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Abstract

Many tens of serious incidents involving reactors occur in the developed countries each
year. The disaster at the chemical plant in Bhopal, India in 1984 was particularly notable
where a thermal runaway process led to more than 3000 tragic fatalities from the cloud
of extremely toxic methyl isocyanate that boiled out of a storage tank. This signalled
the design of special types of chemical reactors to reduce the risk of thermal runaway by
planning (at the design stage) integral safety and thermal stabilization mechanisms. The
Endex CSTR (continuously stirred tank reactor) proposed by Gray and Ball [3] involves a
reactor in two parts with heat exchange allowed between them. The two parts of the reactor
operate side by side in tandem, such that the thermal runaway of one part is offset by an
endothermic reaction in the other reactor—hence the term 'endex'.
It is found that the adiabatic endex system has a large region of parameter space where the
operation can be made safe. However adiabatic conditions rely on the continuous supply
of reactants to the endothermic side of the reactor, for operation of the system. The risks
involved are such that it is always safer to operate batch reactors in a non-adiabatic mode.
Thus we consider the limiting case of the approach to adiabatic conditions where although
the mathematics produces no oscillatory causes for instability, yet there is a narrow but
significant area where the stable solution branch is lost and consequently a persistent and
unexpected region of instability in what otherwise appears to be a simple CSTR system.

1. Introduction

This work considers a special type of chemical reactor developed to reduce the risk
of thermal runaway by planning at the design stage, integral safety and thermal
stabilization mechanisms. Such an approach has been called for in the aftermath of
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the disaster that occurred in Bhopal, India in 1984 with many tens of serious incidents
occurring in developed countries each year [2]. The Endex CSTR (continuously
stirred tank reactor) developed by Gray and Ball [3] involves a reactor in two parts
with heat exchange allowed between them (see Figure 1 and Ball [1, p. 66]). An
exothermic reactor is placed on one side of the system, with an endothermic reactor
next to it and with further heat transfer to a controlled ambient temperature. Thus the
thermal rise of the exothermic side is counteracted by the endothermic reaction on
the other side of the reactor - consequently the name 'endex' is used for this system.
Some of the stability studies have been done by Gray and Ball in their earlier work
[3] and in particular they have shown that the adiabatic endex system can generally be
made safe [1, p. 80]. However adiabatic conditions are difficult to obtain in practice
and furthermore there is reliance on the continued efficiency of the endothermic part
of the reactor. In that sense it is not a fail-safe mode of operation. More common
practice is to operate batch reactors in non-adiabatic conditions, and the purpose of
this paper is to consider the stability of a somewhat simplified system (with reactant
depletion ignored) near adiabatic conditions. In particular we consider the limiting
case of the approach to adiabatic conditions where although the mathematics produces
no oscillatory causes for instability, yet there is a narrow but significant area where
the stable solution branch is lost and consequently a persistent and unexpected region
of instability in what otherwise appears to be a simple CSTR system.

2. Mathematical model

Ignoring reactant depletion, the equations for the simple two-dimensional system
in dimensional terms are:

Exothermic VlCl—± = Vl(-AHl)XlAle-E>/RT> - LM - T2), (1)
reaction dt

Endothermic V2c2^ = - V2AH2X2A2e-E2/RTl - Lex(T, - T2)
reaction "*'

+ Ld(Ta-T2), (2)

where c\ and c2 are the volumetric heat capacities (Jm~3K~') of the two regions
with temperatures T\ and T2(K), A Hi (negative—exothermic) and AH2 (positive—
endothermic) are the corresponding reaction enthalpies (Jmol~'). Here VI, V2 are the
volumes (m3) of the two regions and Eu E2 and A\, A2 are the activation energies
(Jmol"1) and reactivities (s"1) respectively of the two reactions with R the Universal
Gas constant (8.314 Jmor 'K"1) . Also Xt and X2 are the concentrations (mol.m3) of
the reactants (assumed not to be depleting significantly) in the two regions, and Ta is
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FIGURE 1. Schematic of an Endex batch reactor.

the ambient temperature (K) outside the second endothermic part of the reactor. The
exchange heat transfer coefficient between the two parts of the reactor (Lex) and that
between the reactor and the outside (Ld) are in units of Js~'K~'. Both of these will in
fact depend on the relevant exchange surface area at the interchange.

