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Abstract

In this paper, we obtain the well posedness of the linear stochastic Korteweg—de Vries equation by the
Galerkin method, and then establish the Carleman estimate, leading to the unique continuation property
(UCP) for the linear stochastic Korteweg—de Vries equation. This UCP cannot be obtained from the
classical Holmgren uniqueness theorem.
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1. Introduction

The Korteweg—de Vries (KdV) equation was first derived by Korteweg and de Vries in
1895 as a model for the propagation of some surface water waves along a channel [4].
It has been intensively studied from various aspects of both mathematics and physics
since the 1960s. It turns out that the equation is not only a good model for some water
waves but also a very useful approximation model in nonlinear studies whenever one
wishes to include and balance a weak nonlinearity and weak dispersive effects.

In recent years, a great deal of effort has been devoted to studying the controllability
of stochastic partial differential equations (see, for instance, [1, 6, 7, 9, 10]). The
Carleman estimates for the stochastic heat equation, wave equation and Schrédinger
equation are complete, but nothing is known for the third-order stochastic dispersion
equation. The main purpose of this paper is to establish the Carleman estimate for the
following forward linear stochastic equation:

dy+ Yy + yxx)dt = fdt+ gdw in Q,

y(0,6) =0 = y(1,1) in (0, 7), (L1)
y(1,0)=0 in (0,7), '
¥(x,0) = yo(x) inl,

where Q, T and I will be given later.
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Using this Carleman estimate, we can obtain the unique continuation property
(UCP) for the linear stochastic KdV equation. To the author’s knowledge, this
Carleman estimate is new: it is the first attempt for the linear stochastic KdV equation.
The Carleman estimate with internal observation for the deterministic KdV equation
was established in [2]; however, the method cannot be used for the stochastic KAV
equation.

Throughout this paper, we make the following assumptions on the coefficients.

H1 Let/=(0,1), T >0 and Iy be a given nonempty open subset of /. We write Q
and Q" to stand for (0, T) x I and (0, T) X Iy, respectively.

H2 Let (Q,F,{F}0, P) be a complete filtered probability space on which a one-
dimensional standard Brownian motion {w(t)};»o is defined such that {F;},5¢ is
the natural filtration generated by w(:), augmented by all the P-null sets in . Let
H be a Banach space and let C([0, T']; H) be the Banach space of all H-valued
strongly continuous functions defined on [0, T]. We denote by L?E(O, T; H) the
Banach space consisting of all H-valued {F;};>0-adapted processes X(-) such
that E(|IX()|z2¢0,7:1)) < o0, with the canonical norm; by L;‘;(O, T; H) the Banach
space consisting of all H-valued {F,};»0-adapted bounded processes; and by
L;(Q; C([0, T]; H)) the Banach space consisting of all H-valued {7};>0-adapted
continuous processes X(-) such that E(|X(-)|é([oﬂ; H)) < oo, with the canonical
norm. We set X7 = L2(Q; C([0, T1; H>(I))) N L0, T; H*(I)).

H3  yo € L*(Q, %0, Py H>(I) N Hy(I)), yox(1) = 0, P-as., f € L2(0, T; H*(I) N Hy(I))),
fult,1) =0, g € L2(0,T; H>(I) N Hy(I))), gx(1,1) = 0.

H4  Let y € C¥(I) satisty ¢ > 0 in I, y(0) = (1) = 0, [Wllcq = L. Wl > 0 in I\Io,
¥(0) > 0 and (1) < 0. For any given positive constants A and u, we set a(x, t) =
(HYOIHD _ YT — 1), [ = da(x, 1), 0(x, 1) = e and @(x, f) = !V /(T — 1),
for all (x,1) € Q.

One of the main results in this paper is the following theorem.

Tueorem 1.1. Let assumptions HI-H4 be satisfied. There are two positive constants
Ao and C such that, for all 1 > Ay,

E f(/lgoﬁzyix + /1390302)7)2( + X P°0* ) dx dt
0
< C(E f @12 + DS + 2pg2) dx di (1.2)
Q
+ E (/19092y§x + PPy dx dt),

Qo

where y is the solution of (1.1) corresponding to yy, f, g.

