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Boundedness of Calderón–Zygmund
Operators on Non-homogeneous Metric
Measure Spaces

Tuomas Hytönen, Suile Liu, Dachun Yang, and Dongyong Yang

Abstract. Let (X, d, µ) be a separable metric measure space satisfying the known upper doubling con-

dition, the geometrical doubling condition, and the non-atomic condition that µ({x}) = 0 for all

x ∈ X. In this paper, we show that the boundedness of a Calderón–Zygmund operator T on L2(µ) is

equivalent to that of T on Lp(µ) for some p ∈ (1,∞), and that of T from L1(µ) to L1,∞(µ). As an

application, we prove that if T is a Calderón–Zygmund operator bounded on L2(µ), then its maximal

operator is bounded on Lp(µ) for all p ∈ (1,∞) and from the space of all complex-valued Borel

measures on X to L1,∞(µ). All these results generalize the corresponding results of Nazarov et al. on

metric spaces with measures satisfying the so-called polynomial growth condition.

1 Introduction

The classical theory of singular integrals of Calderón–Zygmund type started with the

study of convolution operators on the Euclidean space associated with singular ker-

nels and has been well developed into a large branch of analysis on metric spaces.

One of the most interesting cases is the “space of homogeneous type” in the sense

of Coifman and Weiss [3, 4]. Recall that a metric space (X, d) equipped with a non-

negative Borel measure µ is called a space of homogeneous type if (X, d, µ) satisfies

the following measure doubling condition that there exists a positive constant Cµ such

that for any ball B(x, r) ≡ {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0,∞),

(1.1) µ(B(x, 2r)) ≤ Cµµ(B(x, r)).

The measure doubling condition (1.1) was considered the cornerstone of any exten-

sion to abstract frameworks of the theory of singular integrals. However, recently,

many results on the classical Calderón–Zygmund theory have still proved valid if the

measure doubling condition is replaced by a less demanding condition; see, for ex-

ample, [2, 12–14, 16–18] and the references therein.

In particular, let κ ∈ (0,∞), and let X be a separable metric space endowed with a

metric d and a nonnegative “κ dimensional” Borel measure µ in the sense that there
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exists a positive constant C0 such that for all x ∈ X and r ∈ (0,∞),

(1.2) µ(B(x, r)) ≤ C0rκ.

Such a measure need not satisfy the doubling condition (1.1). In [13], Nazarov, Treil,

and Volberg showed that if T is a Calderón–Zygmund operator bounded on L2(µ),

then T is bounded on Lp(µ) for all p ∈ (1,∞) and from L1(µ) to L1,∞(µ), and the

corresponding maximal operator T♯ is also bounded on Lp(µ) for any p ∈ (1,∞)

and from the space M (X) of all complex-valued Borel measures on X to L1,∞(µ).

Moreover, Nazarov et al. [13] also proved that if T is a Calderón–Zygmund operator

bounded from L1(µ) to L1,∞(µ), then T is also bounded on L2(µ).

Notice that measures satisfying the polynomial growth condition (1.2) are only

different, not more general than measures satisfying (1.1). Thus, the Calderón–

Zygmund theory with non-doubling measures is not in all respects a generalization

of the corresponding theory of spaces of homogeneous type. In [9], Hytönen intro-

duced a new class of metric measure spaces satisfying the so-called upper doubling

condition and the geometrical doubling condition (see Definitions 1.1 and 1.3), and

a notion of the space of regularized BMO. This new class of metric measure spaces is

a simultaneous generalization of the spaces of homogeneous type and metric spaces

with power bounded measures. Later, Hytönen and Martikainen [10] further es-

tablished a version of the T(b) theorem for Calderón–Zygmund operators in such

spaces.

Let (X, d, µ) be a separable metric space that satisfies the upper doubling condi-

tion, the geometrical doubling condition and the non-atomic condition that µ({x}) =

0 for all x ∈ X. The goal of this paper is to generalize the corresponding results of

Nazarov et al. in [13]. Precisely, in this paper we show that the boundedness of a

Calderón–Zygmund operator T on L2(µ) is equivalent to that of T on Lp(µ) for some

p ∈ (1,∞), and that of T from L1(µ) to L1,∞(µ). As an application, we prove that if

T is a Calderón–Zygmund operator bounded on L2(µ), then its maximal operator is

bounded on Lp(µ) for all p ∈ (1,∞) and from the space of all complex-valued Borel

measures on X to L1,∞(µ).

To state our main results, we first recall some necessary notions and notation. We

begin with the definition of the upper doubling spaces in [9].

Definition 1.1 A metric measure space (X, d, µ) is said to be upper doubling if µ is a

Borel measure on X and there exists a dominating function λ : X× (0,∞) → (0,∞)

and a positive constant Cλ such that for each x ∈ X, r → λ(x, r) is non-decreasing,

and for all x ∈ X and r ∈ (0,∞),

(1.3) µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

Remark 1.2 (i) Obviously, a space of homogeneous type is a special case of upper

doubling spaces, where one can take the dominating function λ(x, r) ≡ µ(B(x, r)).

On the other hand, a metric space (X, d, µ) satisfying the polynomial growth con-

dition (1.2) (in particular, (X, d, µ) ≡ (R
n, | · |, µ) with µ satisfying (1.2) for some

κ ∈ (0, n]) is also an upper doubling measure space if we take λ(x, r) ≡ C0rκ.
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(ii) Let (X, d, µ) be an upper doubling space and let λ be a dominating function

on X × (0,∞) as in Definition 1.1. It was shown in [11] that there exists another

dominating function λ̃ such that λ̃ ≤ λ, Cλ̃ ≤ Cλ, and, for all x, y ∈ X with

d(x, y) ≤ r,

(1.4) λ̃(x, r) ≤ C̃λ̃(y, r).

Thus, in this paper, we always assume that λ satisfies (1.4).

We now recall the notion of geometrically doubling spaces introduced in [9].

Definition 1.3 A metric space (X, d) is called geometrically doubling if there exists

some N0 ∈ N ≡ {1, 2, . . . } such that for any ball B(x, r) ⊆ X, there exists a finite

ball covering {B(xi , r/2)}i of B(x, r) such that the cardinality of this covering is at

most N0.

Remark 1.4 Let (X, d) be a metric space. In [9, Lemma 2.3], Hytönen showed that

the following statements are equivalent:

(i) (X, d) is geometrically doubling.

(ii) For any ǫ ∈ (0, 1) and any ball B(x, r) ⊆ X, there exists a finite ball covering

{B(xi , ǫr)}i of B(x, r) such that the cardinality of this covering is at most N0ǫ
−n,

where, and in what follows, N0 is as in Definition 1.3 and n ≡ log2 N0.

(iii) For every ǫ ∈ (0, 1), any ball B(x, r) ⊆ X can contain at most N0ǫ
−n centers

{xi}i of disjoint balls with radius ǫr.

(iv) There exists M ∈ N such that any ball B(x, r) ⊆ X can contain at most M

centers {xi}i of disjoint balls {B(xi , r/4)}M
i=1.

Now we recall the notions of standard kernels and corresponding Calderón–

Zygmund operators in the current setting from [10]. Let M (X) be the space of

all complex-valued Borel measures on X. For a measure ν ∈ M (X), we denote by

‖ν‖ ≡
∫
X
|dν(x)| the total variation of ν and by supp ν the smallest closed set F ⊆ X

for which ν vanishes on X \ F (such a smallest closed set always exists since X is sepa-

rable; see [13, p. 466]). Also, for any function f , supp f means the essential support of

the function f , namely, the smallest closed set F ⊆ X such that f vanishes at µ-almost

every x ∈ X \ F.

Definition 1.5 Let △ ≡ {(x, x) : x ∈ X}. A standard kernel is a mapping

K : (X× X) \ △ → C for which there exist positive constants τ ∈ (0, 1] and C

such that for all x, y ∈ X with x 6= y,

(1.5) |K(x, y)| ≤ C
1

λ(x, d(x, y))
,

and that for all x, x̃, y ∈ X with d(x, y) ≥ 2d(x, x̃),

(1.6) |K(x, y) − K(x̃, y)| + |K(y, x) − K(y, x̃)| ≤ C
[d(x, x̃)]τ

[d(x, y)]τλ(x, d(x, y))
.
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A linear operator T is called a Calderón–Zygmund operator with K satisfying (1.5)

and (1.6) if for all f ∈ L∞
b (µ), the space of bounded functions with bounded support,

and x /∈ supp f ,

T f (x) ≡

∫

X

K(x, y) f (y) dµ(y).

