REMARKS ON A PROBLEM OF MOSER

BY
v. CHVÁTAL
In memory of Leo Moser

Let $M(n)$ be the set of all the points $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n}$ such that $x_{i} \in\{0,1,2\}$ for each $i=1,2, \ldots, n$ and let $f(n)$ be the cardinality of a largest subset of $M(n)$ containing no three distinct collinear points. L. Moser [4] asked for a proof of the inequality $f(n) \geq c 3^{n} / \sqrt{n}$.

Let us consider the set S_{n} of those points $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in M(n)$ which satisfy $\left|\left\{i: x_{i}=1\right\}\right|=[(n+1) / 3]$. As S_{n} is a subset of the sphere with center at $(1,1, \ldots, 1)$ and radius $(n-[(n+1) / 3])^{1 / 2}$, no three distinct points of S_{n} are collinear. Thus we have

$$
\begin{equation*}
f(n) \geq\left|S_{n}\right|=\binom{n}{[(n+1) / 3]} 2^{n-[(n+1) / 3]} . \tag{1}
\end{equation*}
$$

This is the desired result as Stirling's formula implies

$$
\binom{n}{[(n+1) / 3]} 2^{n-[(n+1) / 3]} \sim\left(\frac{9}{4 \pi}\right)^{1 / 2} \cdot 3^{n} / \sqrt{n} .
$$

Now we are going to improve (1). Let k, n be integers such that $0 \leq k<n$. A family F of sets will be called an (n, k) family if:
(i) all the members of F are subsets of the same set with n elements,
(ii) $|X \triangle Y|>k$ whenever X, Y are distinct members of $F(X \triangle Y$ denotes the symmetric difference $(X-Y) \cup(Y-X)$).

We denote by $G(n, k)$ the maximum cardinality of an (n, k)-family. It is easy to show that $G(n, k) \leq 2^{n-k}$; the determination of $G(n, k)$ is essentially a problem from coding theory. Given any $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in M(n)$ we set $P(x)=\left\{i: x_{i}=0\right\}$ and $Q(x)=\left\{i: x_{i}=1\right\}$. Given any set $X \subset\{1,2, \ldots, n\}$ such that $|X|=j$, take an $(n-j, k-j)$-family $F(X)$ of subsets of $\{1,2, \ldots, n\}-X$ such that $|F(X)|=G(n-j$, $k-j$) and put

$$
R(X)=\{u \in M(n): Q(u)=X, P(u) \in F(X)\} .
$$

Set $R_{n, k}=\bigcup R(X)$ where X ranges over all subsets of $\{1,2, \ldots, n\}$ with at most k elements. Assume that $R_{n, k}$ contains three distinct collinear points x, y, z with y between x and z. Then $2 y=x+z$ and so

$$
\begin{equation*}
Q(x)=Q(z), \quad Q(y)=Q(x) \cup(P(x) \Delta P(z)) . \tag{2}
\end{equation*}
$$

Received by the editors January 15, 1971.

In particular, we have $x, z \in R(Q(x))$. But then $P(x)$ and $P(z)$ are distinct members of $F(Q(x))$ and so $|P(x) \triangle P(z)|>k-|Q(x)|$. By (2) we then have $|Q(y)|=|Q(x)|$ $+|P(x) \triangle P(z)|>k$ which is a contradiction, as $|Q(y)| \leq k$ whenever $y \in R_{n, k}$. As k was arbitrary, we have

$$
\begin{equation*}
f(n) \geq \max _{0 \leq k<n}\left|R_{n, k}\right|=\max _{0 \leq k<n} \sum_{j=0}^{k}\binom{n}{j} G(n-j, k-j) . \tag{3}
\end{equation*}
$$

