r)−N−2+n < φ−1 ≤ 1/2,

which implies that bn ≤ (2φθ)−1. Thus, it follows from Lemma 5.1 and the hypoth-
esis of (5.2) that there exists h ∈ N with h < (φ− 1)bn such that

(5.3) P̂ηs+r(1+ψ ′θ) � P̂c ′δM̂−γ
′
[[Ka ′,b ′(P)]],
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where

ψ ′ = (s/r)ψn + (s/r − 1)bn, c ′ = (s/r)(cn + 1), γ ′ = (s/r)γn + (2s− r + 1)h,

a ′ = bn and b ′ = φbn + h.

Notice that ψ ′ = ψn+1, c ′ = cn+1, and a ′ = an+1. By taking hn = h, we also have
γ ′ = γn+1 and b ′ = bn+1. Thus, we see from (5.3) that (5.2) is true for n + 1. We
now consider (5.1) for n + 1, with hn = h chosen as above. Suppose that bn+1 ≥√

N(s/r)n+1. Since s/r ≥ φ, we see from Claim (c) that

γn+1 = (s/r)γn + (2s− r + 1)(bn+1 − φbn)

≥ (s/r)
(

(2s− r + 1)bn − (2s− r + 1)(s/r)n
)

+ (2s− r + 1)
(

bn+1 − (s/r)bn

)
≥ (2s− r + 1)

(
bn+1 − (s/r)n+1

)
≥ (2s− r + 1)(1− 1/

√
N)bn+1.

Since
bn+1 = φbn + h ≤ 2φbn − 1 ≤ θ−1 − 1,

it follows from Lemma 4.5 that

[[Kan+1,bn+1 (P)]]� P̂ηs+r+δ(M̂bn+1 )κ.

Thus, we see from (5.3) that

P̂ηs+r(1+ψn+1θ) � P̂ηs+r+(cn+1+1)δ
(

M̂bn+1
)κ−(2s−r+1)(1−1/

√
N)
.

Since κ ≤ rφ ≤ s and φ ≥ 2, we have

κ− (2s− r + 1)(1− 1/
√

N) ≤ s− (2s− r + 1) + (2s− r + 1)/
√

N

= −s + r − 1 + (2s− r + 1)/
√

N.

Thus, when N is sufficiently large, we obtain

κ− (2s− r + 1)(1− 1/
√

N) < −1.

By Claim (b), we see from (2.4) that δ is small enough such that (cn+1 + 1)δ < θ/2
and hence

P̂ηs+rψn+1θ � P̂−θbn+1/2.

Sinceψn+1 > 0, θ > 0 and bn+1 > 0, the above inequality implies that ηs+r = 0, which
leads to a contradiction. Thus, we conclude that bn+1 <

√
N(s/r)n+1 and hence (5.1)

is also true for n + 1. This completes the proof of Claim (d).
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Since θ = N−1/2(r/s)N+2 and r/s ≤ 1/φ ≤ 1/2, by Claim (d), we see that bNθ <
(r/s)2 < 1 − θ and hence bN ≤ θ−1 − 1. Since bN ≥ φN , it follows from Claim (c)
that γN ≥ 0. By Claim (d) and Lemma 4.5, for N is sufficiently large, we have

P̂ηs+r(1+ψNθ) � P̂ηs+r+(cN +1)δM̂bNκ � P̂ηs+r+rφ.

By Claim (a), we have

ηs+r ≤ rφ/(ψNθ) ≤ rφ/(N(φ− 1)φN−1θ).

In particular, on taking s = rφ, we see that θ = N−1/2φ−N−2 and hence

ηrφ+r ≤ rφN+3/(
√

N(φ− 1)φN−1) ≤ rφ4/
√

N.

