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A COMPARISON OF CROSS-ENTROPY AND
VARIANCE MINIMIZATION STRATEGIES

BY JOSHUA C. C. CHAN, PETER W. GLYNN AND DIRK P. KROESE

Abstract

The variance minimization (VM) and cross-entropy (CE) methods are two versatile
adaptive importance sampling procedures that have been successfully applied to a wide
variety of difficult rare-event estimation problems. We compare these two methods via
various examples where the optimal VM and CE importance densities can be obtained
analytically. We find that in the cases studied both VM and CE methods prescribe the
same importance sampling parameters, suggesting that the criterion of minimizing the
CE distance is very close, if not asymptotically identical, to minimizing the variance of
the associated importance sampling estimator.

Keywords: Variance minimization; cross entropy; importance sampling; rare-event
simulation; likelihood ratio degeneracy
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1. Introduction

In this article we compare two adaptive importance sampling procedures, namely the variance
minimization (VM) and cross-entropy (CE) methods [11], [16, pp. 62–83], in the context of
rare-event simulation. Both algorithms aim to find an importance density that is optimal in
a well-defined sense, though the optimality criteria are different. Under the VM method, the
optimal importance density is the one whose associated estimator has minimum variance within
a given parametric family. Although this minimum variance criterion is obviously desirable,
in practice the minimization problem involves application of time consuming numerical tech-
niques. Instead of directly minimizing the variance of the estimator, the CE method seeks to
locate the importance density that is closest in Kullback–Leibler divergence or CE distance to
the zero-variance importance density: the conditional density given the rare event. The main
advantage of the CE method is that the optimization problem required to obtain the optimal
density often admits closed-form solutions.

To compare these two related but distinct algorithms, we consider various explicit examples
where the optimal VM and CE importance densities can be obtained analytically. In all the
examples considered, we find that the optimal VM and CE importance densities are asymp-
totically identical. Although whether this result holds in general or not is an open question, it
suggests that the VM and CE criteria are very similar, at least asymptotically. Put differently,
the importance density that is the closest—in CE distance—to the zero-variance importance
density is also the one whose associated estimator has the minimum asymptotic variance. The
significance of this observation is that since CE estimators are typically easier to obtain, this
practical adaptive importance sampling strategy is also optimal in the sense that it gives the
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minimum variance importance sampling estimator. Furthermore, in situations where the VM
or CE optimization problem does not admit closed-form solutions, the optimal parameters need
to be estimated via a multilevel procedure. We analyze how the variability in the estimates
affects the performance of the associated importance sampling estimator.

The rest of this article is organized as follows. In Section 2 we first introduce some
background material, and then discuss the classic VM and CE methods as well as two variants
proposed recently. We consider in Section 3 the sum of independent but not necessarily identical
random variables in the exponential families where the number of parameters is sent to infinity.
We show in this scenario that the optimal CE parameters coincide with those suggested by
large deviation theory. It is followed by three case studies: we consider the example of the
sum of exponential random variables in Section 4, and the cases for Pareto and Weibull random
variables in Sections 5 and 6, respectively.

2. Adaptive importance sampling via VM and CE methods

We first introduce some standard notation and efficiency measures in the context of rare-event
simulation. We write a(t) ∼ b(t) to indicate that limt→∞ a(t)/b(t) = 1, and Xi

i.i.d.= f, i =
1, . . . , n, to indicate that X1, . . . , Xn are independent and identically distributed (i.i.d.) ac-
cording to the density or distribution f . An unbiased estimator Z(γ ) for �(γ ) is said to be
logarithmically efficient, weakly efficient, or asymptotically optimal if

lim
γ→∞

log E Z(γ )2

log �(γ )
= 2.

