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A Bernstein–Walsh Type Inequality
and Applications

Tejinder Neelon

Abstract. A Bernstein–Walsh type inequality for C∞ functions of several variables is derived, which

then is applied to obtain analogs and generalizations of the following classical theorems: (1) Bochnak–

Siciak theorem: a C∞ function on R
n that is real analytic on every line is real analytic; (2) Zorn–Lelong

theorem: if a double power series F(x, y) converges on a set of lines of positive capacity then F(x, y) is

convergent; (3) Abhyankar–Moh–Sathaye theorem: the transfinite diameter of the convergence set of

a divergent series is zero.

1 Introduction

Let F(x, y) be a double power series with complex coefficients. Suppose that every
substitution x = p(t) and y = q(t), where p and q are convergent power series in
t , transforms F into a convergent series in t. S. Bochner (circa 1945) asked whether

the double series F is necessarily convergent. M. A. Zorn (1947) showed that the
answer is affirmative by considering only the set of the linear substitutions, i.e., if
F(ξt, ηt) is convergent for every (ξ, η) ∈ C

2 then F is convergent. Later, R. Ree
extended the result by further reducing the substitution set S = C

2 to the set of real

linear substitutions, i.e., S = R
2. A natural question then is, how small can the

substitution set S in Zorn’s theorem be? The complete answer was given by P. Lelong
[7]. Since F(ξt, ηt) and F(ξ, η) are simultaneously convergent or divergent for t 6= 0
and F(0, 0) is a constant, by excluding (0, 0) from consideration, the substitution set

S can be considered as a subset of the complex projective space P
1. Then S can then

be identified, modulo the point (1, 0), with the subset S ′
= {ξ/η : (ξ, η) ∈ S} ⊂

C. Lelong’s result says that Zorn’s theorem holds if and only if S ′ is not contained
in an Fσ set of logarithmic capacity zero. This result was later rediscovered by A.

Sathaye[13] (see also [1, 8]).

It is easy construct a function f ∈ C r (R
n) , 0 ≤ r < ∞, whose restriction to

each line segment in R
n is analytic. A function which is analytic on every analytic arc

need not be even continuous (see [2]). However, the analog of Zorn’s theorem for
the analyticity of C∞ functions was obtained independently by J. Bochnak [3] and J.
Siciak [14] (see Corollary 7).

Evidently, Lelong’s result is not well known. It is not referenced in any of the

papers [1, 3, 13, 14]. During the write-up of the present work, the author’s attention
was brought to Lelong’s paper by Robert Molzon.
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In this note we study the phenomenon described by the results mentioned above
in function classes and power series rings other than the analytic class and the ring of

convergent series.
We will use the following multi-index notations.

Z
n
+ := {α = (α1, α2, . . . , αn) : 0 ≤ αi ∈ Z, ∀i}.

For x =
(

x1,x2, . . . , xn

)

, and α ∈ Z,n+, put xα := xα1

1 xα2

2 · · · xαn
n and |α| := α1 + α2 +

· · · + αn.
For a function f : R

n → R and a set F, put ‖ f ‖F := supx∈F | f (x)|.
In what follows, unless mentioned otherwise, {Mk}

∞
k=0 will denote an arbitrary

sequence of positive numbers.

2 Ultradifferentiable Classes

Let E be a subset of R
n. Let C {Mk} (E)(resp., C (Mk) (E)) be the class of all functions

f ∈ C∞ (R
n) satisfying the following condition.

∃h > 0 (resp., ∀h > 0),

∃C > 0 such that sup
E

|∂α f (x)| ≤ Ch|α|M|α|, ∀α ∈ Z
n
+.

The classes C{Mk}(E) and C(Mk)(E) are normed spaces via the norms defined

by the optimal value of C above. Let C{Mk} :=
⋂

K C{Mk}(K) and C(Mk) :=
⋂

K C(Mk)(K) where the intersections run over an exhausting sequence of compact
sets in R

n. The spaces C{Mk} and C(Mk) equipped with the injective limit and the
projective limit topology, respectively, are called the ultradifferentiable classes. The

class C(Mk) contains all compactly supported elements of C{Mk}. It follows from
the Cauchy inequalities and Taylor’s theorem that C{k! } is precisely the class of ana-
lytic functions. The classes C{(k! )ν}, ν > 1, known as Gevrey classes, are especially
important in partial differential equations and harmonic analysis.