Since we can take N as large as possible (in terms of s and r), we have ηrφ+r = 0.
We now consider general s ∈ N with s ≥ rφ. By the trivial bound | f (α; P)| ≤ P̂d,

we have

Js+r(P) ≤ P̂2(s−rφ)d

∫
TR

| f (α; P)|2(rφ+r)ddα = P̂2(s−rφ)d Jrφ+r(P),

which implies that ηs+r ≤ ηrφ+r for s ≥ rφ. Thus, ηs+r = 0 for s ≥ rφ. This completes
the proof of the theorem.

6 Proof of Theorem 1.3

Let k ∈ N with p - k, and let L and R ′0 be defined as in Section 1. We write ι = cardL

and µ = cardR ′0.

Lemma 6.1 For k ≥ 2, α = (αi)i∈R ′0 ∈ Kµ
∞ and P ∈ N \ {0}, define

F(α; P) =
∑
x∈Id

P

e
( ∑

i∈R ′0

αix
i
)
.

For Q ∈ N \ {0} with Q ≤ P, let a, g ∈ A with g monic, gcd(a, g) = 1 and 〈g〉 ≤ Q̂k.
For a fixed l ∈ L, suppose that 〈gαl − a〉 < Q̂−k and that either 〈gαl − a〉 ≥ Q̂P̂−k or
〈g〉 > Q̂. Then we have

∣∣F(α; P)
∣∣ � 〈g〉εP̂d+ε

(
Q̂−1

(
1 + 〈g〉(P̂/Q̂)−k

)) 1/(2µ(k+1))
.

Proof By Corollary 1.2 and [16, Lemma 9.1], the lemma follows by replacing M with
Q and taking s = µ(k + 1) and ∆s = ε.

For c = (c1, . . . , cs) ∈ (A \ {0})s, we recall that Ns,k,d,c(P) counts the number of
the solutions of the system

c1xl
1 + · · · + csx

l
s = 0, l ∈ L,
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with x j ∈ Id
P , 1 ≤ j ≤ s. For α = (αl)l∈L ∈ Kι

∞ and P ∈ N \ {0}, define

f j(α) = f j(α; P) =
∑
x∈Id

P

e
(∑

l∈L

c jαlx
l
)
, 1 ≤ j ≤ s.

By (2.1), we see that

Ns,k,d,c(P) =

∫
Tι

s∏
j=1

f j(α)dα.

We now apply the Hardy–Littlewood circle method to analyze the above integral. We
begin by dividing Tι into major and minor arcs as follows: given a = (al)l∈L ∈ Aι,
g ∈ A monic with gcd(al, g) = 1, l ∈ L, we define the Farey arc M(g, a) about a/g
by

M(g, a) =
{
α ∈ Tι

∣∣∣ 〈gαl − al〉 < P̂1/2P̂−k, l ∈ L
}
.

Write 〈c〉 = max
{
〈c j〉 | 1 ≤ j ≤ s

}
. The set of major arcs M is defined to be

the union of all M(g, a) with a = (al)l∈L ∈ Aι and g ∈ A monic, which satisfy
gcd(al, g) = 1 and 0 ≤ 〈al〉 < 〈g〉 ≤ 〈c〉P̂1/2, l ∈ L. Then we write m = Tι \M for
the complementary set of minor arcs. We now estimate the contribution over minor
arcs.

Lemma 6.2 Let k ≥ 2. For each j with 1 ≤ j ≤ s, we have

sup
α∈m

| f j(α)| � P̂d−1/(4ιµ(k+1))+ε.

Proof Let α ∈ m and Q = [P/(2ι)]. By [4, Lemma 3], for each l ∈ L, there exist
al ∈ A and gl ∈ A monic, which satisfy gcd(al, gl) = 1, 0 ≤ 〈al〉 < 〈gl〉 ≤ Q̂k and
〈glc jαl − al〉 < Q̂−k. Using the same argument as in [16, Lemma 10.1], there exists

l ∈ L such that 〈gl〉 > Q̂ or 〈glc jαl − al〉 ≥ Q̂P̂−k. By Lemma 6.1, we have

| f j(α)| � P̂d−1/(4ιµ(k+1))+ε.