This condition is equivalent to the requirement that limγ→∞ E Z(γ )2/�(γ )2−ε = 0 for
every ε > 0. The estimator is said to be strongly efficient or have bounded relative error
if supγ≥0 E Z(γ )2/�(γ )2 < ∞. It is readily observed that bounded relative error implies
asymptotic optimality. These notions of efficiency are standard in the literature; see, for
example, [1, pp. 158–163] and [13]. We are interested in estimating the probability of the
form

� = P(S(X) > γ ) =
∫

1(S(x) > γ )f (x) dx,

where S is some real-valued performance function, X is a vector of random variables with
probability density function (PDF) f , and γ is a sufficiently large constant such that � is small.
Consider estimating � via the importance sampling estimator

�̂IS = 1

N

N∑
i=1

1(S(Xi ) > γ )
f (Xi )

g(Xi )
,

where Xi
i.i.d.= g, i = 1, . . . , N, for some importance sampling PDF g for which g(x) = 0

implies that 1(S(x) > γ )f (x) = 0 for all x. Although the estimator �̂IS is consistent and
unbiased for any such g, its performance depends critically on the choice of g. Hence, we wish
to choose g so that the associated estimator is optimal in a well-defined sense. To this end,
consider a parametric family F = {f (x; v)} indexed by a parameter vector v that contains
the nominal (original) density f . Thus, we can write f (x) = f (x; u) for some parameter
vector u. For any given v, the general term of the associated importance sampling estimator
is Z(v) = W(X; u, v) 1(S(X) > γ ), where W(x; u, v) is the likelihood ratio defined as
W(x; u, v) = f (x; u)/f (x; v). Now, we wish to choose v so that the associated importance
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sampling estimator has minimum variance within the parametric family F . The minimizer vvm
is referred to as the optimal VM parameter vector. For any unbiased estimator �̂ of �, we have
var �̂ = E �̂2 − �2. Therefore, vvm can be written as

vvm = argmin
v

Ev Z(v)2 = argmin
v

Eu Z(v) = argmin
v

log Eu Z(v), (2.1)

where the expectation operators Eu and Ev are taken with respect to the densities f (·; u) and
f (·; v), respectively. A related approach to locating a good importance density involves the
Kullback–Leibler divergence, or CE distance. To motivate the method, first note that the zero-
variance importance density for estimating � is simply g∗(x) = �−1f (x; u) 1(S(x) > γ )—the
conditional density given the rare event. Obviously, g∗ cannot be used directly in practice
as it involves the unknown constant �. Nevertheless, this provides a practical criterion to
locate a good importance density. Specifically, if we choose the density within F that is the
closest to g∗ in the CE distance, then intuitively the associated estimator should have reasonable
performance. Let vce denote the minimizer, which we refer to as the optimal CE parameter
vector. It can be shown [16, pp. 67–68] that solving the CE minimization problem is equivalent
to finding

vce = argmax
v

∫
f (x; u) 1(S(x) > γ ) log f (x; v) dx. (2.2)

Although the optimal CE and VM parameter vectors can be obtained analytically for a few
specific cases, in general the optimization problems in (2.1) and (2.2) are difficult to solve.
Thus, in practice, we often need to estimate vvm or vce via a multilevel procedure, which we
shall call multilevel VM or CE (see [11] for a more thorough discussion).

Recent research has shown that in certain high-dimensional cases the estimates for vvm
and vce obtained from the multilevel procedures are not accurate, and, as a consequence, the
associated estimators perform poorly [8], [9], [14], [15]. A recent variant, called the screening
method, introduced in [15], aims to reduce the dimension of the likelihood ratio, and is shown to
perform better than the multilevel VM and CE methods in various high-dimensional estimation
problems. To motivate the method, partition the parameter vector u into two subsets: u =
(u0, u1), where the occurrence of the rare event {S(X) > γ } is substantially affected by u1 but
not by u0. The vector u1 is referred to as the bottleneck parameter. Now consider the parametric
family F0 = {f (x; ṽ)} indexed by ṽ, where ṽ = (u0, v1) and u0 is fixed—therefore, F0 is in
fact indexed by v1. The screening method proceeds in the same way as the multilevel CE and
VM methods, but instead of twisting the whole parameter vector u, we only twist the bottleneck
parameter u1.

Since F0 ⊂ F , the variance of the importance sampling estimator associated with vvm
is at least as small as the variance of the estimator associated with ṽvm simply by definition.
Paradoxically, however, the empirical findings in [15] suggest otherwise for the situation where
the parameters are estimated via a multilevel procedure. A possible explanation is that the
parameter vector obtained via the multilevel procedure, say, v̂vm,T , is not an accurate estimate
for vvm. By reducing the dimension of the likelihood ratio via the screening method, we can
estimate ṽvm—the optimal VM parameter vector within F0—more accurately. As a result, the
importance density f (x;̂̃vvm,T ), where ̂̃vvm,T denotes the parameter vector obtained via the
screening method, is ‘closer’ to g∗ compared to f (x; v̂vm,T ), and, thus, the estimator associated
with the former density has a smaller variance than that of the latter.