RemARrK 1.2. The definition of a solution to (1.1) can be found in Section 2.
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This paper is organised as follows. Section 2 is devoted to the well posedness of
(1.1). In Section 3, the Carleman estimate for the forward stochastic KdV equation
is established. The UCP for some stochastic dispersion equations is obtained in
Section 4.

2. Well posedness

According to [3], (1.1) has a unique mild solution in LZ(Q; C([0, T1; L*(1))), but
the regularity of the solution is not enough to establish the Carleman estimate in
Theorem 1.1. Thus, we must improve the regularity of the solution.

Let us explain what we mean by a solution of the linear stochastic KdV equation.

DeriniTioN 2.1. We call y € X7 a solution of (1.1) if the following hold:

(i  y0)=ypinl, P-as.;
(i) forany 7€ [0,T] and any ¢ € L*(]),

fl y(t, X)p(x) dx — fl yoe(x) dx + fo Vrxx(8) + y(8), @2y ds

=j(;(f(s),$0)L2(1)dS+L(g(s)’¢)L2(1)dW-

In the sequel, C stands for a generic positive constant whose value can be changed
from line to line.

THeOREM 2.2. Let assumptions HI-H3 be satisfied. Then (1.1) has a unique solution
y € X7 satisfying y.(1,t) = 0 for almost every t € [0, T] P-a.s. Moreover, the following
inequality holds:

Il < CAAz2 0,120y + gz 0,703 + Voll2@.pimoay)- 2.1

Proor. By the Banach fixed point theorem, energy estimates and the standard
extension argument, we know that it is sufficient to prove Theorem 2.2 for the system

dy + yydt = fdt+gdw in Q,

v(0,)=0=y(,1 %n 0,7), 2.2)
yx(1,1)=0 in (0, T),
y(x,0) = yo(x) in 1.

From [5], we know that the eigenvalue problem

Ap=A¢ inl,
90(0) = ‘pxxx(o) = Qoxxxx(o) =0,
90(1) = ‘px(l) = Qoxxx(l) =0
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o0

has solutions {¢};2, which are a basis in HO(I) orthonormal in L*(I), and {Ate, are
eigenvalues corresponding to eigenfunctions {¢;},> |, where Ap = -B((1 + x)83¢).
Let us construct approximate solutions to (2.2) in the form

n

Y= g

k=1

where the unknown functions ¢} are solutions to the Cauchy problem for the stochastic
differential equations

dci + Veeo 02y dt = frdt + gedw,  k=1,2,3,...,n,

2.3)
ck(0) = (vo, QDk)LZ(l),

where fi = (f, o)2wy, &k = (& ¢i)r2y- Due to the classical theory of stochastic
differential equations, we know that there is a pathwise-unique solution ¢} adapted
to {F:}r>0 such that ¢ € C([0, T']) for almost all w € Q.

By Ito’s rule,
d(c)? + 200" Cror) 20y dt = 268 fiedt + 2ci gy dw + g; dt (2.4)

for all # € [0, T'], for almost all w € Q. Multiplying both sides of (2.4) by A; and taking
sums from 1 to n about k yields

d(yn’ Ayn)Lz(I) + Z(Yzm Ayn)Lz(]) dt
=2(f", AV )2y dt + 2(8", AY") 2y dw + (8", A8 2y dt,

where " = Y/, fivr. 8" = 2i_; 8k¢x- Integrating the above equality from O to ¢,
!
0" AY )2 (®) + 2 f Oexe A2y ds
0
!
= 0" AY)ap(0) +2 f (" A ds
0
! !
+2 [y dwr [ @A ds
0 0

It is easy to deduce that

O AY ey = (1 + x, |)’Zxx|2)L2(1),
Voo A2 = 31V Ol gy + W aean (1O,
(" DAY 2y = —(fr (L + Y5 )02
< el N2, + C@SEDIE g + (1 + 5 D),