A new example of operators with kernel satisfying (1.5) and (1.6) is the so-called

Bergman-type operator appearing in [19]; see also [10] for an explanation.

Assume that T is a Calderón–Zygmund operator with K satisfying (1.5) and (1.6).

For any ν ∈ M (X) with bounded support and x ∈ X \ supp ν, define

Tν(x) ≡

∫

X

K(x, y) dν(y).

Moreover, the maximal operator T♯ associated with T is defined as follows. For every

f ∈ L∞
b (µ) and ν ∈ M (X), we set, for all x ∈ X,

T♯ f (x) ≡ sup
r>0

|Tr f (x)| and T♯ν(x) ≡ sup
r>0

|Trν(x)|,

where for every r > 0,

Tr f (x) ≡

∫

d(x, y)>r

K(x, y) f (y) dµ(y) and Trν(x) ≡

∫

d(x, y)>r

K(x, y) dν(y).

The main result of this paper reads as follows.

Theorem 1.6 Let T be a Calderón–Zygmund operator with kernel K satisfying (1.5)

and (1.6). Then the following statements are equivalent:

(i) T is bounded on L2(µ); namely, there exists a positive constant C such that for all

f ∈ L2(µ),

‖T f ‖L2(µ) ≤ C‖ f ‖L2(µ).

(ii) T is bounded on Lp(µ) for some p ∈ (1,∞); namely, there exists a positive con-

stant C(p), depending on p, such that for all f ∈ Lp(µ),

‖T f ‖Lp(µ) ≤ C(p)‖ f ‖Lp(µ).

(iii) T is bounded from L1(µ) to L1,∞(µ); namely, there exists a positive constant C̃

such that for all f ∈ L1(µ),

(1.7) ‖T f ‖L1,∞(µ) ≤ C̃‖ f ‖L1(µ).

As an application of Theorem 1.6, we also obtain the following boundedness of

the maximal operators associated with the Calderón–Zygmund operators.

Corollary 1.7 Let T be a Calderón–Zygmund operator with kernel K satisfying (1.5)

and (1.6), which is bounded on L2(µ), and let T♯ be the maximal operator associated

with T. Then the following statements hold:
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(i) Let p ∈ (1,∞). There exists a positive constant c such that for all f ∈ Lp(µ),

‖T♯ f ‖Lp(µ) ≤ c‖ f ‖Lp(µ).

(ii) There exists a positive constant c̃ such that for all ν ∈ M (X),

(1.8) ‖T♯ν‖L1,∞(µ) ≤ c̃‖ν‖.

Moreover, for all f ∈ L1(µ),

(1.9) ‖T♯ f ‖L1,∞(µ) ≤ c̃‖ f ‖L1(µ).

Together, Theorem 1.6 and Corollary 1.7 consist of a generalization of Nazarov–

Treil–Volberg’s [13, Theorems 1.1 and 10.1] from measures of type (1.2) to general

upper doubling measures.

This paper is organized as follows. Let (X, d, µ) be a separable metric space satis-

fying Definitions 1.1 and 1.3, and the non-atomic condition. In Section 2, we make

some preliminaries, including a Whitney-type Covering Lemma 2.2 and a Hörman-

der-type inequality, Lemma 2.4. In Section 3, we first establish a Cotlar type in-

equality and an endpoint estimate for T in terms of the so-called elementary mea-

sures, which is an alternative to the Calderón–Zygmund decomposition introduced

by Nazarov, Treil, and Volberg [13] in the case of X ≡ R
n and the polynomial bound

(1.2). As an application of these estimates and the non-atomic assumption, we fur-

ther obtain (i) ⇒ (ii), (i) ⇒ (iii), and (ii) ⇒ (iii) of Theorem 1.6. We remark that the

non-atomic assumption is to guarantee that every A ⊆ X of positive µ-measure can

be further divided into two subsets, both of positive µ-measure (see Definition 3.3

and Remark 3.4). Notice that the non-atomic condition is automatically true under

the polynomial growth condition (1.2).

Section 4 is devoted to the proof of (iii) ⇒ (i) of Theorem 1.6, while the proof of

Corollary 1.7 is presented in Section 5. We point out that in [13], the size condition

of a given Calderón–Zygmund kernel K(x, y) is just related to the distance d(x, y) of

x and y, which is a very important fact used in [13]. However, this may be false in

our context, since K(x, y) is controlled by [λ(x, d(x, y))]−1 and λ(x, d(x, y)) depends

not only on d(x, y), but also on x. To overcome this difficulty, we first restrict µ to

the closure of some ball, B(x0,M) for some fixed x0 ∈ X and large radius M, where,

and in what follows, for an open ball B, B means the closure of B, and show that (iii)

⇒ (i) of Theorem 1.6 holds for the restriction of µ with constant independent of M.

Then by a limiting argument we obtain (iii) ⇒ (i) of Theorem 1.6 for µ. A similar

method is used in the proof of Corollary 1.7 in Section 5. In Section 5, we also obtain

an endpoint estimate for T♯ via the elementary measures. Then, as in [13], using this

and some tools of probability theory, we establish Corollary 1.7.

While this manuscript was in its final stages, we learned that (i) ⇒ (ii) and (i) ⇒
(iii) of Theorem 1.6 and a variant of Lemma 3.1 in this paper were also independently

obtained by Anh and Duong in [1] via a different approach modeled after the work

of Tolsa [16] for measures of type (1.2) on R
n. In fact, Anh and Duong in [1] first

established a variant of the Calderón–Zygmund decomposition in this setting; then
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as an application, they further proved Theorem 1.6 and a variant of Lemma 3.1. Our

approach, on the other hand, consists of extending the techniques of Nazarov, Treil,

and Volberg [13].

Finally, we make some conventions on symbols. Throughout the paper, C , C̃ , c,

and c̃ stand for positive constants that are independent of the main parameters, but

which may vary from line to line. Constants with subscripts, such as C1 and c1, do

not change in different occurrences. Also, C(α, β, . . . ) denotes a positive constant

depending on α, β, . . . . If f ≤ Cg, we then write f . g or g & f ; and if f . g . f ,

we then write f ∼ g. For any q ∈ (1,∞), let q ′ ≡ q/(q − 1) be the conjugate

index of q. Sometimes, the characteristic function of a set E in X is denoted by χE or

1E, depending on what seems convenient in a particular place. For ρ ∈ (0,∞) and

B ≡ B(x, r), the notation ρB ≡ B(x, ρr) means the concentric dilation of B. For any

f ∈ L1
loc (µ), its average in a set E is denoted by

〈 f 〉E ≡
1

µ(E)

∫

E

f (x) dµ(x).

2 Preliminaries

In this section, we present some preliminary lemmas used in the rest of the paper.

We begin with a covering lemma from [11] that is a simple corollary of [8, Theorem

1.2] and [9, Lemma 2.5].

Lemma 2.1 Let (X, d) be a geometrically doubling metric space. Then every fam-

ily F of balls of uniformly bounded diameter contains an at most countable disjointed

subfamily G such that
⋃

B∈F
B ⊆

⋃
B∈G

5B.

The following Whitney type covering lemma was included in [3, p. 70, Theo-

rem (1.3)] (see also [4, p. 623, Theorem (3.2)] or [2]). We present the proof here for

completeness.

Lemma 2.2 Let Ω ( X be a bounded open set. Then there exists a sequence {Bi}i of

balls such that:

(w)i Ω =
⋃

i Bi and 2Bi ⊆ Ω for all i;

(w)ii there exists a positive constant C such that for all x ∈ X,
∑

i χBi
(x) ≤ C;

(w)iii for all i, (3Bi) ∩ (X \ Ω) 6= ∅.

Proof For any x ∈ Ω, let r̂(x) ≡ 1
10

dist (x,X\Ω), where, and in what follows, for any

y and set E, dist (y, E) ≡ infz∈E d(y, z). The function r̂(x) is strictly positive, because

Ω is open and the balls centered at x form a basis of neighborhood of x. Then by

Lemma 2.1, there exists a sequence {B̂i}i ≡ {B(xi , r̂(xi))}i of balls with {xi}i ⊆ Ω

satisfying that {B̂i}i are pairwise disjoint and {Bi}i ≡ {5B̂i}i forms a covering of Ω.