Another improved variant proposed by Chan and Kroese [8] aims to estimate vce in one step
so as to circumvent likelihood degeneracy of the estimation procedure. Specifically, instead of
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the multilevel procedure in the classic CE method, they proposed estimating vce by finding

v̂ce = argmax
v

M∑
j=1

log f (Xj ; v),

where X1, . . . ,XM are draws from g∗. They demonstrated that the improved CE method
does not only give substantial improvement over the traditional approach but also works well
in high-dimensional estimation problems. Generating draws from g∗, however, might not be
trivial in general, but with the advent of Markov chain Monte Carlo (MCMC) methods, this
problem is well studied and a variety of techniques are available. In Sections 4–6 we consider
various concrete examples where we can derive asymptotic expressions for vvm and vce, and we
show that they are identical asymptotically. We then compute the asymptotic variances of the
associated estimators and investigate how they are affected by the estimation errors introduced
in the multilevel VM and CE approaches.

3. Sum of independent nonidentical random variables in the exponential families

In this section we consider the rare-event regime where the number of random variables n

approaches infinity. To set the stage, suppose that X1, X2, . . . is a sequence of independent
but not necessarily identical random variables where each Xj belongs to a one-parameter
exponential family parameterized by the mean; that is, the density of each Xj is given by

fj (x; uj ) = exθ(uj )−ζ(θ(uj ))hj (x). (3.1)

Let µn = ∑n
i=1 E Xi and σ 2

n = ∑n
i=1 var Xi . We are interested in estimating the probabilities

�n = P(Sn > nb) as n → ∞,

where Sn = X1 + · · · + Xn and limn→∞(nb − µn)/σn = ∞. We will show that the optimal
CE parameters coincide with those suggested by large deviation theory. More specifically, the
CE method suggests twisting the means of the random variables such that their sum is equal to
the threshold nb.

Proposition 3.1. Let X1, X2, . . . be a sequence of independent random variables such that Xj

belongs to a one-parameter exponential family parameterized by the mean with PDF given in
(3.1). Consider estimating �n = P(Sn > nb) as n → ∞ via the CE method with importance
density of the form

∏n
i=1 fi(xi; vi). Suppose that limn→∞(nb − µn)/σn = ∞, where µn =∑n

i=1 E Xi and σ 2
n = ∑n

i=1 var Xi . Then the optimal CE parameters v∗
ce,1, v

∗
ce,2, . . . satisfy

n∑
i=1

v∗
ce,i ∼ nb as n → ∞.

Proof. First note that to estimate �n, the optimal CE parameters v∗
ce,i , i = 1, . . . , n, are

given in [17, p. 320]: v∗
ce,i = E[Xi | Sn > nb]. Therefore,

∑n
i=1 v∗

ce,i = E[Sn | Sn > nb]. By
the central limit theorem, (Sn − µn)/σn is asymptotically N(0, 1) distributed as n → ∞.
Therefore,

E[Sn | Sn > nb] ∼ µn + ϕ((nb − µn)/σn)

1 − �((nb − µn)/σn)
σn ∼ µn + nb − µn

σn

σn = nb

as n → ∞, where ϕ(·) and �(·) are respectively the PDF and cumulative distribution function
(CDF) of the standard normal distribution—hence, the desired result.

https://doi.org/10.1239/jap/1318940464 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940464


A comparison of CE and VM strategies 187

In what follows, we consider a different rare-event regime where we keep the number of
random variables n fixed and let γ go to infinity.

4. Sum of exponential random variables

Consider the estimation of � = P(X1 + · · · + Xn > γ ) via importance sampling, where

Xi
i.i.d.= Exp(1), i = 1 . . . , n; that is, Xi has PDF f (x) = e−x, x ≥ 0. Note that

� = e−γ
n−1∑
k=0

γ k

k! = 	(n, γ )

	(n)
, (4.1)

where 	(n) = (n − 1)! and 	(n, γ ) is the value of the (upper) incomplete gamma function

at (n, γ ). Suppose that we generate Xi
i.i.d.= Exp(v−1), i = 1, . . . , n, with PDF f (x; v−1) =

v−1 exp(−v−1x). It follows that the general term in the importance sampling estimator is

Z(v) = 1(X1 + · · · + Xn > γ )W(X; 1, v−1),

where the likelihood ratio is given by

W(x; 1, v−1) = vn exp

(
−

(
1 − 1

v

) n∑
i=1

xi

)
.