Let Fn{Mk} be the vector space of all power series F(Z) =
∑

α fαZα, Z = (z1, z2,
. . . , zn), fα ∈ C, for which there is a constant R > 0 such that | fα| ≤ R|α|M|α| , ∀α.
The space Fn{1}, {1} := {1, 1, . . . }, is precisely the ring of convergent power series
in n variables with coefficients in C. The spaces Fn{Mk} have been of recent interest;

see e.g., [9, 11, 15].
In the study of ultradifferentiable classes C{Mk}, C(Mk) and Fn{Mk}, it is of-

ten necessary to put certain conditions on the sequence {Mk}. For example, the
condition of logconvexity (M2

k ≤ Mk−1Mk+1) and the condition of differentiability

(∃A > 0, Mk+1 ≤ AkMk) make an ultradifferentiable class closed under the product
and the differentiation of functions, respectively, and the nonquasianalyticity condi-
tion (

∑

k Mk−1/Mk < ∞) ensures the existence of compactly supported elements
in C{Mk}. There are many other commonly used conditions as well; see [9, 11, 15],

and references therein. The sequences {Mk} considered here and in [10] are arbitrary.
Therefore, Theorem 2 and Theorem 3 and their consequences can be interpreted as
estimations on the mixed derivatives of functions of several variables in terms of the
derivatives of their restrictions to a family of polynomial curves.
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3 A Bernstein–Walsh Type Inequality

For a compact subset K of C or R
2 and an integer k ≥ 2, define the k-th diameter of

K as

δk(K) := max

{

∏

1≤i< j≤k

|zi − z j |
2

k(k−1) : z1, z2, . . . , zk ∈ K

}

.

The limit δ(K) := limk→∞ δk(K) exists and is called the transfinite diameter of K.

In C, the notion of transfinite diameter coincides with the notion of logarithmic ca-
pacity. This is no longer true for the corresponding notions in higher dimensions.

Let Ω be an open subset of C
N . Let u : Ω → [−∞,∞) be an upper semicon-

tinuous function which is not identically −∞ on any connected component of Ω.
The function u is said to be plurisubharmonic if for each w ∈ Ω and each ξ ∈ C

N ,
the function z → u(w + zξ) is either subharmonic or identically −∞ on every con-

nected component of the set {z ∈ C : w + zξ ∈ Ω}. For example, for a holomorphic
function f , the function log | f | is plurisubharmonic.

A subset E ⊆ C
N is said to be locally pluripolar (or polar when N = 1) if for

each point a ∈ E there is a neighborhood V of a and a plurisubharmonic function
u : V → [−∞,∞) such that E ∩V ⊆ {z ∈ V : u(z) = −∞}.

By Josefson’s theorem a locally pluripolar set E ⊆ CN is pluripolar in the sense that
E is contained in the set {u = −∞} for some plurisubharmonic function u on C

N .

A countable union of pluripolar subsets of C
N is pluripolar.

In C
N , the zero set of any nonzero holomorphic function is pluripolar. Thus, in C

2,
any complex plane is pluripolar while any totally real plane (e.g., R

2) is nonpluripolar.
There exists a generalized Cantor subset C of [0, 1] that is nonpolar but has zero
Hausdorff dimension. Since the product E1 × E2 × · · · × En of nonpolar sets E j ⊂ C

is easily seen to be nonpluripolar in C
N , by taking E = C × C × · · · × C we see that

there are nonpluripolar subsets in R
N ⊂ C

N of zero Hausdorff dimension. Pluripolar
sets can be characterized as the sets of zero logarithmic capacity.