Moreover, for each i, set ri ≡ 5r̂(xi). Then for any i and y ∈ 2Bi , since X\Ω is closed,

we have that

dist (y,X \ Ω) ≥ dist (xi ,X \ Ω) − d(y, xi) > dist (xi ,X \ Ω) − 2ri = 0.
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This yields y ∈ Ω and hence 2Bi ⊆ Ω, which implies (w)i. On the other hand, since,

by the definition of ri , 3ri =
3
2

dist (xi ,X \Ω), we then see that (3Bi) ∩ (X \Ω) 6= ∅,

which implies (w)iii.

It remains to show (w)ii. To this end, we claim that for any i and x ∈ Bi ∩ Ω,

(2.1) 1
3

dist (x,X \ Ω) < ri < dist (x,X \ Ω).

Indeed, by the fact that X \ Ω is closed, we have

dist (xi ,X \ Ω) ≤ dist (x,X \ Ω) + d(x, xi),

which further implies that

(2.2) dist (xi ,X \ Ω) − ri < dist (x,X \ Ω).

Observe that by the definition of ri , dist (xi ,X \ Ω) = 2ri . This together with (2.2)

gives us that

(2.3) ri < dist (x,X \ Ω).

On the other hand, by this, we also have

dist (x,X \ Ω) ≤ d(x, xi) + dist (xi ,X \ Ω) < 3ri ,

which combined with (2.3) implies (2.1), and hence the claim holds.

Now let x ∈ Ω and Bi contain x. Then by (2.1), we see that

Bi ⊆ B
(

x, 2 dist (x,X \ Ω)
)
.

On the other hand, observe that { 1
5
Bi}i = {B̂i}i are mutually disjoint. This, together

with another application of (2.1), implies that {B(xi ,
1

15
dist (x,X \ Ω))}i are also

pairwise disjoint. From this and Remark 1.4(iii), we deduce that the cardinality of

{
B
(

xi ,
1

15
dist (x,X \ Ω)

)}
i

contained in B(x, 2 dist (x,X \Ω)) is at most N030n, and so is the cardinality of {Bi}i

containing x. Thus, (w)ii holds, which completes the proof of Lemma 2.2.

Let p ∈ (0,∞), f ∈ L
p
loc (µ) and ν ∈ M (X). The centered maximal functions

Mp f and Mν are defined by setting, for all x ∈ X,

Mp f (x) ≡ sup
r>0

[
1

µ(B(x, 5 r))

∫

B(x, r)

| f (y)|p dµ(y)

] 1
p

and

Mν(x) ≡ sup
r>0

ν(B(x, r))

µ(B(x, 5r))
.

If p = 1, we denote M1 simply by M, which is called the centered Hardy–Littlewood

maximal operator.
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Lemma 2.3 The following statements hold.

(i) Let p ∈ [1,∞). Then Mp is bounded on Lq(µ) for all q ∈ (p,∞] and from Lp(µ)

to Lp,∞(µ).

(ii) Let p ∈ (0, 1). Then Mp is bounded on L1,∞(µ).

(iii) There exists a positive constant C such that for all ν ∈ M (X), Mν ∈ L1,∞(µ)

and

‖Mν‖L1,∞(µ) ≤ C‖ν‖.

Proof The proof of (ii) mimics the proof of [13, Lemma 3.2], and the proof of (iii)

is similar to that of boundedness of M from L1(µ) to L1,∞(µ) in (i). Thus, it suffices

to prove (i) by similarity. By [9, Lemma 2.5], any disjoint collection of open balls

is at most countable. So is any disjoint collection of closed balls. Moreover, by an

argument similar to that used in the proof of [9, Proposition 3.5], we see that Mp

is bounded on Lq(µ) for all q ∈ (p,∞] and bounded from Lp(µ) to Lp,∞(µ). This

finishes the proof of Lemma 2.3.

Lemma 2.4 Let η ∈ M (X) such that η(X) = 0 and supp η ⊆ B(x, ρ) for some

ρ ∈ (0,∞) and x ∈ X, and let T be a Calderón–Zygmund operator with kernel K

satisfying (1.5) and (1.6) as in Definition 1.5. Then there exists a positive constant C,

independent of η, x, and ρ, such that for all nonnegative Borel measures ν on X,

(2.4)

∫

X\B(x, 2ρ)

|Tη(y)| dν(y) ≤ C‖η‖Mν(x).

Moreover, for any p ∈ [1,∞) and f ∈ L
p
loc (µ),

∫

X\B(x, 2ρ)

|Tη(y)|| f (y)| dµ(y) ≤ C‖η‖Mp f (x)(2.5)

and
∫

X\B(x, 2ρ)

|Tη(y)| dµ(y) ≤ C‖η‖,(2.6)

where C is a positive constant, independent of η, x, ρ, and f .

Proof By similarity, we only prove (2.4). By η(X) = 0, supp η ⊆ B(x, ρ), and (1.6),

we have that for any y ∈ X \ B(x, 2ρ),

|Tη(y)| =

∣∣∣∣
∫

B(x, ρ)

K(y, x̃) dη(x̃)

∣∣∣∣ =
∣∣∣∣
∫

B(x, ρ)

[K(y, x̃) − K(y, x)] dη(x̃)

∣∣∣∣

≤ ‖η‖ sup
x̃∈B(x, ρ)

|K(y, x̃) − K(y, x)| . ‖η‖

[
ρ

d(x, y)

]τ
1

λ(x, d(x, y))
.
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Therefore, by (1.3), we have that

∫

X\B(x, 2ρ)

|Tη(y)| dν(y) . ‖η‖

∫

X\B(x, 2ρ)

[ ρ

d(x, y)

] τ 1

λ(x, d(x, y))
dν(y)

. ‖η‖
∞∑

k=1

∫

B(x, 2k+1 ρ)\B(x, 2kρ)

1

2kτ

1

λ(x, 2kρ)
dν(y)

. ‖η‖

∞∑

k=1

1

2kτ

ν(B(x, 2k+1ρ))

µ(B(x, 5 · 2k+1ρ))

. ‖η‖

∞∑

k=1

1

2kτ
Mν(x) . ‖η‖Mν(x),

which completes the proof of Lemma 2.4.

3 Proof of Theorem 1.6, Part I

This section is devoted to the proof of the implications (i) ⇒ (ii), (i) ⇒ (iii), and

(ii) ⇒ (iii) of Theorem 1.6. To this end, we first establish an endpoint estimate

for T via the so-called elementary measures which are finite linear combinations of

unit point masses with positive coefficients. We begin with the following Cotlar type

inequality inspired by [13].

Lemma 3.1 Let T be a Calderón–Zygmund operator with kernel K satisfying (1.5)

and (1.6), which is bounded on L2(µ). Then there exist positive constants C and c such

that for any f ∈ L∞
b (µ) and x ∈ suppµ,

(3.1) T♯( f )(x) ≤ CM(T f )(x) + cM2( f )(x).

Proof Let x ∈ suppµ, r ∈ (0,∞), and r j ≡ 5 j r and µ j ≡ µ(B(x, r j)) for j ∈ Z+ ≡
N ∪ {0}. We claim that there exists some j ∈ N such that µ j+1 ≤ 4C6

λµ j−1, where Cλ

is as in (1.3). Otherwise, by (1.3), we would have that for every j ∈ N,

µ0 < (4C6
λ)− jµ2 j = (4C6

λ)− jµ
(

B(x, r2 j)
)
. (4C6

λ)− jλ(x, 52 jr) . 5− jλ(x, r).

Letting j → 0, we have µ(B(x, r)) = 0, which contradicts the fact that µ(B(x, r)) > 0

for each r > 0 and each x ∈ suppµ. Thus, the claim holds.

Let k ∈ N be the smallest integer such that µk+1 ≤ 4C6
λµk−1 and R ≡ rk−1 ≡

5k−1r. Then we see that

(3.2) µ
(

B(x, 25R)
)
. µ

(
B(x,R)

)
.

Observe that for all j ∈ {1, . . . , k}, we have that µ j+1 ≤ (2C3
λ) j+2−kµk and

λ(x, rk) ≤ (C3
λ)max{0,k− j−1}λ(x, r j+1).
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Let f ∈ L∞
b (µ). From this, (1.5), (1.3), and the Hölder inequality, we deduce that

|Tr f (x) − T5R f (x)| ≤

∫

B(x, 5R)\B(x, r)

|K(x, y)|| f (y)| dµ(y)

=

k∑

j=1

∫

B(x, r j )\B(x, r j−1)

|K(x, y)|| f (y)| dµ(y)

.

k∑

j=1

µ(B(x, r j+1))

λ(x, r j+1)
M( f )(x)

.

k∑

j=1

2 j−kM( f )(x) . M( f )(x).