The non-dimensional equivalent of (1) and (2) is

dux

~dt

~~dl

where

a =

c =

, b =

A ^

b(Ul - u2) + c(ua - u2),

c,

c,

(3)

(4)

(5,6)

= ^- (7,8,9)

and the characteristic time scale (ciEi/R)/((—AHl)X]Ai) is used, so that / =
/'((-A//i)Ari/4i)/(c, E\/R). The system becomes effectively the twin system of Gray
and Jones [4], but in this paper we have deliberately avoided the Frank-Kamenetskii
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e-E,/RT % e-£./K7ie0assumpt ion(where0 __ E\{T-Ta)/{RT*), and £, is considered
large) used in the earlier work, in order to explicitly expose the ambient temperature
as a parameter. In this work we specifically use what are now referred to classically as
the 'Gray-Wake' variables where temperature T is non-dimensionalised with respect
to the activation temperature Ex/R rather than the ambient temperature Ta. Thus ua

is now the non-dimensional representation of ambient temperature. The further ad-
vantage of this approach is that there is no loss of information by the exponential
assumption. This becomes particularly important when dealing with hysteresis be-
haviour which in the full system dealt with in this paper, is salient to a very direct
formulation of a crucial tongue of instability which appears near adiabatic conditions.

3. Steady states

Clearly the steady states of this system are given by the equation set

e'1'"" - a(uu - u2s) = 0, (10)

—Xe'^1"1' + b(uu — u2s) + c(ua - u2s) — 0. (11)

The steady state is strictly written here with the subscript 's ' . Since virtually all the
following analysis is for the steady state, we cease to explicitly use this subscript for
ease of notation, from here on. The Jacobian J at the steady state (u\, u2) is given by

— a

J =

\
with the Tr(7) and Det(7) governing stability given by

Det(7) = -rs - ab, Tr(J) = r - s\ (13,14)

where r s — a, s = Xfx—z \- b + c. (15,16)

There could only be oscillatory behaviour in this system if Tr(7) — 0 with Det(7) > 0,
which would imply

r = s with -r2-ab>0 (17)

which is impossible if we have the real situation of energy loss from the exothermic
side. Thus there are in fact no Hopf bifurcations in this model. Nevertheless there are
some intriguing stability conditions which come out of the hysteresis point analysis.

It is helpful to build up to the details of the full model by going stage by stage,
so rather than finding the stability of the full problem immediately, we consider two
special cases first.
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4. Adiabatic case c = 0

For the adiabatic case the steady states simplify to

u2 = u, - (l/a)e-l/u< with u2 = M«I / (1 + du,), (18,19)

where

d = ln(ak/b) (20)

is a natural grouped heat transfer parameter linked weakly to the heat exchange
coefficients a and b, but much more strongly to the enthalpy ratio X of the two
reactions.

The steady states of this simpler system are then given by

For a = b (which from definitions (5) and (6) represents equal heat capacities between
the two parts of the reactor), we simply have

d = \n\. (22)

The steady states for the adiabatic case are illustrated in Figure 2 for the case of the
ratio of activation energies fx = 0.5 and a heat transfer coefficient a = 0.5.

Figure 2 serves to demonstrate a typical solution curve for steady states in U\ — d
space and shows that generally the middle branch is physically relevant, since this
acts a watershed for thermal runaway, indicated on the smaller schematics. Thus for
practical temperature ranges, one has three solutions or none, similar to the usual
u — ua plots of classic ignition theory but with the difference that for any d, the lower
stable solution is always at w, = 0 . The middle unstable solution is here disconnected
from the lower solution u{ = u2 — 0 (effectively one can regard it as connected with
the lower solution at d = —oo).

As can be seen in Figure 2, d = d\ is a high temperature fold point, so that strictly
between d = d\ and d = 0, there is in fact a fourth unstable solution at a very high
temperature, but this small region at such high temperatures is not of great physical
interest here.