Asymptotically (3) is not much of an improvement over (1), for one has

$$
\max _{0 \leq k<n} \sum_{j=0}^{k}\binom{n}{j} G(n-j, k-j) \leq \max _{0 \leq k<n} 2^{n-k} \sum_{j=0}^{k}\binom{n}{j}
$$

and, as Professor J. G. Kalbfleisch pointed out to me,

$$
\max _{0 \leq k<n} 2^{n-k} \sum_{j=0}^{k}\binom{n}{j} \sim 2\left(\frac{9}{4 \pi}\right)^{1 / 2} 3^{n} / \sqrt{n}
$$

However, (3) gives better lower bounds for $f(n)$ than (1) whenever $n \geq 2$. In particular, it gives exact values of $f(n)$ for $n=1,2,3$-one has $f(1)=2, f(2)=6$, $f(3)=16$. Nevertheless, (3) only yields $f(4) \geq 42$ whereas $f(4) \geq 43$. Indeed, the set $A \cup B \cup C$ where

$$
\begin{aligned}
& A=\{x \in M(4):|Q(x)|=2\} \\
& B=\{x \in M(4):|Q(x)|=1 \text { and }|P(x)| \text { is even }\}, \\
& C=\{(0,0,0,0),(0,0,0,2),(2,2,2,2)\}
\end{aligned}
$$

contains no three distinct collinear points. I do not know the exact value of $f(4)$.
We conclude with a few remarks setting the present problem in a more general context. Firstly, for integers k and n such that $3 \leq k \leq n$ we denote by $r(k, n)$ the cardinality of a largest subset of $\{1,2, \ldots, n\}$ containing no k distinct integers in an arithmetic progression. It has been conjectured for a long time that

$$
\begin{equation*}
r(k, n)=o(n) \tag{4}
\end{equation*}
$$

for all k. The relation (4) would imply the existence of $g(k, p)$ such that whenever $\mathrm{n} \geq g(k, p)$ and the set $\{1,2, \ldots, n\}$ is partitioned into p parts, one of the parts contains k distinct integers in an arithmetic progression. The existence of $g(k, p)$ was first proved by Van der Waerden [7]; some small values of $g(k, p)$ can be found in [1]. Roth [5] proved (4) for $k=3$; in fact, he proved $r(3, n)<\mathrm{cn} / \log \log n$. Recently Szemerédi [6] proved (4) for $k=4$. The relation $f(n)=o\left(3^{n}\right)$ would imply $r(3, n)=o(n)$. More generally, one could define $M(k, n)$ as the set of all the points $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in E^{n}$ such that $x_{i} \in\{0,1, \ldots, k-1\}$ for each $i=1,2, \ldots, n$, and $f(k, n)$ as the cardinality of a largest subset of $M(k, n)$ containing no k distinct collinear points. Then the relation

$$
\begin{equation*}
f(k, n)=o\left(k^{n}\right) \text { for all } k \tag{5}
\end{equation*}
$$

would imply (4)-indeed, one has $r\left(k, k^{n}\right) \leq f(k, n)$. This has been already remarked by Moser [3]. The relation (5) would also imply the existence of $h(k, p)$ such that whenever $n \geq h(k, p)$ and $M(n, k)$ is partitioned into p parts, one of the parts contains k distinct collinear points. Actually, $h(k, p)$ exists for any k and p; this follows from a more general theorem of Hales and Jewett [2]. It is easy to see that the existence of $h(k, p)$ implies the existence of $g(k, p)$ as one has $g(k, p) \leq k^{h(k, p)}$.

References

1. V. Chvátal, Some unknown Van der Waerden numbers, Combinatorial structures and their applications (R. K. Guy et al., ed.), Gordon and Breach, New York (1970), 31-33.
2. A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106 (1963), 222-229.
3. L. Moser, Problem 21, Proc. of Number Theory Conference, Univ. of Colorado, 1963, Mimeographed, 79.
4. -_, Problem P. 170, Canad. Math. Bull. 13 (1970), p. 268.
5. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104-109.
6. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta. Math. Acad. Sci. Hungar. 20 (1969), 89-104.
7. B. L. Van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1928), 212-216.

Stanford University, Stanford, California