(3.3)

Let

VR(x) ≡
1

µ(B(x,R))

∫

B(x,R)

T f (y) dµ(y).

Then we have

(3.4) |VR(x)| . M(T f )(x).

On the other hand, observe that

T5R f (x) =

∫

X\B(x, 5R)

K(x, y) f (y) dµ(y) =

∫

X

K(x, y)χX\B(x, 5R)(y) f (y) dµ(y)

= T
(

fχX\B(x, 5R)

)
(x) =

〈
δx,T

(
fχX\B(x, 5R)

)〉

=
〈

T∗δx, fχX\B(x, 5R)

〉
=

∫

X\B(x, 5R)

T∗δx(y) f (y) dµ(y),

where, and in what follows, δx denotes the Dirac measure at x, and for a linear oper-

ator T, T∗ means the adjoint operator of T. By writing

VR(x) =
1

µ(B(x,R))

∫

X

χB(x, R)(y)T( f )(y) dµ(y)

=
1

µ(B(x,R))

∫

X

χB(x, R)(y)T
(

fχB(x, 5R)

)
(y) dµ(y)

+

∫

X

T∗
( χB(x, R)

µ(B(x,R))

)
(y) f (y)χX\B(x, 5R)(y) dµ(y),

we obtain that

|T5R f (x) −VR(x)| ≤

∣∣∣∣
∫

X\B(x, 5R)

T∗
(
δx −

χB(x,R)

µ(B(x,R))
dµ

)
(y) f (y) dµ(y)

∣∣∣∣

+

∣∣∣∣
1

µ(B(x,R))

∫

X

[
T fχB(x, 5R)(y)

]
χB(x, R)(y) dµ(y)

∣∣∣∣

≡ L1 + L2.

(3.5)
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By (2.5), we have L1 . M( f )(x). From the Hölder inequality, the boundedness of T

on L2(µ), and (3.2), we further deduce that

L2 ≤
[
µ
(

B(x,R)
)]− 1

2

[∫

X

∣∣T
(

fχB(x, 5R)

)
(y)

∣∣ 2
dµ(y)

] 1
2

.
[
µ
(

B(x,R)
)]− 1

2

[∫

B(x, 5R)

| f (y)|2 dµ(y)

] 1
2

. M2( f )(x).

Then combining the estimates for L1 and L2 and using (3.5), (3.4), and (3.3), we have

that for any r ∈ (0,∞),

|Tr f (x)| ≤ |Tr f (x) − T5R f (x)| + |T5R f (x) −VR(x)| + |VR(x)|

. M2( f )(x) + M(T f )(x).

Taking the supremum over r ∈ (0,∞), we obtain (3.1), and hence complete the proof

of Lemma 3.1.

Remark 3.2 We point out that if we replace the boundedness of T on L2(µ) in

Lemma 3.1 by the boundedness of T on Lq(µ) for some q ∈ (1,∞), then (3.1) still

holds with M2 replaced by Mq.

To prove Theorem 1.6, we still need to recall the notion of non-atomic spaces; see,

for example, [6].

Definition 3.3 A subset A of a measure space (X, µ) is called an atom if µ(A) > 0

and each B ⊆ A has measure either equal to zero or equal to µ(A). A measure space

(X, µ) is called non-atomic if it contains no atoms.

Remark 3.4 We know from Definition 3.3 that X is non-atomic if and only if for

any A ⊆ X with µ(A) > 0, there exists a proper subset B ( A with µ(B) > 0 and

µ(A \ B) > 0. By this, it is straightforward that if µ({x}) = 0 for any x ∈ X, then

(X, µ) is a non-atomic space. Moreover, it is known that if (X, µ) is a non-atomic

measure space, then for any sets A0 ⊆ A1 ⊆ X such that 0 < µ(A1) < ∞ and

µ(A0) ≤ t ≤ µ(A1) for some t ∈ (0,∞), there exists a set E such that A0 ⊆ E ⊆ A1

and µ(E) = t ; see, for example, [6, p. 65].

We say that ν is an elementary measure if it is of the form

ν ≡

N∑

i=1

αiδxi
,

where N ∈ N, δxi
is the Dirac measure at some xi ∈ X and αi > 0 for i ∈ {1, . . . ,N}.

To prove Theorem 1.6, we first establish an endpoint estimate for T on these elemen-

tary measures. This generalizes [13, Theorem 5.1], where it was proven for polyno-

mially bounded measures as in (1.2) on R
n.
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Theorem 3.5 Let T be a Calderón–Zygmund operator with kernel K satisfying (1.5)

and (1.6), which is bounded on L2(µ). Then there exist positive constants C1 and C2

such that for all elementary measures ν,

(3.6) ‖Tν‖L1,∞(µ) ≤
[

C1 + C2‖T‖L2(µ)→L2(µ)

]
‖ν‖.

Proof Without loss of generality, we may normalize ν such that ‖ν‖ =
∑N

i=1 αi = 1,

and hence we only need prove

(3.7) ‖Tν‖L1,∞(µ) ≤ C1 + C2‖T‖L2(µ)→L2(µ).

Since for t ∈ (0, 1/µ(X)], we have

tµ
(
{x ∈ X : |Tν(x)| > t}

)
≤ tµ(X) ≤ 1.

Therefore it remains to consider the case t ∈ (1/µ(X),∞). Let B(x1, ρ1) be the

smallest closed ball such that µ(B(x1, ρ1)) ≥ α1/t . Indeed, since the function ρ →
µ(B(x, ρ)) is increasing and continuous from the right, and greater than 1/t ≥ α1/t

for sufficiently large ρ > 0, such ρ1 exists and is strictly positive. Then

µ(B(x1, ρ1)) = lim
ρ→ρ1−0

µ(B(x1, ρ)) ≤
α1

t
.

Since (X, µ) is non-atomic, by Remark 3.4, we can find a Borel set E1 such that

B(x1, ρ1) ⊆ E1 ⊆ B(x1, ρ1)

and µ(E1) = α1

t
.

Let B(x2, ρ2) be the smallest closed ball such that µ(B(x2, ρ2) \ E1) ≥ α2/t. Simi-

larly, for the corresponding open ball B(x2, ρ2), we have µ(B(x2, ρ2)\E1) ≤ α2/t and

henceforth find a Borel set E2 with the property:

(
B(x2, ρ2) \ E1

)
⊆ E2 ⊆

(
B(x2, ρ2) \ E1

)

and µ(E2) = α2

t
.

Repeating the process, for i ∈ {3, · · · ,N}, we have B(xi , ρi) and Ei such that

B(xi , ρi) is the smallest closed ball satisfying that µ(B(xi , ρi) \
⋃i−1

l=1 El) ≥ αi/t ,

(
B(xi , ρi) \

i−1⋃
l=1

El

)
⊆ Ei ⊆

(
B(xi , ρi) \

i−1⋃
l=1

El

)

and µ(Ei) =
αi

t
. Let E ≡

⋃N
i=1 Ei . Then by the fact that

∑N
i=1 αi = 1, together with

the choices of {B(xi , ρi)}
N
i=1 and {Ei}

N
i=1, we see that

N⋃
i=1

B(xi , ρi) ⊆ E ⊆
N⋃

i=1

B(xi , ρi)
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and µ(E) = 1
t
.

Outside E, let us compare Tν to tσ, where

σ ≡

N∑

i=1

χX\B(xi , 2ρi )
T(χEi

dµ).

We have

Tν − tσ = T

( N∑

i=1

αiδxi

)
− t

N∑

i=1

χX\B(xi , 2ρi )
T(χEi

dµ)

=

N∑

i=1

[
αi Tδxi

− tχX\B(xi , 2ρi )
T(χEi

dµ)
]
≡

N∑

i=1

ϕi .

(3.8)

Notice that for any i,

∫

X\E

|ϕi(x)| dµ(x)

=

∫

X\
N⋃

i=1

Ei

∣∣αi Tδxi
(x) − tχX\B(xi , 2ρi )

(x)T(χEi
dµ)(x)

∣∣ dµ(x)

≤

∫

X\B(xi , 2ρi )

∣∣αi Tδxi
(x) − tχX\B(xi , 2ρi )

(x)T(χEi
dµ)(x)

∣∣ dµ(x)

+

∫

B(xi , 2ρi )\B(xi , ρi )

· · ·

=

∫

X\B(xi , 2ρi )

∣∣T(αiδxi
− tχEi

dµ)(x)
∣∣ dµ(x)

+

∫

B(xi , 2ρi )\B(xi , ρi )

αi |Tδxi
(x)| dµ(x) ≡ J1 + J2.