", Ay = (1 +x, |gzxx|2)L2(1)-
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By the Burkholder—Davis—Gundy inequality and the Cauchy inequality,

1/2
E sup f @AY dw‘ < CE( f (" AV )iz ds)
0<s<t
) 1/2
= OB [[ e 1+ 00z )
' 2 2 172
S (f ”(1 + x)y;xx”LZ(l) * ”gﬁxx”Lz(l) ds)
' ) 172
< CE(sup 10+ 02Ol ([ 1By ) )
0<s<t 0
f
< 6E sup (1 + 2" ()2 + CE f 19" Py s
0<s<t 0
Thus,

!
E Sup (1 + X, |nyx([)|2)L2(1) + Ef ”yﬁxxx(s)”iz(l) dS

0<s<t

<l f (1 22 (0P ds + E f g ds
+ Ef “g (S)”HS(]) ds + E(l + X, |y§xx(0)|2)[,2(1))

< C(Ef sup (1 + X, |nyx(T)|2)L2(1) ds + Ef “fn(s)“HZ(I)
0

0<7<s
vE f 18"y s + Q1+ 5, OP )

According to Gronwall’s inequality, for any ¢ € [0, T'],

!
E sup (14 2O + E [ 0 ds
0

0<s<t
T T
<ClE [ WOl + £ [ IO e+ B Ol )
namely,
2 2 2 2
”yn”XT S C(”fn“L;(O,T;HZ(I)) + ||g”“L§~(0,T;H3U)) + ||yn(0)“LZ(Q’%’P;H}(I)))' (25)

By the same argument, forn > m > 1,

2
| " m”XT < C(”f” f ”LZ (0 T: HZ(I)) + ”g g ”LZ (OTHg(I))

+ ”y (0) y (O)”LZ(Q}‘0 PHg([)))'

It follows that {y"}* , is a Cauchy sequence that converges strongly in X7. Let y be the
limit.
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From (2.3),

f Y'(t, x)p(x) dx — f V"0, x)p(x) dx + f O ($)s @2y ds
I I 0 (2.6)

! !
= f (f"(s), @2 ds + f (8" (8), @) 12 dw.
0 0
Passing to the limit as n — oo in (2.5) and (2.6), we find that y is the solution of (2.2)
and (2.1) holds.

The uniqueness can be obtained directly from (2.1).
This completes the proof of Theorem 2.2. O

3. Proof of Theorem 1.1
As in [8], it is enough to prove (1.2) for
dy + yidt = fdt + gdw. (3.1
In fact, assume that we have proved (1.2) for (3.1). Then

Ef92|f—yx|2dxdzs2Ef92|f|2dxdt+2Ef92y§dxdz.
Q Qo Qo

By choosing A > 0 large, it is possible to absorb 2F f 0 6%y* dx dt with the left-hand

side of (1.2), concluding that (1.2) also holds.
Set u = fy. A direct computation shows that

0(dy + Yy dt) = du + (A — l)udt + Bu, dt + Gu,, dt + Uy, dt,

where
A=-B+3L1,~ Ly, B=3E-3l, G=-3L.

Set
P = (Guy)y + (A = Du,
Py =((Guy)+ (A -1, — D) dt,
Py = du + (e + (B — Gux + Qu) dt,
where @ will be given later. Then

H(dy + Vxxx dl) =P + P,.