We first derive the asymptotic expressions for the optimal VM and CE parameters and show
that they are the same. We note that Rubinstein and Kroese [16, p. 69] proved the special case
for n = 1.

Proposition 4.1. Let Xi
i.i.d.= Exp(1), i = 1, . . . , n. To estimate � = P(X1+· · ·+Xn > γ ) via

importance sampling, suppose that we generate Xi identically from the Exp(v−1) distribution.
Then the optimal VM and CE parameters are asymptotically the same. In fact, we have vvm ∼
γ /n and vce ∼ γ /n.

Proof. To obtain the optimal VM parameter, we first derive an asymptotic expression for the
second moment of the importance sampling estimator Z(v):

E1/v Z(v)2 = E1 Z(v)

=
∫

∑
xi>γ

vn exp

(
−

(
1 − 1

v

) n∑
i=1

xi

) n∏
i=1

e−xi dx

= vn

(
2 − 1

v

)−n

P(Y1 + · · · + Yn > γ ).

Here Yi
i.i.d.= Exp(2 − 1/v), i = 1, . . . , n, for v > 1

2 . Therefore, we have

E1/v Z(v)2 ∼ e−2γ γ n−1

(n − 1)!
vneγ /v

2 − 1/v
as γ → ∞.

To obtain vvm, we differentiate log E1/v Z(v)2 with respect to v and solve the equation (with
the constraint that v > 1

2 ):

d

dv
log E1/v Z(v)2 ∼ n − γ

v
− 1

2v − 1
= 0.
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It follows that

vvm = γ + √
γ 2 − nγ + (n + 1)2/4

2n
+ n + 1

4n
+ O(γ −1) ∼ γ

n
.

To compute the optimal CE parameter, we first note that the exponential distribution is a member
of the exponential family. Therefore,

vce = E[X1 | X1 + · · · + Xn > γ ] = 1

n
E[Y | Y > γ ],

where Y
D= Gamma(n, 1). Direct computation shows (see also [16, p. 78]) that E[Y | Y >

γ ] = 	(n + 1, γ )/	(n, γ ). Since

	(n + 1, γ ) = n	(n, γ ) + γ ne−γ and 	(n, γ ) = γ n−1e−γ (1 + O(γ −1)),

we have

E[Y | Y > γ ] = n + γ ne−γ

	(n, γ )
= n + γ (1 + O(γ −1)).

It follows that vce = γ /n + 1 + O(γ −1) ∼ γ /n as γ → ∞.

Therefore, by Proposition 4.1, the optimal VM parameter is asymptotically identical to that
given by the CE program when γ → ∞. We show in the next proposition that either vvm or
vce in fact gives an asymptotically optimal importance sampling estimator for �. In addition,
by the definition of vvm, no other importance sampling estimators obtained by generating Xi

identically from Exp(v−1) can be strongly efficient. In what follows, we also investigate how
the estimation error in obtaining vce affects the relative error of the associated importance
sampling estimator.

Proposition 4.2. Under the same assumptions as in Proposition 4.1, if we set v = γ /n + h

for some constant h then

E1/v Z(v)2

�2 = en(n − 1)!
2nn

γ

(
1 + 2n − 1

2γ
+ n

4γ 2 (2n2h2 − 2nh + 3n − 2) + O(γ −3)

)
(4.2)

as γ → ∞. In particular, the optimal VM/CE parameter gives an asymptotically optimal
estimator.

Proof. Let v = γ /n + h. By a similar computation as in Proposition 4.1 we have

E1/v Z(v)2 = vn

(2 − 1/v)n

	(n, (2 − 1/v)γ )

	(n)

= vne−2γ eγ /v

(2 − 1/v)(n − 1)!γ
n−1

(
1 + n − 1

2 − 1/v
γ −1 + O(γ −2)

)
. (4.3)

Substituting v = γ /n+h and using the expression for � in (4.1) gives (4.2). The final statement
in the proposition follows by setting v = γ /n ∼ vvm.