(3.9)

For each i, using (2.6) and µ(Ei) =
αi

t
, we see that

J1 . ‖αiδxi
− tχEi

dµ‖ . αi .

Moreover, from (1.5), (1.4) and (1.3), we deduce that

J2 .

∫

B(xi , 2ρi )\B(xi , ρi )

αi

λ(x, d(x, xi))
dµ(x)

.

∫

B(xi , 2ρi )\B(xi , ρi )

αi

λ(xi , d(x, xi))
dµ(x) . αi

µ(B(xi , 2ρi))

λ(xi , ρi)
. αi .
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By the estimates of J1 together with J2 and (3.9), we obtain that
∫
X\E

|ϕi | dµ . αi ,
which, together with (3.8) and the fact that

∑N
i=1 αi = 1, further implies that there

exists a positive constant C3 such that

(3.10)

∫

X\E

|Tν(x) − tσ(x)| dµ(x) ≤
N∑

i=1

∫

X\E

|ϕi(x)| dµ(x) ≤ C3.

Via (3.10), to accomplish the proof of Theorem 3.5, it suffices to show that there

exist positive constants C4 and C5 such that C6 ≡ C4 + C5‖T‖L2(µ)→L2(µ) satisfying

(3.11) µ({x ∈ X : |σ(x)| > C6}) ≤
2

t
.

Indeed, assume that (3.11) holds for the moment. Then from µ(E) =
1
t
, (3.10) and

(3.11), we deduce that

µ
({

x ∈ X : |Tν(x)| > (C3 + C6)t
})

≤ µ
(
{x ∈ X \ E : |Tν(x)| > (C3 + C6)t}

)
+ µ(E)

≤ µ
(
{x ∈ X \ E : |Tν(x) − tσ(x)| > C3t}

)

+ µ
(
{x ∈ X : |σ(x)| > C6}

)
+ µ(E) ≤

4

t
.

This implies (3.7), and hence finishes the proof of Theorem 3.5, up to the verification

of (3.11), which we do in the following lemma.

Lemma 3.6 The estimate (3.11) holds.

Proof We first claim that there exist C4 and C5 such that for any set F with µ(F) = 1
t
,

(3.12)

∣∣∣∣
∫

X

σ(x)χF(x) dµ(x)

∣∣∣∣ ≤
1

t

[
C4 + C5‖T‖L2(µ)→L2(µ)

]
.

Indeed, let F be such a set. Then the definition of σ gives us that

∫

X

σ(x)χF(x) dµ(x) =

N∑

i=1

∫

X

TχEi
(x)χF\B(xi , 2ρi )

(x) dµ(x)

=

N∑

i=1

∫

X

χEi
(x)T∗χF\B(xi , 2ρi )

(x) dµ(x).

(3.13)

From (1.4) and (1.3), it follows that for all x ∈ Ei ⊆ B(xi , ρi) and y ∈ B(xi , 2ρi) \
B(x, ρi), λ(xi , ρi) . λ(y, d(x, y)), which, together with (1.5) and (1.4), further im-
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plies that for all x ∈ Ei ⊆ B(xi , ρi),

∣∣T∗χF\B(xi , 2ρi )
(x) − T∗χF\B(x, ρi )

(x)
∣∣ ≤

∫

B(xi , 2ρi )\B(x, ρi )

|K(y, x)| dµ(y)

.

∫

B(xi , 2ρi )\B(x, ρi )

1

λ(y, d(x, y))
dµ(y)

.
µ(B(xi , 2ρi))

λ(xi , ρi)
. 1.

This, combined with the fact that T∗χF\B(x, ρi )
(x) ≤ (T∗)♯χF(x) and Lemma 3.1,

yields that for all x ∈ Ei ⊆ B(xi , ρi),

∣∣T∗χF\B(xi , 2ρi )
(x)

∣∣ ≤
∣∣T∗χF\B(xi , 2ρi )

(x) − T∗χF\B(x, ρi )
(x)

∣∣ +
∣∣T∗χF\B(x, ρi )

(x)
∣∣

. 1 + (T∗)♯χF(x) . 1 + M(T∗χF)(x).

Furthermore, by this, (3.13), E =
⋃N

i=1 Ei (disjoint union), and µ(E) =
1
t
, we have

that

∣∣∣∣
∫

X

σ(x)χF(x) dµ(x)

∣∣∣∣ ≤
N∑

i=1

∣∣∣∣
∫

X

χEi
(x)

[
T∗χF\B(xi , 2ρi )

]
(x) dµ(x)

∣∣∣∣

.

N∑

i=1

∫

X

χEi
(x)[1 + M(T∗χF)(x)] dµ(x)

∼
1

t
+

∫

X

χE(x)M(T∗χF)(x) dµ(x).

(3.14)

Since T is bounded on L2(µ), by duality, we see that T∗ is also bounded on L2(µ) and

‖T∗‖L2(µ)→L2(µ) = ‖T‖L2(µ)→L2(µ).

From this fact, Lemma 2.3(i), µ(F) =
1
t
= µ(E), and the Hölder inequality, we

further deduce that

∫

X

χE(x)M(T∗χF)(x) dµ(x) ≤ ‖χE‖L2(µ)‖M(T∗χF)‖L2(µ)

≤ ‖χE‖L2(µ)‖M‖L2(µ)→L2(µ)‖T∗‖L2(µ)→L2(µ)‖χF‖L2(µ)

=
1

t
‖M‖L2(µ)→L2(µ)‖T‖L2(µ)→L2(µ),

which together with (3.14) gives that there exist C4 and C5 satisfying (3.12). There-

fore, claim (3.12) holds.
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Suppose that µ
(
{x ∈ X : |σ(x)| > C6}

)
> 2/t . Then either

µ
(
{x ∈ X : σ(x) > C6}

)
>

1

t
(3.15)

or

µ
(
{x ∈ X : σ(x) < −C6}

)
>

1

t
.

Without loss of generality, we may only consider (3.15) by similarity. Pick some set

F ⊆ X with µ(F) = 1/t such that σ(x) > C6 everywhere on F (such F exists because

of Remark 3.4). Then apparently,

(3.16)

∫

X

σ(x)χF(x) dµ(x) >
C6

t
.

Thus, we get a contradiction by combining (3.12) with (3.16), which implies (3.11),

and hence completes the proof of Lemma 3.6.

Remark 3.7 (i) Theorem 3.5 also holds with finite linear combinations of Dirac

measures with arbitrary real coefficients. Indeed, every such measure ν can be repre-

sented as ν = ν+ −ν−, where ν+ and ν− are finite linear combinations of Dirac mea-

sures with positive coefficients and ‖ν‖ = ‖ν+‖ + ‖ν−‖. Therefore, ‖Tν‖L1,∞(µ) ≤
2(C1 + C2‖T‖L2(µ)→L2(µ))‖ν‖.

(ii) If we replace the assumption of Theorem 3.5 that T is bounded on L2(µ) by

the assumption that T is bounded on Lq(µ) for some q ∈ (1,∞), then via a slight

modification of the proof Theorem 3.5, we have (3.6) with ‖T‖L2(µ)→L2(µ) replaced

by ‖T‖Lq(µ)→Lq(µ).

Proof of Theorem 1.6, Part I In this part, we show that Theorem 1.6(i) implies The-

orem 1.6(ii) and (iii) and that Theorem 1.6(ii) implies Theorem 1.6(iii).

We first assume that (i) holds and show that (ii) and (iii) hold. By the Marcinkie-

wicz interpolation theorem and a duality argument, we obtain (ii) via (iii). Therefore,

we only need to prove (iii). To this end, observe that for any f ∈ L1(µ), f = f +− f −,

where f + ≡ max{ f , 0} ≥ 0 and f − ≡ max{− f , 0} ≥ 0. Moreover, if we let Cb(X)

be the space of all continuous functions with bounded support, by [9, Proposition 3.4]

and its proof, we see that for any f ∈ L1(µ) and f ≥ 0, there exist { f j} j∈N ⊆ Cb(X)

and f j ≥ 0 for all j ∈ N such that ‖ f j− f ‖L1(µ) → 0 as j → ∞. By these observations,

combined with the linear property of T, we see that to show (iii), it suffices to prove

that (1.7) holds for all f ∈ Cb(X) and f ≥ 0.