Step 1. We shall prove the inequality
T T
Eff (A—(D)(du)zdx—Eff G(dux)2dx+Ef92f2dxdt
1Jo 1J0 0
2Ef(-)mcdtdxwLEf(-)xxdtdx+Ef(-)xdtdx
0 Qo 0

+Efuz(.)dzdx—EfzfuzdthEfui(-)dzdx
o 0 Q

+ Ef W ()dtdx + E f((A - O - Gu)l} dx,
0 1

(3.2)
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where
xer = (A = O s
(xx = (GO + Gty = 3(A = D)1t .,
()x = (-2(GD)1i* + G, Du* + (A — D)(B - GIu* + G(B - Gu> + Gu?,

T
+3(A — D) u” +2 f Guydu — 3(A — ) — 2G 1),
0

() = 1 (—(G D)y + (GD)sx — (A = D)y + 2(A - O)O — (A — D),
— (A= DB -Gy,
13()) = U3(Gxx — (G(B = G))x + 3(A = @), + 2G(B - G,), — 2GD + G)),
10, () = w3, (-3G,).
Indeed,

T T T T
2 f PPy = f (e dt + f (e dt + f (e dt
0 0 0 0
T T T
+ f () dt + f () dt + f 2 () dr
0 0 0

T T
+ (A - Ol - G2l + f G(du,)’ - f (A — D)(du)>.
Hence, 0 0

Efezfzdxdt+EfP2dxdt
Q Qo

ZzEfPGfdxdt
(0]
:2EfP9(fdt+gdw)dx
)
=2EfP9(dy+yxxxdt)dx
o
=2F f P(P\ + Py)dx
0
:2EfP(P—l,u)dxdt+2EfPP2dx
o 0
ZEfPzdxdt+Ef(-)x”dxdt+Ef(-)xxdxdt+Ef(-)xdxa’t
o 9] o 0]
+Efu2(-)dxdt—EfzfuzddeEfui(-)ddeEfuﬁx(.)dxdt
0 o o 9]

+E f G(du,)* dx — E f (A - ®)(du)*dx + E f (A — D) - Gud)|] dx.
0 0 I
This implies (3.2).
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Step 2. 'We shall prove the estimate

< C(E fQ @ f2 + Vg + dpfg?) dxdi (3.3)
+E ”" (Apf*y? + Bp0*y + Pp°0%y?) dx dt).
We shall prove (3.3) by further estimates for each term in (3.2). Indeed, we take

® =11, in (3.2) and u > yy, where py > 1 will be fixed later. By the definition of
a, ¢, and y, it is obvious that

la. < COpe,  lawl < COEP e,  lawl < CUe,
|t < COr e, lad < CT?,  layl < CuTe?

and ¢ < (T?/4)¢?.
For the term %(-) in (3.3), if we choose A > uC(W)(T + T?) with C(i)) large enough,
then

|~ (G2 @) + (GO); + (OB — G))y = (A = )y — (A — DYy < CUIX L,
2(A - ®)D — (A(B - G))), = 13848’y + Dy,
where |D| < C(y)A ¢’ Thus,
() = BP0 Y + Egu?,
where |Eg| < C()A’1¢’. Using the same method,
() = 6P P + By, w3, () = Py, + Eau,s

where
|E\| < COP1Pe’,  |Ea| < Cy)Auep.

We now estimate the term E fQ((-)xxx + ()x + ()y)dxdt in (3.2):
E L((')xxx + (')xx + ()x) dxdt

T
=E f (G(B=Gy) = Gy — (A = D)2 + 2G ity + Gt} dt
0
£ v(1) - V(0).

By the definition of @, for any & > 0, if we choose A > uC(e, Y)(T + T?) with C(e, ¢)
large enough, then

122G, (t, )ttt (1, 0)] < 7 Aup(t, 0)ua(t, 0) + edpg(t, 0)u (1, 0).
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Note that y,(1) < 0, ,(0) > 0. If we choose ¢ sufficiently small and 1 > uC(e, y) X
(T + T?), then there exist positive constants N, K such that

T
V() =E f ((G(B = Gy) = Gy — (A — O)u> + 2G ity + Gu> (1, 1) dt
0

T

~ £ [ -3t Dwnte D (1 1
0

>0,

T
V) =E f (G(B = Gy) = G — (A = Ot + 2G ity + Gut (8, 0) dt
0

T

<E f (=N 1203 (1, 0031, 00 (2, 0) — K dug(t, 0 (2, 0)u? (1, 0)) dt
0

<0.