It is worth noting that in (4.2) only the coefficient of the third order term 1/γ 3 involves h, and
that the magnitude of h does not affect the asymptotic efficiency of the importance sampling
estimator. However, when the dimension of the estimation problem n is large, h might have a
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substantial impact on the variance of the importance sampling estimator for any finite γ . This
explains why the multilevel CE estimator generally works well in problems with light-tailed
random variables, but sometimes breaks down when the dimension of the problem becomes
large; see, e.g. [8].

We now investigate what happens when the importance sampling parameter v is obtained
via a random procedure, such as in the multilevel VM or CE method. Let us denote the random
parameter thus obtained by V , which is independent of the {Zi} used in the importance sampling
estimator. In the CE procedure the reference parameter V is obtained as

V =
∑N

k=1 1(Sk > γ )Wk(w)Sk

n
∑N

k=1 1(Sk > γ )Wk(w)
, (4.4)

where Wk(w) = W(Xk; 1, 1/w) is the kth likelihood ratio corresponding to a reference param-

eter w obtained in the penultimate iteration, and Sk
i.i.d.= Gamma(n, 1/w), k = 1, . . . , N . The

parameter w is usually random as well—for example when obtained via a CE procedure.
Suppose, however, that w is some arbitrarily fixed reference parameter. The asymptotic
distribution of V as a function of w is given in the next proposition.

Proposition 4.3. Under the same assumptions as in Proposition 4.1, the CE reference param-
eter V given in (4.4) is asymptotically normal as N → ∞ with mean vce and variance σ 2

γ,w/N .
Furthermore, we have

σ 2
γ,w ∼

(
1 − 1

n

)2
wn(n − 1)!
(2 − 1/w)

γ −n+3eγ /w as γ → ∞.

In particular,

σ 2
γ,γ /n ∼ γ 3 (n − 1)! (1 − 1/n)2en

2nn
.

Proof. First note that V given in (4.4) is a ratio estimator. By the delta method [1, pp. 75–78],
the asymptotic distribution is normal with mean

µ = E1/w 1(S > γ )W(w)S

n E1/w 1(S > γ )W(w)
= E1 1(S > γ )S

n E1 1(S > γ )
= vce

and variance σ 2
γ,w/N , with

σ 2
γ,w = var(A) − 2µ cov(A, B) + µ2 var(B)

�2 ,

where A = 1(S > γ )W(w)S, B = 1(S > γ )W(w), and S is Gamma(n, 1/w) distributed.
The second moment of B is given in (4.3) with w substituted for v. The expectation of A is
simply E1/w A = E1 1(S > γ )S = � vce. The second moment of A is

E1/w A2 =
∫

1(s > γ )wne−(1−1/w)ss2 1

	(n)
sn−1e−s ds

= n(n + 1)

(2 − 1/w)n+2

	(n + 2, (2 − 1/w)γ )

	(n + 2)

∼ γ 2 Ew B2.
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Moreover, E1/w AB = E1 1(S > γ )W(w)S ∼ γ Ew B2. It follows, after some algebra, that,
for n > 1,

σ 2
γ,w ∼

(
1 − 1

n

)2
wn(n − 1)!
(2 − 1/w)

γ −n+3eγ /w.

This completes the proof.

Note that the asymptotic variance of the CE reference parameter V is cubic in γ when we
set w = γ /n ∼ vvm. Therefore, even though vce gives an asymptotically optimal estimator,
when γ is sufficiently large, the estimation error in obtaining vce in the multilevel CE procedure
might be so substantial that it renders the resulting importance sampling estimator unreliable.

5. Sum of Pareto random variables

We now consider estimating the tail probability of the sum of heavy-tailed random variables.
Specifically, we wish to estimate � = P(X1 + · · · + Xn > γ ) via importance sampling, where

Xi
i.i.d.= Pareto(1, 1), i = 1, . . . , n. Since the Pareto distribution is subexponential [1, pp. 173–

183], we have � ∼ n/(1 + γ ) as γ → ∞. To estimate � via importance sampling, we consider
the Pareto(α, 1) family indexed by α > 0 with PDF f (x; α) = α(1 + x)−(α+1), x ≥ 0.