Fora > l/e there are three ranges for d. Range (a): Ford < d\, the endothermicity
is very weak. The initial temperature must be very low in order to avoid the unbounded
thermal runaway above the watershed steady state curve indicated on the left of
Figure 2. Range (b): For d\ < d < d2, there are three steady-state solutions.
These are the safe state u\ = u2 = 0, the middle unstable saddle solution, and a
high temperature stable solution. The middle unstable solution plotted in Figure 2 is
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FIGURE 2. Steady states of the adiabatic system.
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FIGURE 3. Variation with a of steady states of the adiabatic endex reactor system.
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d = ]n(aA/b)

a

FIGURE 4. Locus of fold points as a function of d and a for a given ratio of activation energies n.

Temp ux //=0.5

10

d = \n(aA/b)

FIGURE 5. Variation with a of steady states of the adiabatic endex reactor system. The heat transfer
parameter a is lower than the hysteresis value l/e. Hence one solution only.
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again the important watershed curve which marks out the region below which initial
conditions are safe—the endothermicity drives the system to the u\ — u2 = 0 safe
state. However above this watershed curve, initial conditions are unsafe, since the
system will be driven to the dangerous high temperature state. Range (c): For d > d2,
there is only the lowest steady state ux = u2 = 0 possible. For any initial conditions,
the endothermicity is sufficiently high such that the system will always self-cool. In
this region the system is always safe. For a greater than a critical hysteresis value
( « 0.88 see Figure 3), then the heat transfer is sufficiently large to lose the fold points
all together and beyond the asymptote (at d just less than zero), again we have a
self-cooling region.

Figure 3 shows the effect of varying the heat transfer coefficient a, with plots of
the steady states in ux — d space for /x = 0.5.

It can be seen that there is a critical value of a for the adiabatic system

<u,b = e-' = 0.3679.. . , (23)

which signals a change in behaviour of the system, such that if a is larger than this
value, there is a single d value beyond which there is no steady state.

For a < l/e (that is, low enough heat transfer), the watershed curve now extends
through the whole range of d (even to the strongly endothermic region d ^> 0), so
that one always has the possibility of thermal runaway to an upper very hot stable
state, if the initial conditions are hot enough (if not, then the alternative is cooling
to the Mi = «2 = 0 steady state). This is effectively the lagging effect referred to
in the earlier paper of Gray and Jones [4], where the large heat capacity of the outer
system acts like a cocoon and there is only weak removal of heat from the exothermic
side of the reactor. Consequently de-stabilization occurs if the starting conditions are
sufficiently hot, whatever the value of d. For a given a < \/e, there is, for that steady
state curve, a corresponding limiting u i |im shown dotted on the right of Figure 3 given
by the solution to

(24)

The locus of the corresponding fold points is indicated in Figure 4 as a function
of d and a and for a given ratio of activation energies /x. Thus one of the curves in
Figure 3 corresponds to a slice vertically through Figure 4.

This shows that as a is increased, then there is a hysteresis point beyond which the
multiplicity of steady states is removed. At the other extreme, as a is decreased below
l/e, then (as discussed earlier) the watershed curve extends through all values of d
(see Figure 5).
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FIGURE 6. The Semenov limit c —> oo (a) typical u\ — ua 5-shaped bifurcation curve and (b) the location
of the saddle node (fold) points in M|cril — a space.

5. The Semenov limit c -*• oo

Before finally coming to the non-adiabatic case, there is one other limit which it
is instructive to illustrate - that is the Semenov limit. This is when the heat transfer
is excellent at the outer part of the reactor. Consequently for the limit c —> oo, from
(10) and (11) we obtain

u2 = ua, (25)

(26)

This system has the usual 5-shaped bifurcation curve shown in Figure 6 (a) with the
lower saddle node (fold) loci A and B tracing the curves shown in Figure 6 (b) in
"acnt - a space and given by the solution to

au2,.. = e-l/-'

that is,

_ i — y i — 4t<acri,_ _
u\c — Z . u\c —

(27)