Let t > 0, G ≡ {x ∈ X : f (x) > t}, f t ≡ fχG, and ft ≡ fχX\G. Then

T f = T f t + T ft . Notice that
∫

X

[ ft (x)]2 dµ(x) ≤ t

∫

X

ft (x) dµ(x) ≤ t‖ f ‖L1(µ).

This and the boundedness of T on L2(µ) yield that
∫

X

|T ft (x)|2 dµ(x) ≤ ‖T‖2
L2(µ)→L2(µ)t‖ f ‖L1(µ),

https://doi.org/10.4153/CJM-2011-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-065-2


908 T. Hytonen, S. Liu, Da. Yang, and Do. Yang

which implies that

(3.17) µ
({

x ∈ X : |T ft (x)| > t‖T‖L2(µ)→L2(µ)

})
≤

‖ f ‖L1(µ)

t
.

We now estimate T f t . Since, by f ∈ Cb(X), G is a bounded open set, by

Lemma 2.2, there exists a sequence {Bi}i of balls with finite overlap such that

G =
⋃

i Bi and 2Bi ⊆ G for all i. Without loss of generality, we may assume that

the cardinality of {Bi}i is just N. Then the fact that {Bi}i∈N has the finite overlap

implies that

f t
=

∑

i∈N

f
χBi∑

j∈N
χB j

≡
∑

i∈N

fi .

Then it is easy to see that fi ≥ 0 for all i ∈ N. For any N ∈ N and i ∈ {1, 2, . . . ,N},

define f (N) ≡
∑N

i=1 fi and

αi ≡

∫

X

fi(y) dµ(y) =

∫

Bi

f (y) dµ(y).

Then αi ≥ 0 for all i ∈ N. By G = ∪i∈NBi and the finite overlap property of {Bi}i∈N,

we have

(3.18)

∞∑

i=1

αi ≤

∞∑

i=1

∫

Bi

f (y) dµ(y) .

∫

G

f (y) dµ(y) . ‖ f ‖L1(µ).

Pick xi ∈ Bi and define ν(N) ≡
∑N

i=1 αiδxi
. We obtain that ‖ν(N)‖ =

∑N
i=1 αi . By

(3.18), the fact that 2Bi ⊆ G for all i ∈ N, and (2.6), there exists a positive constant

C7 such that
∫

X\G

∣∣T f (N)(x) − Tν(N)(x)
∣∣ dµ(x)

=

∫

X\G

∣∣∣∣T

( N∑

i=1

[ fi dµ− αiδxi
]

)
(x)

∣∣∣∣ dµ(x)

≤

N∑

i=1

∫

X\2Bi

∣∣T( fi dµ− αiδxi
)(x)

∣∣ dµ(x) .

N∑

i=1

αi ≤ C7‖ f ‖L1(µ).

(3.19)

On the other hand, by Theorem 3.5, we see that

µ
({

x ∈ X : |Tν(N)(x)| > (C1 + C2‖T‖L2(µ)→L2(µ))t
})

≤
1

t
‖ν(N)‖ ≤

1

t
‖ f ‖L1(µ),

from which, together with (3.19), we deduce that

µ
({

x ∈ X \ G : |T f (N)(x)| > (C7 + C1 + C2‖T‖L2(µ)→L2(µ))t
})

≤ µ
({

x ∈ X \ G : |T f (N)(x) − Tν(N)(x)| > C7t
})

+ µ
({

x ∈ X \ G : |Tν(N)(x)| > (C1 + C2‖T‖L2(µ)→L2(µ))t
})

≤
2

t
‖ f ‖L1(µ).
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This, combined with the fact that µ(G) ≤ ‖ f ‖L1(µ)/t , implies that

(3.20) µ
({

x ∈ X : |T f (N)(x)| > (C7 + C1 + C2‖T‖L2(µ)→L2(µ))t
})

≤
3

t
‖ f ‖L1(µ).

Observe that f (N) → f t in L2(µ) as N → ∞. From the L2(µ)-boundedness of T,

we then deduce that T f (N) → T f t also in L2(µ) as N → ∞. By this fact and (3.20),

we have

µ
({

x ∈ X : |T f t (x)| > (C7 + C1 + C2‖T‖L2(µ)→L2(µ))t
})

≤
3

t
‖ f ‖L1(µ),

from which, together with (3.17), it follows that there exist positive constants C8 and

C9 such that

sup
t>0

t µ({x ∈ X : |T f (x)| > t}) ≤
(

C8 + C9‖T‖L2(µ)→L2(µ)

)
‖ f ‖L1(µ).

This implies (1.7), and hence finishes the proof of the implication (i) ⇒ (iii).

Now assume that (ii) holds. Then by Remark 3.7(ii) and a similar proof of

(i) ⇒ (iii), we see that (iii) holds. We omit the details, which completes Part I of

the proof of Theorem 1.6.

4 Proof of Theorem 1.6, Part II

This section is devoted to proving (iii) ⇒ (i) of Theorem 1.6. To do so, we first estab-

lish the boundedness of T♯ from L1(µ) to L1,∞(µ), which implies that {Tr}r∈(0,∞)

is uniformly bounded from L1(µ) to L1,∞(µ). By restricting µ to µM , where µM

is the restriction of µ to a given ball B(x0,M) for some x0 ∈ X and M ∈ (0,∞),

we will prove that for any r ∈ (0,∞) and p ∈ (1,∞), Tr is bounded on Lp(µM).

Then, using a smooth truncation argument, we will further show that {Tr}r∈(0,∞) is

uniformly bounded from L2(µ) to L2(µM) with the constant independent of M. By

letting M → ∞, {Tr}r∈(0,∞) is uniformly bounded on L2(µ). An argument involving

the random dyadic cubes from [10] will yield the desired conclusion.

Theorem 4.1 Let T be a Calderón–Zygmund operator with kernel K satisfying (1.5)

and (1.6), which is bounded from L1(µ) to L1,∞(µ). Then there exists a positive constant

C such that for any f ∈ L1(µ),

‖T♯ f ‖L1,∞(µ) ≤ C‖ f ‖L1(µ).

Proof Let p ∈ (0, 1). By Lemma 2.3(i) and (ii), we see that M is bounded from

L1(µ) to L1,∞(µ), and Mp is bounded on L1,∞(µ). Then by the boundedness of T

from L1(µ) to L1,∞(µ), to show Theorem 4.1, we only need to prove that for any

f ∈ L∞
b (µ) and x ∈ X,

[T♯ f (x)]p . [MpT f (x)]p + [M f (x)]p.
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Moreover, it suffices to prove that for any r > 0, f ∈ L∞
b (µ) and x ∈ X,

(4.1) |Tr f (x)|p . [MpT f (x)]p + [M f (x)]p.

To this end, for any j ∈ N, let r j ≡ 5 jr and µ j ≡ µ(B(x, r j)) be as in the proof of

Lemma 3.1. Again let k be the smallest positive integer such that µk+1 ≤ 4C6
λµk−1 and

R ≡ rk−1 = 5k−1r. Similarly to the proof of (3.3), we see that

(4.2) |Tr f (x) − T5R f (x)| . M f (x).

Let f1 ≡ fχB(x, 5R) and f2 ≡ f − f1. For any u ∈ B(x,R), if K is the kernel

associated with T, then by (1.6) and (1.3), we see that

∣∣T f2(x) − T f2(u)
∣∣ ≤

∫

d(x, y)>5R

∣∣K(x, y) − K(u, y)
∣∣ | f (y)|dµ(y)

.

∞∑

k=1

[ d(x, u)

5kR

] τ ∫

B(x, 5k+1R)

| f (y)|

λ(x, 5kR)
dµ(y) . M f (x).

This, combined with (4.2) and the fact that

T f2(x) =

∫

X

K(x, y) f2(y) dµ(y) = T5R f (x),

implies that

|Tr f (x)| ≤ |Tr f (x) − T5R f (x)| + |T5R f (x) − T f2(u)| + |T f2(u)|

. M f (x) + |T f (u)| + |T f1(u)|,

from which, together with p ∈ (0, 1), it further follows that for all u ∈ B(x,R),

(4.3) |Tr f (x)|p .
[
M f (x)

] p
+ |T f (u)|p + |T f1(u)|p.