Now suppose that we generate Xi
i.i.d.= Pareto(α, 1), i = 1, . . . , n. The general term of the

likelihood ratio is

W(x; 1, α) =
n∏

i=1

(1 + xi)
−2

α(1 + xi)−(α+1)
= α−n

n∏
i=1

(1 + xi)
−(1−α),

and the corresponding importance sampling estimator is

Z(α) = 1(X1 + · · · + Xn > γ )W(X; 1, α).

In the following proposition we show that the optimal VM and CE parameters are identical. In
fact, we show that αvm ∼ n/ log(1 + γ ), which gives the minimum variance estimator within
the class of importance sampling estimators obtained by generating Xi

i.i.d.= Pareto(α, 1) for
i = 1, . . . , n. Compare this with the suggestions in [3] and [10].

Proposition 5.1. Let Xi
i.i.d.= Pareto(1, 1), i = 1, . . . , n. Suppose that we wish to estimate

� = P(X1 + · · · + Xn > γ ) via importance sampling by generating Xi
i.i.d.= Pareto(α, 1).

Then the optimal VM and CE parameters for α are asymptotically the same. In fact, we have
αvm ∼ n/ log(1 + γ ).

Proof. Note that the optimal CE parameter for α is given in [4]: αce = (1 + log(1 +
γ )/n)−1 ∼ n/ log(1 + γ ). To compute the optimal VM parameter, we first derive the second
moment of Z(α) with respect to the Pareto(α, 1) distribution:

Eα Z(α)2 = E1 Z(α)

=
∫

∑
xi>γ

α−n
n∏

i=1

(1 + xi)
−(1−α)(1 + xi)

−2 dx

= (2α − α2)−n P(Y1 + · · · + Yn > γ ).

Here Yi
i.i.d.= Pareto(2 − α, 1), i = 1, . . . , n, provided that α < 2. Hence,

Eα Z(α)2 ∼ (2α − α2)−nn(1 + γ )−(2−α). (5.1)
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By a computation similar to that in Proposition 4.1 we have

αvm = (2/n) log(1 + γ ) + 2 −
√

(4/n2) log2(1 + γ ) + 4

(2/n) log(1 + γ )
+ O(log−2(1 + γ ))

∼ n

log(1 + γ )
.

Again, the optimal VM parameter is asymptotically identical to that given by the CE program
as γ → ∞.

We next investigate how the choice of the parameter α affects the growth rate of Eα Z(α)2/�2.
As a corollary to Proposition 5.1, we show that α = αce ∼ n/ log(1 + γ ) gives an importance
sampling estimator that is asymptotically optimal. We note that Asmussen and Kroese [2]
provided a conditional Monte Carlo estimator that has bounded relative error for the case of
the sum of Pareto random variables. In addition, by utilizing a technique based on Lyapunov-
type inequalities first introduced in [5], Blanchet and Li [6] were able to derive an importance
sampling estimator that achieves bounded relative error for general subexponential distributions.

Proposition 5.2. Under the same assumptions as in Proposition 5.1, if we set α = n/ log(1 +
γ ) + h for some constant h such that 0 < α < 2, then

Eα Z(α)2

�2 ∼ en

n
γ h

(
h(2 − h) + 2n

log(1 + γ )
− n2

log2(1 + γ )

)−n

as γ → ∞. (5.2)

In particular, the optimal VM/CE parameter gives an asymptotically optimal estimator.

Proof. By (5.1) and the fact that � ∼ n/(1 + γ ), we have

Eα Z(α)2

�2 ∼ 1

n(2α − α2)n
(1 + γ )α.

Hence, if we set α = n/ log(1 + γ ) + h then (5.2) follows. As a result, for α = αce ∼
n/ log(1 + γ ), we have

Eα Z(α)2

�2 ∼ en

n

(
2n

log(1 + γ )
− n2

log2(1 + γ )

)−n

as γ → ∞.

This completes the proof.

It is of interest to note that in contrast to the light-tailed case, the estimation error h does
increase the asymptotic variance of the importance sampling estimator. Therefore, the problem
of suboptimalVM and CE reference parameters is expected to be more severe in the heavy-tailed
case.