(28)

(29a, b)

At the hysteresis point (the cusp in Figure 6 (b)), then we have

=4/<? 2 , Mahyst = 1/4. (30,31)
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6. Non-adiabatic conditions c jt 0: Steady states

[10]

For non-adiabatic conditions the steady state equations (10), (11) imply a rather
different single equation in «,:

«-'/•• be'1'1" A.

a ac

and the equation for «2 follows on as a separate equation:

( 3 2 )

(33)

The form of the main steady state equation (32) is very different to the corresponding
adiabatic version (21) obtained for the adiabatic case. Nevertheless the asymptote for
the adiabatic case (24) is clearly still an important asymptote for the non-adiabatic
case and is repeated here:

(34)

This transcendental relationship is plotted in Figure 7 which shows that there is still a
critical value of a, a* = e~l = 0.3679..., where the steady state behaviour will alter
as in the adiabatic case. For a = 0.3, u\ iim % 0.3.

3 T "llim

2.5'

a*=\le
a

0.6 0.8

FIGURE 7. Asymptote for steady states of non-adiabatic case.

We now can plot the steady state curves for the full non-adiabatic case with some
insight from these adiabatic and Semenov limits. First we plot a typical set of steady
state curves for the case a > l/e. These are shown in Figure 8 with c at small values
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FIGURE 8. Typical steady state curves for near-adiabatic conditions with a > \/e.
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FIGURE 9. Typical steady state curves for near-adiabatic conditions with a < 1 /e. Approach to Semenov
limit with «i from above.
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Reactor temp u\

a<\le

— = 0.027181 ...hence d = lnl — I = -3.6052

[12]

0.05 0.1 0.15 0.2 0.25 0.3

Ambient temp ua

FIGURE 10. Typical steady state curves for near-adiabatic conditions with a < l/e. Approach to Semenov
limit with u\ from below.

to simulate near-adiabatic conditions. When a < l/e, the plots change their character
as is illustrated in Figure 9.

Both these curves illustrate the essential need to let ua be a free parameter to really
understand the subtle behaviour that now becomes apparent near adiabatic conditions.
The previous work of Gray and Jones [4] was in terms of non-dimensional variables
where ambient temperature was tied up in the definition of reactor temperature, so
that it could not readily lend itself to a display of the stability criteria for this system.

In Figure 9, as c —*• oo the Semenov limiting ua crit (in that case 0.190) is approached
with ui coming to 0.155 from above. When this approach is from below, then for low
values of c (at the other end of the spectrum) there is a small but significant instability
near adiabatic conditions. Figure 10 illustrates the steady state curves for a < l/e but
with X changed such that the approach to the Semenov limit is from ut beneath the
limiting value, 0.155.

7. Non-adiabatic conditions c ^ 0: Stability

In order to understand the stability of the non-adiabatic system for weak heat losses,
we need to track the saddle-node locus because this indicates the region where there
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are no solutions for a given ua greater than the Macril corresponding to the fold point.
Mathematically, the saddle-node locus is given by where the steady state relationship
(25) and its derivative are both zero. Thus we require that ua = 0 and dua/du\ — 0
together, that is,

ua U ] + exp I
a ac c \u\ - (\/a)e-{/Ui

and

I
\u\ -

+ - exp I ———— (35)
c \u (\/a)e-{/Ui J

1 -
au2 acu2

At the critical condition, it can be shown that ulc and Macrit obey

au\c \«i -(l/a)e-l""Jl («lc - (l/a)e-'/-O2 J

"acrit = uic + - exp ———-— 1 . (38)
a ac c \ulc — (l/a)e-[/u>' J

The plot of this locus is shown for 2 cases (Figures 11 and 12) whereas in the
corresponding steady state curves (Figures 9 and 10) the Semenov limit c —> oo,
«acri( -*• 0.190 approaches from above and from below respectively. What the curves
serve to demonstrate is that there is a critical value of d = \n(aX/b) which we shall
term dcrit, which is associated with the change in the stability implications of the
fold bifurcation curve. For d greater than this dcrit value, there is a behaviour akin
to Figure 11 for the fold bifurcation curve, such that as one approaches adiabatic
conditions (c = 0) the stability improves, in that the range of wacrit where there is a
stable region increases. However the converse is true when d is smaller than this da\x

value, which is shown in Figure 12.
For d smaller than dctit, as one approaches adiabatic conditions (c = 0) the stability

deteriorates, in that the range of uacri[ where there is a stable region decreases. There
is a tongue of instability for very low c values as one comes in to the adiabatic limit,
meaning that there is considerable danger operating in this region, since this gives a
region of instability for lower (and more accessible) temperatures.