The Bernstein–Walsh inequality states that for any nonpluripolar compact set
E ⊆ C

N and relatively compact neighborhood U of E there is a constant A ≥ 1 such
that the inequality ‖P‖U ≤ Ak‖P‖E holds for all complex polynomials P : C

N → C

of degree k.

Further details regarding plurisubharmonic functions, pluripolar sets, and the
Bernstein–Walsh inequality can be found, for example, in [5]

Let n and d be positive integers. We will view an element q ∈ C
nd ≃ (C

n)d as
an n × d matrix with q·ν = (q1ν , q2ν , . . . , qdν), 1 ≤ ν ≤ n, as its rows and q j· =

(q j1, q j2, . . . , q jn) ∈ C
n, 1 ≤ j ≤ d, as its columns.

Each element q ∈ C
nd is the jet at 0 of a unique holomorphic curve in C

n defined

by the polynomial map q(w) =
∑d

j=1
1
j!

q j·w
j , |w| ≤ 1. If q ∈ R

nd ≃ (R
n)d + i0, the

curve t → q(t), t ∈ I = [−1, 1], lies in R
n.

For a C∞ function f : R
n → R and q ∈ (R

n)d, let fxq(t) := f (x + q(t)), and let
f (k)
xq

(0) be the k-th derivative of fxq at t = 0.
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Proposition 1 Let Λ be a compact nonpluripolar subset of C
nd.

(1) If Λ ⊆ R
nd, then there exists a constant C > 0 such that

(3.1) max
|α|=k

|∂α f (x)| ≤ Ck sup
q∈Λ

∣

∣ f (k)
xq

(0)
∣

∣ , ∀x ∈ R
n, ∀ f ∈ C∞(R

n),

and for all power series F(x) =
∑

α fαxα, fα ∈ R,

(3.2) max
|α|=k

| fα| ≤ Ck sup
q∈Λ

∣

∣

∣
f

(q)

j

∣

∣

∣

where f
(q)

j , j ∈ Z+, denotes the coefficient of t j in F(q(t)) :=
∑

α fα (q(t))
α as a

series in t.
(2) There exists a constant C > 0 such that the inequality

(3.3) max
|α|=k

|Fα| ≤ Ck sup
q∈Λ

∣

∣

∣
F

(q)

j

∣

∣

∣

holds for all power series F(Z) =
∑

α FαZα, Fα ∈ C, where F
(q)

j , j ∈ Z+ denotes

the coefficient of w j in F(q(w)) =
∑

α Fα (q(w))
α as a series in w.

Proof For a β ∈
(

Z
n
+

)d
, let ̟(β) :=

∑d
j=1 j

∣

∣β j·

∣

∣ denote the weight of β, where
∣

∣β j·

∣

∣ =
∑n

ν=1 β jν , 1 ≤ j ≤ d, is the length of the j-th column.

Let f : R
n → R be a C∞ function. Fix x ∈ R

n. For β ∈
(

Z
n
+

)d
put

f (β)(x) =

{

∂
|β·1|
1 · · · ∂

|β·n|
n f (x) if ̟(β) = k,

0 otherwise.

Let

(3.4) P(z) :=
∑

|β|≤k

k! f (β)(x)

d
∏

j=1

z
β j1

j1 z
β j2

j2 · · · z
β jn

jn

β j1! β j2! · · ·β jn!
[

j!
]|β j·|

denote the multivariate Bell polynomial of degree k in the variables z =
{

z jν

}

j,ν
.

By the multivariate version of the Faà Di Bruno formula for derivatives of com-
posite functions (see [4, Corollary 2.11]), we have

(3.5) f (k)
xq

(0) = P (q) , ∀q ∈ Λ.

Let r ≥ 1 be such that Λ ⊂
{

z ∈ C
nd : |z| < 2r

}

. Since Λ is nonpluripolar, by the

Bernstein–Walsh inequality there exists a constant (independent of the polynomial P

and hence k) A ≥ 1 such that

(3.6) max
|z|≤r

|P (z)| ≤ Ak · max
q∈Λ

|P (q)| .
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An application of Cauchy’s inequalities to the polynomial P (z) yields

∣

∣ f (β)(x)
∣

∣ ≤
1

k!

d
∏

j=1

β j1! β j2! · · ·β jn!
[

j!
]|β j·| · max

|z|=r
|P (z)| .