Since T is bounded from L1(µ) to L1,∞(µ), by the Kolmogorov inequality (see,

for example, [5, p. 102]), we obtain that

(4.4)
1

µ(B(x,R))

∫

B(x, R)

|T f1(u)|p dµ(u) .
1

[µ(B(x,R))]p

[∫

B(x, R)

| f1(u)| dµ(u)

] p

.

Taking the average of the variable u over B(x,R) on both sides of (4.3), and using

(4.4), the Hölder inequality, and (3.2), we see that

|Tr f (x)|p .
[
M f (x)

] p
+
[
Mp(T f )(x)

] p
+

1

µ(B(x,R))

∫

B(x, R)

|T f1(u)|p dµ(u)

.
[
M f (x)

] p
+
[
Mp(T f )(x)

] p

+
1

[µ(B(x, 25R))]p

[∫

B(x, 5R)

| f (u)| dµ(u)

] p

.
[
M f (x)

] p
+
[
Mp(T f )(x)

] p
,

which implies (4.1), and hence completes the proof Theorem 4.1.
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Let x0 ∈ X and M ∈ (0,∞). We now obtain the boundedness of the truncated

operators {Tr}r∈(0,∞) on Lp(µM) for all p ∈ (1,∞). Notice that the set X \ B(x0,M)

has µM-measure zero by definition, and hence we may agree that any f ∈ Lp(µM)

satisfies f |X\B(x0,M) ≡ 0. With this agreement, observe that

Tr f (x) =

∫

d(x,y)>r

K(x, y) f (y) dµ(y) =

∫

d(x,y)>r

K(x, y) f (y) dµM(y)

for f ∈ Lp(µM), so we may also replace µ by µM in the formula of Tr f when consider-

ing functions f ∈ Lp(µM). Finally, observe that µM also satisfies the upper doubling

condition with the same dominating function λ, so that all results shown for µ apply

equally well to µM , with constants uniform with respect to M.

Lemma 4.2 Let p ∈ (1,∞) and r ∈ (0,∞). Let M ∈ (0,∞) and µM be as above.

Then there exists a positive constant C̃, depending on M and r, such that for all f ∈
Lp(µM),

‖Tr f ‖Lp(µM ) ≤ C̃‖ f ‖Lp(µM ).

Proof We first claim that there exists a positive constant C such that for all x ∈
B(x0,M),

(4.5) |Tr f (x)| ≤ C[λ(x, r)]−1/p‖ f ‖Lp(µM ).

To this end, let B0 ≡ B(x, r). Then (1.5) together with the Hölder inequality gives

that

(4.6) |Tr f (x)| .

[∫

X\B0

dµ(y)

[λ(x, d(x, y))]p ′

] 1
p ′

‖ f ‖Lp(µM ).

We prove the claim by inductively constructing an auxiliary sequence of radii,

{r0, r1, r2, . . . }, such that r0 = r and ri+1 is the smallest 2kri with k ∈ N satisfying

(4.7) λ(x, 2kri) > 2λ(x, ri),

whenever such a k exists. We consider the following two cases.

Case (i) For each i ∈ Z+, there exists k ∈ N such that (4.7) holds. In this case, ri+1

will be the smallest 2kri satisfying (4.7) for all k ∈ N, and {Bi}i∈N ≡ {B(x, ri)}i∈N.

Now by (1.3) and the fact that 2iλ(x, r) ≤ λ(x, ri) for all i ∈ Z+, we have that

∫

X\B0

dµ(y)

[λ(x, d(x, y))]p ′
.

∞∑

i=0

µ(Bi+1)

[λ(x, ri+1)]p ′
.

∞∑

i=0

1

[λ(x, ri+1)]p ′−1

.

∞∑

i=0

1

[2iλ(x, r)]p ′−1
∼

1

[λ(x, r)]p ′−1
,

(4.8)

and hence [∫

X\B0

dµ(y)

[λ(x, d(x, y))]p ′

] 1
p ′

. [λ(x, r)]−
1
p ,
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which, combined with (4.6), implies (4.5), and the claim holds in this case.

Case (ii) For some i0 ∈ Z+, (4.7) holds for all i < i0 but does not hold for i0. In this

case, if i0 ∈ N, we let {Bi}
i0

i=1 be as in Case (i), ri0+1 ≡ ∞ and Bi0+1 ≡ X; otherwise,

if i0 = 0, we then let r1 ≡ ∞ and B1 ≡ X. Then we see that λ(x, 2kri0
) ≤ 2λ(x, ri0

)

for all k ∈ N and

µ(X) ≡ lim
t→∞

µ(B(x, t)) ≤ lim
t→∞

λ(x, t) ≡ λ(x,∞) ≤ 2λ(x, ri0
),

which, together with (1.3) and the fact that 2iλ(x, r) ≤ λ(x, ri) for all i ≤ i0, gives

(4.8) in this case, and the claim holds.

If x ∈ suppµM = B(x0,M), then suppµM ⊆ B(x, 3M). By this and the definition

of suppµM , we get that

µM(X) = µM(B(x, 3M)) ≤ λ(x, 3M) ≤ C
1+log2(3M/r)

λ λ(x, r),

thus

1

λ(x, r)
≤

C
3+log2(M/r)

λ

µM(X)
.

By this fact, we obtain that

∫

X

dµM(X)

λ(x, r)
≤

C
3+log2(M/r)

λ

µM(X)

∫

X

dµM(x) ≤ C
3+log2(M/r)

λ .

From this and (4.5), it follows that

‖Tr f ‖Lp(µM ) . ‖ f ‖Lp(µM )

[∫

X

dµM(x)

λ(x, r)

] 1
p

. ‖ f ‖Lp(µM )

[
C

3+log2(M/r)

λ

] 1
p
= C̃(M, r)‖ f ‖Lp(µM ).

This finishes the proof of Lemma 4.2.

We will need the following result, which shows that two bounded Calderón–Zyg-

mund operators having the same kernel can at most differ by a multiplication oper-

ator.

Proposition 4.3 Let T and T̃ be Calderón-Zygmund operators that have the same

kernel K satisfying (1.5) and (1.6) and that are both bounded from Lp(µ) to Lp,∞(µ)

for some p ∈ [1,∞). Then there exists b ∈ L∞(µ) such that for all f ∈ Lp(µ),

T f − T̃ f = b f and ‖b‖L∞(µ) ≤ ‖T − T̃‖Lp(µ)→Lp,∞(µ).

The proof will rely on the following lemma.

Lemma 4.4 For a suitable δ ∈ (0, 1), there exists a sequence of countable Borel parti-

tions, {Qk
α}α∈Ak

, k ∈ Z, of X with the following properties:
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(i) For some xk
α ∈ X and constants 0 < c1 < c2 < ∞, B(xk

α, c1δ
k) ⊆ Qk

α ⊆
B(xk

α, c2δ
k);

(ii) {Qk+1
α }α∈Ak+1

is a refinement of {Qk
α}α∈Ak

.

Moreover, it may be arranged that

(4.9) µ
( ⋃
α, k

∂Qk
α

)
= 0,

where for a set Q, ∂Q ≡ {x ∈ X : d(x,Q) = d(x,X \ Q) = 0} is the boundary.

Proof Let {Qk
α}α, k∈Z be the random dyadic cubes constructed in [10], so in fact Qk

α =

Qk
α(ω), where ω is a point of an underlying probability space Ω. We use P to denote

a probability measure on Ω (as constructed in [10]), so that P(A) is the probability of

the event A ⊂ Ω. By the construction given in [10], these sets automatically satisfy

the other claims for all ω ∈ Ω, and it remains to show that we can choose ω ∈ Ω so

as to also satisfy (4.9).

The “side-length” of Qk
α is defined ℓ(Qk

α) ≡ δk, where δ ∈ (0, 1) is a fixed param-

eter entering the construction. For ε ∈ (0,∞), let

δεQ ≡ {x : d(x,Q) ≤ εℓ(Q)}
⋂
{x : d(x,X \ Q) ≤ εℓ(Q)}.

It was shown in [10, Lemma 10.1] that there exists an η > 0 such that for any fixed

x ∈ X and k ∈ Z,

P

(
x ∈

⋃
α
δεQ

k
α

)
. εη.

In particular, by taking the limit as ε→ 0, we obtain that

P

(
x ∈

⋃
α
∂Qk

α

)
= 0.

Then it is possible to sum the zero probabilities over k ∈ Z to deduce

P

(
x ∈

⋃
k, α

∂Qk
α

)
= 0.