Consequently it becomes all important to ascertain what the dcril value is in terms
of the other parameters in the problem. This we address in the next section.
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/ /=0.5

UacnX
0.4 T

0.3

a=0.3

0.1-

— = 2.7181...hence d = In — = 1
aX

Q 2 Limited stability

Semenov limit, c -» a>, uxril-* 0.190
Fold point approaching limit from above.

0.1 0.2 0.3 0.4

[14]

FIGURE 11. Typical saddle-node (fold) locus for non-adiabatic conditions with a < \/e. Approach to
Semenov limit with u\ from above.

8. When does the tongue of instability appear near adiabatic conditions?

In order to address this question we must ask 'when does aacri, approach MaCritl(c=oo)
from below?' And to answer this we have to return to the Semenov section (Section 5)
where we know from (28) that as c —> oo we can state approximately

u]c « (\/a)e 1/a", (39)

so that following from equation (38) for Macrit, it now follows that for c -^ oo we can
approximately write

Macrit « MacritUoo W {/"" - ^ - exp ( y ) 1 ,
aC [ b VMacritlc=oo/ J

where

"acritlc=co u]e =

(40)

(41)

is the solution for the Semenov limit (see (27, 28) of Section 5).
Thus for MaCrit to approach Macri,|(c=oo) from below (which leads to greater danger),

it is necessary to have the second (bracketed term} in (40) greater than zero. Thus we
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FIGURE 12. Typical saddle-node (fold) locus for non-adiabatic conditions with a < l/e. Approach to
Semenov limit with U[ from below.

require

with

d = \n(ak/b)

Combining (43b) and (42) gives

*a cnt I c=oo

ak/b = ed.

exp ( — ) > exp (d • ) ,

that is,

d <

(42)

(43a, b)

(44)

(45)

Thus the critical value of d, dcril below which the instability becomes apparent, is
given by

1
(46)

-«0Cntlc=oo
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9. Conclusions

It is known that adiabatic Endex reactors have large regions of parameter space
where safe operation can be obtained [1]. Near adiabatic Endex reactors (which will
in practice be the usual mode of operation) have a region of parameter space where
a tongue of instability occurs. To avoid this instability, the grouped parameter d
(essentially the enthalpy ratio of the endothermic reaction to the exothermic) should
be greater than a critical value dcrit.

This value of rfcri, has been found by recasting the problem first studied by Gray and
Jones [4] in variables independent of the ambient temperature and without making the
exponential assumption. A clear analytical result then pertains which connects dcrit to
the ratio /A of activation energies and the heat transfer between the two parts of the
reactor a.

When d becomes less than this critical value then the region of safe ua operation
becomes less, and it is well before one reaches adiabatic conditions that the increased
danger appears. The critical d is given by

"cm —

uacTil

where MaCnilc=oo = utc — u\c and uic satisfies u]c = (l/a)e~l/u".
A practical example would be for /x = 0.5, a = 0.3, waCritlc=oo = 0.185 and ua

0.245. Thusdcn, = 0.5/0.185-1/0.245 = -1.379. For equivalent heat capacities on
the two sides of the reactor (a = b) then Acril = exp(c/cril) = exp(—1.379) = 0.2518.
Thus for X below this value there would be danger. The ratio of endothermic heat of
reaction to that for the exothermic heat of reaction must be kept above this value.

It is evident that the behaviour of this tongue of instability will have a crucial effect
on the operation of an endex reactor as adiabatic conditions are approached, that is,
when c -*• 0.
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