Since
∑

1≤ j≤d |β j·| ≤ k, we have
∏d

j=1 β j1! β j2! · · ·β jn! ≤ k! and
∏d

j=1 j! |β j·| ≤

d! dk. Now with C =
(

Ad! d
)

, the inequality 3.1 follows from 3.5 and 3.6.
Since any power series is a Taylor series of a C∞ function (E. Borel’s theorem)

and the Taylor series of the composition of two functions is the composition of their
Taylor series, it follows that the Faà Di Bruno formula is valid for power series as well
(see also [4, §3]). Thus, the above argument also yields the inequalities 3.2 and 3.3.

In his comments on an earlier draft of this paper, Professor N. Levenberg brought
to the author’s attention a result of J. Korevaar and J. Wiegerinck (see [6] for the
refined version stated below) that is similar to the linear case d = 1 of Proposition 1.

By using generalized Green functions, they proved that for a subset E ⊂ S
n−1 :=

{x ∈ R
n : x2

1 + · · · + x2
n = 1} there is a constant β(E) > 0 satisfying the inequality

(3.7) max
|α|=k

|∂α f (x)| ≤ β(E)−k sup
ξ∈E

∣

∣

∣

∣

∑

|α|=k

ξα∂α f (x)

∣

∣

∣

∣

, ∀ f ∈ C∞(R
n), ∀x ∈ R

n,

if and only if the closure of the circular set Ec := {eit x : x ∈ E, t ∈ R} is nonpluripo-

lar in C
n. Furthermore, the optimal value of the constant β(E) is shown to be equal

to the Siciak capacity of the closure of Ec.
It can be shown that if a set E ⊂ S

n−1 is nonpluripolar as a subset of the com-
plexified unit sphere {z ∈ C

n : z2
1 + · · · + z2

n = 1, x j = Re z j , 1 ≤ j ≤ n}, then Ec

is nonpluripolar in C
n. Since the set of directions E is contained in S

n−1 and is not
required to be nonpluripolar in C

n, the hypothesis on E in 3.7 is weaker than the one
on Λ in the case d = 1 of Proposition 1.

When k = 1, the suprema in 3.1 and 3.7 are over the set of first-order directional

derivatives with directions in {q1· : q ∈ Λ} and E, respectively. When k > 1, the
supremum in 3.7 is over a set of k-th order directional derivatives, while the supre-
mum in 3.1 involves the partial derivatives of not only order k but of lower orders as
well. For example, if n = 2, d = 2, k = 2, and Λ = R

2 ×R
2, the set

{

f ′ ′
xq

(0) : q ∈ Λ
}

is the set of all linear combinations of first and second order partial derivatives of f

at x.

Remark In the planer case n = 2, one can obtain inequalities like 3.1 without using

the Bernstein–Walsh inequality. For example, by fixing a set of k + 1 points q(l) :=
(q(l)

11, q(l)
12) ∈ Λ, 0 ≤ l ≤ k, 3.5 can be viewed as a system of linear equations in

unknowns
(

k
β11

)

∂β11

1 ∂k−β11

2 f (x), 0 ≤ β11 ≤ k, and its determinant

det
[

(

q(l)
11

) k− j(
q(l)

12

) j
]

0≤ j,l≤k
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can be computed explicitly via the Vandermonde formula. (The case n > 2 involves
so called hyperdeterminants.) Now, if the q(l)’s are chosen to be well-spread, Cramer’s

rule will yield the desired inequality. In [10], this approach combined with induction
on n was applied to the linear case d = 1 with Λ = Sn−1. A similar approach
was also adopted in [12] to study the restrictions of C∞ functions to families of C∞

plane curves (i.e., n = 2, d = ∞) whose slope sets {q12/q11 : q ∈ Λ} have positive

transfinite diameter.