This completes the proof of the lemma.

Let Im,k,d(P) denote the number of solutions of the system

xl
1 + · · · + xl

m = yl
1 + · · · + yl

m, l ∈ L,

with xn, yn ∈ Id
P , 1 ≤ n ≤ m. For h = (hi)i∈R ′0 ∈

∏
i∈R ′0

I|i|P, write Jm,k,d(P; h) for

the number of solutions of the system(
xi

1 + · · · + xi
m

)
−
(

yi
1 + · · · + yi

m

)
= hi, i ∈ R ′0,

with xn, yn ∈ Id
P , 1 ≤ n ≤ m. By [16, Lemma A.2], we have L ⊆ R ′0 and hence

Im,k,d(P) =
∑

h

Jm,k,d(P,h),
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where the summation is over h = (hi)i∈R ′0 ∈
∏

i∈R ′0
I|i|P with hi = 0 when i ∈ L.

Let K =
∑

i∈R ′0
|i|. It follows from Corollary 1.2 that for m ≥ µk + µ, we have

(6.1) Im,k,d(P) ≤ P̂K−ιkJm,k,d(P)� P̂K−ιkP̂2md−K+ε = P̂2md−ιk+ε,

where the implicit constants depend on m, d, k and q.

Lemma 6.3 Let k ≥ 2 and s ≥ 2µk + 2µ + 1. We have∫
m

s∏
j=1

∣∣ f j(α)
∣∣dα� P̂sd−ιk−1/(8ιµ(k+1)).

Proof Write m0 = µk + µ and s0 = 1 + 2m0. By Hölder’s inequality, we have∫
m

s0∏
j=1

∣∣ f j(α)
∣∣dα ≤ sup

α∈m

∣∣ f1(α)
∣∣ ∫

Tι

s0∏
j=2

∣∣ f j(α)
∣∣dα

≤ sup
α∈m

∣∣ f1(α)
∣∣ s0∏

j=2

( ∫
Tι

∣∣ f j(α)
∣∣ 2m0

dα
) 1/(2m0)

.

On considering the underlying Diophantine equations, by (6.1), we have∫
Tι

∣∣ f j(α)
∣∣ 2m0

dα = Im0,k,d(P)� P̂2m0d−ιk+ε, 2 ≤ j ≤ s0.

Thus, we see from Lemma 6.2 that∫
m

s0∏
j=1

∣∣ f j(α)
∣∣dα� P̂d−1/(4ιµ(k+1))+εP̂2m0d−ιk+ε � P̂s0d−ιk−1/(8ιµ(k+1)).

Then by using the trivial bound that
∣∣ f j(α)

∣∣ � P̂d, s0 + 1 ≤ j ≤ s , it follows that∫
m

s∏
j=1

∣∣ f j(α)
∣∣dα� P̂(s−s0)d

∫
m

s0∏
j=1

∣∣ f j(α)
∣∣dα� P̂sd−ιk−1/(8ιµ(k+1)).

This completes the proof of the lemma.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 When s ≥ 2µk + 2µ+ 1, it follows from Lemma 6.3 that there
exists η = η(d; k; q) > 0 such that∫

m

s∏
j=1

f j(α)dα = O
(

P̂sd−ιk−η) .
When s ≥ 2(ι+1)k +1 , by [16, Theorem 6.1], subject to a local solubility hypothesis,
we have ∫

M

s∏
j=1

f j(α)dα = C3P̂sd−ιk + O
(

P̂sd−ιk−η) ,
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where C3 = C3(s, d; k; q; c) > 0. Recall that

Ns,k,d,c(P) =

∫
Tι

s∏
j=1

f j(α)dα =

∫
M

s∏
j=1

f j(α)dα +

∫
m

s∏
j=1

f j(α)dα.

Since µ ≥ ι + 1, on combining the above estimates, the theorem follows.
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