Recall that [y, > 0 in I\ I,. It follows that
E f (Wl oy, + Put@’ul + P’y dx dt
0\ QM
< Cl(w)(E f (P f? + PP 0’0 g% + dupb®g?) dx di
Q0
+E f ugiy, + Vi@ u + PP o’u?) dx dt).
0
From this, if we choose py = C1() + 1, then
E f pps, + PP g’ ul + P’ @’ u?) dx dt
0\Q"
< C(df)(E f (f* + PP g? + Aupt?g?) dx di
0
+E | (ppul, + Ppdo’u; + P’ p’u?) dx dt).

0l
Thus,

E f (Appus, + Dl + P’’’y dx dt
0
< C(w)(E f (O f* + BP0 g% + At g?) dx dt
0

+FE (xlutpuix + /13#3903”;% + P u?) dx dt)
Qo
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and consequently

E f(/hpuix + 0% + Ppu?) dx dt
0
< C(l//)(E f (@Pf + P62 + Apbig?) dxdr
(0]

+E A+ P@u> + Pp’u®) dx dt).
gl
Replacing u by 8y, we obtain (3.3).
Step 3. We shall eliminate the term E fQ’o A26*¢*y? dx dt on the left-hand side of (3.3).
By the interpolation inequality, for any & > 0,

C
f Oy)rdx<e f (0y);, dx + = f (0y)* dx,
Iy Iy € Ji

where C depends only on Iy. Take & to be & (1/H(T — t))~% in the above inequality,
where &, will be fixed later. Then

A -2 C
02y)26dx < 82( ) f(@y)ix dx+ — (Hy)2 dx
flo «r-n/ Ji 2\ i

2\ (70

- f H)ZCy2 dx — 2f 06, yy, dx,
Iy Iy
from which

f 6’y dx<e f 2T - 1*0°y? dx + C f AT - 0726y dx.
Iy Iy Iy
Noting that there exist two positive constants C and C; such that

C, C
<p< R
T -1 T -1

we find that
E f PPy dxdt < €E f A6%py? dxdt + CE f POy dxdr.  (3.4)
Ql 0l o

o
Combining (3.4) and (3.3), we obtain (1.2).
This completes the proof of Theorem 1.1.

4. UCP for the linear stochastic KdV equation

In this section, we apply the Carleman estimate in Theorem 1.1 to obtain the UCP
for the stochastic dispersion equation

dy + (yx +yxxx) dt = aydt + bydW in Q,

y(0,)=0=y(,1 %n 0,7), @.1)
yx(1,5)=0 in (0, 7),
y(x,0) = yo(x) inl.
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Tueorem 4.1. Let a € LX(0, T; W22(I)), b e L2, T; W3(I)) P-a.s. If y is the
solution of (4.1) and y = 0 in Q, then y = 0 in Q P-a.s.

RemARrk 4.2. The well posedness of (4.1) can be obtained by Theorem 2.2, the Banach
fixed point theorem, energy estimates and the standard extension argument.

Remark 4.3. The classical Holmgren uniqueness theorem does not work for stochastic
partial differential equations.

Proor. According to (1.2),

E f (gl + B’ 0%y + P p°0*y?) dxdt
(9]
< C(E f (P (@y)? + PP Pby)? + Al (by)) dxd
9]

+E (/lgoezyix + 0%y dx dt).
Q'

If we take

A2 C(T llall e o,r:w2e s 1Bl oo, rsws=y)»

where C(T, ||a||L?(0,T;Wz.w(1)), ||b||L5;(O’T;W3.m(,))) is large enough, then

E f(/lgoezyix + /1390302))% + PPy dxdt < CE (/lgo@zyix + X P°0%y) dx dt.
o Q'

If y=0in Q% P-as., then
E f(xlgo@zyix + PPy + 0Py dxde < 0.
Q
Thus, y=0in Q P-a.s. O
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