4 Results

Theorem 2 Let a compact set Λ ⊆ R
nd be nonpluripolar in C

nd. Let f : R
n → R be a

C∞ function and E ⊆ R
n be a subset. If for some (resp., for all) h > 0 the condition

(4.1) Φh,E(q) := sup
x∈E
k≥1

∣

∣ f (k)
xq

(0)
∣

∣

hkMk

< ∞, ∀q ∈ Λ,

is satisfied, then f ∈ C{Mk}(E) (resp., C(Mk)(E)). Hence, if for every compact set K,

the condition ‖Φh,K‖Λ < ∞ is satisfied for some (resp., for all) h > 0, then f ∈ C{Mk}
(resp., C(Mk)).

The case d = 1 of Theorem 2 was proved in [10] with Λ = S
n−1.

As in the study of separate analyticity, a mild boundedness hypothesis of the type
4.1 is necessary when dealing with function classes containing nonanalytic functions.

Proof Let a C∞ function f : R
n → R, a subset E ⊆ R

n, and a constant h > 0 be
such that the condition 4.1 is satisfied. Since the function q → Φh,E(q) is everywhere

finite and lower semicontinuous, the sets

Λm := {q ∈ Λ : | f (k)
xq

(0)| ≤ mhkMk, ∀k}, m ∈ Z+,

are closed and Λ :=
⋃

m Λm. Since Λ is nonpluripolar, Λm is nonpluripolar for some
m ≥ 1. Now the inequality 3.1 with Λ = Λm implies that there is a constant C > 0

such that |∂α f (x)| ≤ m (Ch)
|α| M|α|, ∀α, ∀x ∈ E.

The above theorem also has a natural algebraic analog. The hypothesis 4.1 is un-
necessary here.

Now, because the substitutions q(w) are going to be polynomials with complex
coefficients, the “jet set” Λ is going to be a subset of (C

n)d ≃ R
2nd.

Theorem 3 Let Λ be a nonpluripolar subset of C
nd. Let F(Z) be a formal power series

in n variables. If F(q(w)) ∈ F1{Mk} for all q ∈ Λ, then F ∈ Fn{Mk}.

Proof Suppose F(Z) is a formal power series in n variables such that F(q(w)) :=
∑∞

j=0 F
(q)

j w j ∈ F1 {Mk} for all q ∈ Λ. Since by the Faà di Bruno formula the coef-

ficients F
(q)

j are polynomial functions of q jν , 1 ≤ j ≤ d, 1 ≤ ν ≤ n, the function

https://doi.org/10.4153/CMB-2006-026-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-026-9


262 T. Neelon

q → sup j≥1

∣

∣

∣
F

(q)

j M
−1/ j
j

∣

∣

∣
is lower semicontinuous. In particular the sets

Λm :=
{

q ∈ Λ :
∣

∣F
(q)

j

∣

∣ ≤ m jM j , ∀ j
}

, m ∈ Z+,

are closed and Λ :=
⋃

m Λm. Since Λm must be nonpluripolar for some m ≥ 1, the
proof is completed by using the inequality 3.3 with Λ = Λm.

The special case Mk = 1, ∀k ≥ 1, yields the following n-dimensional version of
the Zorn–Lelong theorem (for a more general result see [8, Corollary 4.2]).

Corollary 4 Let F(Z) be a power series in n variables. If the series F(wξ), in w, is

convergent for each ξ in a nonpluripolar subset of C
n, then F(Z) is convergent.

For a power series F(Z), Z = (z1, z2, . . . , zn), let S{Mk}(F) be the set of all those
s ∈ C for which F(sz2, z2, . . . , zn) ∈ Fn−1 {Mk} . Then S{1}(F) is precisely the con-
vergence set of F in the sense of A. Sathaye[13]. The higher-dimensional convergence
sets were developed in [8].

For a power series F(Z) and s ∈ C, put

Gs(w1, w2, . . . , wn) = F(w1 + sw2, w2, . . . , wn).