6. Sum of Weibull random variables

Consider the same estimation problem as in the last section, but now Xi
i.i.d.= Weib(β, 1), i =

1, . . . , n, for 0 < β < 1; that is, Xi has PDF f (x; β) = βxβ−1e−xβ
. We wish to estimate

the tail probability � via importance sampling by tilting the scale parameter. That is, we
locate the importance density within the parametric family Weib(β, θ) with PDF f (x; β, θ) =
θβxβ−1e−θxβ

, x ≥ 0, indexed by θ > 0 while keeping β fixed. It follows that the general term
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of the importance sampling estimator is

Z(θ) = 1(X1 + · · · + Xn > γ )W(X; 1, θ),

with likelihood ratio

W(x; 1, θ) = θ−n exp

(
−(1 − θ)

n∑
i=1

x
β
i

)
.

Again, for this sum of Weibull random variables case, the optimal VM and CE parameters
coincide asymptotically. Kroese and Rubinstein [12] proved that, for the n = 2 case, the
optimal VM parameter is asymptotically θvm ∼ 2/γ β . They conjectured that, for general n,
θvm ∼ n/γ β , and the squared relative error of the resulting estimator increases proportionally
to γ nβ . The following propositions prove these two conjectures.

Proposition 6.1. Let Xi
i.i.d.= Weib(β, 1), i = 1, . . . , n, with 0 < β < 1. Suppose that

we wish to estimate � = P(X1 + · · · + Xn > γ ) via importance sampling by generating
Xi

i.i.d.= Weib(β, θ). Then the optimalVM and CE parameters for θ are asymptotically identical.
In fact, we have θvm ∼ n/γ β.

Proof. First note that the optimal CE parameter for θ is given in [4] and [16]: θce =
n/(n + γ β) ∼ n/γ β. Next we compute the optimal VM parameter as follows:

Eθ Z(θ)2 = E1 Z(θ)

=
∫

∑
xi>γ

θ−n exp

(
−(1 − θ)

n∑
i=1

x
β
i

) n∏
i=1

βx
β−1
i e−x

β
i dx

= θ−n(2 − θ)−n P(Y1 + · · · + Yn > γ ).

Here Yi
i.i.d.= Weib(β, 2 − θ), provided that θ < 2. Since the Weib(β, θ) distribution is

subexponential for β < 1, we have

Eθ Z(θ)2 ∼ n

θn(2 − θ)n
P(Y1 > γ ) = n

θn(2 − θ)n
e−(2−θ)γ β

as γ → ∞. (6.1)

By a similar computation as in Proposition 4.1, it can be shown that

θvm = n

γ β
+ 1 −

√
1 + n2

γ 2β
+ O(γ −(β+1)) ∼ n

γ β
as γ → ∞.

Therefore, the optimal CE and VM parameters for θ are identical asymptotically.

The choice of θvm is to be compared with the suggestion in [10] to take θ = b/γ β , where
b > 0 is some arbitrary constant. Since the Weib(β, 1) distribution is subexponential for β < 1,
it follows that � ∼ ne−γ β

. Therefore, using the expression in (6.1), it can be shown that if we
choose θ such that θγ β = c for some constant c, the associated importance sampling estimator
is asymptotically optimal. In particular, the choice θ = θce ∼ θvm gives an asymptotically
optimal importance sampling estimator, which also has the minimum asymptotic variance
within the class of importance sampling estimators with importance densities under which
Xi

i.i.d.= Weib(β, θ), i = 1, . . . , n.
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Proposition 6.2. Under the same assumptions as in Proposition 6.1, if we set θ = n/γ β then

Eθ Z(θ)2

�2 ∼ en

2nnn+1 γ nβ,

i.e. the optimal VM/CE parameter gives an asymptotically optimal estimator.

Proof. Since the Weib(β, 1) distribution is subexponential for β < 1, we have � ∼ ne−βγ .
It follows from (6.1) that

Eθ Z(θ)2

�2 ∼ n−1θ−n(2 − θ)−neθγ β

as γ → ∞.

The desired result follows by letting θ = n/γ β .

7. Concluding remarks and future research

We compared the VM and CE methods through various concrete examples and we found
that in the three examples considered the optimal VM and CE parameters are asymptotically
identical. It would be of considerable interest to determine under what conditions this is the
case. Since CE estimators are typically easy to obtain, this would provide a practical approach to
locate the importance sampling estimator with the minimum variance within a given parametric
class. Moreover, it is worthwhile to study further the impact of CE parameter estimation on the
quality of the associated importance sampling estimator.
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