As the ring Fn{Mk} is invariant under a linear change of coordinates, F ∈ Fn{Mk} if
and only if Gs ∈ Fn{Mk}. Observe that ζ ∈ S{Mk}(Gs) if and only if s +ζ ∈ S{Mk}(F).

Theorem 5 If F(Z) is a formal power series in n variables, then F ∈ Fn{Mk} if and

only if S{Mk}(F) is nonpolar.

Proof If F ∈ Fn{Mk}, then S{Mk}(F) = C. Now, let F(Z) be a power series such

that S{Mk}(F) is nonpolar. For s ∈ C, we can write

F(sz2, z2, . . . , zn) =

∑

α∈Z
n−1
+

Fα(s)
(

Z ′
)α

, Z ′
= (z2, . . . , zn),

where Fα(s) is a polynomial in s of degree at most |α|. By arguing as in the proof

of Theorem 3, there exists a constant C > 0 and a compact nonpolar subset S ⊆
S{Mk}(F) such that |Fα(s)| ≤ C |α|M|α|, ∀α, ∀s ∈ S. Since S is not locally polar, there
exists s0 ∈ S such that B(s0, r)∩ S is nonpolar for all r > 0, where B(s0, r) denotes the
closed ball of radius r and centered at s0. By replacing F(Z) with Gs0

(w1, w2, . . . , wn),

if necessary, we may assume that S contains 0 and that s0 = 0. Let r > 0 be such that
S ⊂ B(0, r). By the Bernstein–Walsh inequality, there exists a constant A ≥ 1 such
that |Fα(s)| ≤ A|α|M|α|, ∀α, ∀|s| ≤ r. Now, as in the proof of Proposition 1, Cauchy’s
inequalities yield the required estimates on the coefficients of the polynomials Fα(s).

The proof is complete because each coefficient of F is a coefficient of some Fα(s).

Corollary 6 (Abhyankar–Moh–Sathaye theorem) The transfinite diameter of the

convergence set of a divergent series is zero.
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Abhyankar and Moh [1] used the notion of one-dimensional Hausdorff measure
in place of transfinite diameter. The stronger result, Corollary 6, was later obtained

by Sathaye [13] who also showed that convergence sets of divergent power series are
precisely the sets contained in an Fσ set of zero transfinite diameter, and thus, in par-
ticular, rediscovered Lelong’s result. The results in [1, 13] hold for power series with
coefficients from general valued fields. Because of the use of the Bernstein–Walsh

inequality, our methods work only for power series with real or complex coefficients.

Corollary 7 (Bochnak–Siciak Theorem [3, 14]) If a C∞ function f : R
n → R is an-

alytic on every line segment through a point x0, then f is analytic in a neighborhood

of x0.

Proof Let f : R
n → R be a C∞ function. For any ξ ∈ R

n, the Taylor series F(x) of f

about x0 can be written as

F(x0 + ξt) =

∞
∑

k=0

f (k)
x0ξ

(0)

k!
tk.

If fx0ξ ∈ C{k! } then F(x0 + ξt) has a positive radius of convergence. Since R
n is

nonpluripolar in R
n, by Theorem 3 there is r > 0 such that F(x) converges for

|x − x0| ≤ r. Since f (x0 + tξ) = F(x0 + tξ), ∀t ∈ (−r, r), ∀ξ ∈ R
n, by our hy-

pothesis, f (x) ≡ F(x), ∀x, |x − x0| < r.

The hypothesis on the jet set Λ, in the results stated above, depends on the ambient
complex structure. But the hypothesis in Corollary 6 and in the case n = 2 and d = 1
of Theorem 2 can be stated without invoking the ambient complex structure, e.g., by
requiring that the transfinite diameter of Λ ⊆ R

2 be positive. When dealing with real

functions and real power series it would be desirable to have purely “real” hypothesis
on Λ.

Since the jet set of a family of C∞ or analytic curves lives in an infinite dimensional

space, the Bernstein–Walsh inequality or Proposition 1 is not available. In [12], the
author obtained, by direct methods, some partial results in the case of C∞ plane
curves (n = 2).
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