Now we can compute (the integration variable of the dP-integrals is ω ∈ Ω, the

random variable implicit in the random dyadic cubes Qk
α = Qk

α(ω)):

∫

Ω

µ
( ⋃

k, α

∂Qk
α

)
dP =

∫

Ω

∫

X

1⋃
k, α ∂Qk

α
(x) dµ(x) dP =

∫

X

∫

Ω

1⋃
k, α ∂Qk

α
(x) dP dµ(x)

=

∫

X

P

(
x ∈

⋃
k, α

∂Qk
α

)
dµ(x) = 0.

So the integral of µ(∪k, α∂Qk
α(ω)) ≥ 0 is zero. This means that µ(

⋃
k, α ∂Qk

α(ω)) = 0

for P-almost every ω ∈ Ω. Now we just fix one such ω, and for this choice, the

boundaries of the corresponding dyadic cubes Qk
α = Qk

α(ω) have µ-measure zero.

This implies (4.9) and hence finishes the proof of Lemma 4.4.
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Proof of Proposition 4.3 Let S ≡ T − T̃. Then S is bounded from Lp(µ) to Lp,∞(µ)

for some p ∈ [1,∞) as in the proposition, and it has kernel 0. We will prove that for

all M ∈ N and all f ∈ Lp(µ) with supp f ⊆ BM ≡ B(x0,M), and µ-almost every

x ∈ X,

S f (x) = f (x)S(1BM
)(x) ≡ f (x)bM(x)(4.10)

and

‖bM‖L∞(µM ) ≤ ‖S‖Lp(µ)→Lp,∞(µ),(4.11)

where µM ≡ µ|BM
.

Suppose for the moment that (4.10) and (4.11) are already verified. If M < M ′,

then for all f ∈ Lp(µ) with supp f ⊆ BM ⊆ BM ′ , we have f bM = S f = f bM ′ almost

everywhere on BM . Since this is true for all such f , we must have bM ′ = bM on BM ,

and hence we can unambiguously define b(x) for all x ∈ X by setting b(x) ≡ bM(x)

for x ∈ BM . The uniform bound (4.11) implies that ‖b‖L∞(µ) ≤ ‖S‖Lp(µ)→Lp,∞(µ),

and we have S f = b f for all f ∈ Lp(µ) with bounded support. Finally, by density this

holds for all f ∈ Lp(µ). Thus, proving (4.10) and (4.11) will prove the proposition,

and we turn to this task.

Now we prove (4.10). Let us consider functions of the form

(4.12)
∑

α

xk
α1Qk

α∩BM
,

where {Qk
α}α, k are the dyadic cubes with zero-measure boundaries as provided by

Lemma 4.4. Since (X, d) is geometrically doubling and BM is bounded, we see that

only finitely many Qk
α intersect BM , and hence the sum in (4.12) may taken to be

finite.

We claim that for µ-almost every x ∈ X,

(4.13) S
(

1Qk
α∩BM

)
(x) = 1Qk

α∩BM
(x) · S(1BM

)(x).

Indeed, observe first that for µ-almost every x ∈ X,

(4.14) S(1BM
)(x) = S

(∑

β

1Qk
β∩BM

)
(x) =

∑

β

S
(

1Qk
β∩BM

)
(x).

On the other hand, the assumption that S has kernel 0 means that for any f ∈ L∞
b (µ)

and µ-almost every x /∈ supp f ,

S f (x) =

∫

X

0 f (y) dµ(y) = 0.

This gives that

supp (S(1Qk
β∩BM

)) ⊆ supp 1Qk
β∩BM

= Qk
β ∩ BM

⊆ Qk
β ∪BM = (Qk

β ∩BM) ∪ (∂Qk
β ∩ BM).
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Recall that Qk
α and Qk

β are disjoint if α 6= β, which together with (4.9) implies that

almost every x ∈ Qk
α ∩ BM is outside supp (S(1Qk

β
∩ BM)). Hence S(1Qk

β∩BM
)(x) = 0

for µ-almost every x ∈ Qk
α ∩ BM , and thus, for µ-almost every x ∈ X,

1Qk
α∩BM

(x)S
(

1Qk
β∩BM

)
(x) = δαβ1Qk

α∩BM
(x)S

(
1Qk

α∩BM

)
(x) = δαβS

(
1Qk

α∩BM

)
(x),

where δαβ ≡ 1 if α = β and δαβ ≡ 0 otherwise, and the last equality follows from

the fact that 1Qk
α∩BM

(x) = 1 for µ-almost every x ∈ supp (S(1Qk
α∩BM

)). Multiplying

(4.14) by 1Qk
α∩BM

gives

1Qk
α∩BM

(x)S(1BM
)(x) =

∑

β

1Qk
α∩BM

(x)S(1Qk
β∩BM

)(x) = S(1Qk
α∩BM

)(x),

which is precisely (4.13).

Now it is easy to complete the proof of (4.10). For any f of the form (4.12), it

follows from (4.13) that

(4.15) S f =

∑

α

xk
αS(1Qk

α∩BM
) =

∑

α

xk
α1Qk

α∩BM
S(1BM

) = f S(1BM
).

On the other hand, recall that martingale convergence implies that for any f ∈ L1(µ),

Ek f ≡
∑

α

〈 f 〉Qk
α
1Qk

α
→ f

for µ-almost every x ∈ X and in Lp(µ) as k → ∞. If f ∈ Lp(µ) is general, apply

(4.15) to Ek f · 1BM
. Then as k → ∞, we have Ek f · 1BM

→ f · 1BM
in Lp(µ), hence

S(Ek f ·1BM
) → S( f ·1BM

) in Lp,∞(µ), and thus almost everywhere for a subsequence.

Also, by (4.15), we obtain that

S(Ek f · 1BM
) = Ek f · 1BM

· S(1BM
) → f · 1BM

· S(1BM
)

for µ-almost every x ∈ X. As a result, for all f ∈ Lp(µ),

S( f · 1BM
) = f · 1BM

· S(1BM
) ≡ f · 1BM

· bM ,

where bM ≡ S(1BM
) ∈ Lp,∞(µ), since 1BM

∈ Lp(µ). Thus, (4.10) holds for all

f ∈ Lp(µ) with supp f ⊆ BM .

It remains to prove (4.11). Let λ ∈ (0,∞), f ≡ 1{|bM |>λ}∩BM
and

B ≡ ‖S‖Lp(µ)→Lp,∞(µ).

Then ‖ f ‖Lp(µ) = [µ({x ∈ X : |bM(x)| > λ} ∩ BM)]1/p. By this, (4.10) and the
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boundedness of S from Lp(µ) to Lp,∞(µ), we see that

λ
[
µ
(
{x ∈ X : |bM(x)| > λ} ∩ BM

)] 1/p

= λ
[
µ
(
{x ∈ X : |bM(x) f (x)| > λ}

)] 1/p

= λ
[
µ
(
{x ∈ X : |S f (x)| > λ}

)] 1/p

≤ ‖S f ‖Lp,∞(µ) ≤ B‖ f ‖Lp(µ)

= B
[
µ
(
{x ∈ X : |bM(x)| > λ} ∩ BM

)] 1/p

.

This means that either µ({x ∈ X : |bM(x)| > λ} ∩ BM) = 0 or λ ≤ B, which is

the same as ‖bM‖L∞(µM ) ≤ B. This implies (4.11), and hence finishes the proof of

Proposition 4.3.

From Proposition 4.3, we easily deduce the following consequence.

Lemma 4.5 Let T and T̃ be Calderón–Zygmund operators having the same kernel K

satisfying (1.5) and (1.6) and which are both bounded from L1(µ) to L1,∞(µ). Assume

that T̃ is bounded on L2(µ). Then T is also bounded on L2(µ).

Proof By Proposition 4.3, we have T f = T̃ f + b f , where b ∈ L∞(µ). Hence

‖T f ‖L2(µ) ≤ ‖T̃ f ‖L2(µ) + ‖b f ‖L2(µ) ≤
(
‖T̃‖L2(µ)→L2(µ) + ‖b‖L∞(µ)

)
‖ f ‖L2(µ),

which completes the proof of Lemma 4.5.

Proof of Theorem 1.6, Part II In this part, we show that Theorem 1.6(iii) implies

Theorem 1.6(i). Let µM ≡ µ|B(x0,M) be as before. The assumption clearly implies that

T is bounded from L1(µM) to L1,∞(µM), with a norm bound independent of M. We

will then prove that T is bounded on L2(µM), still with a bound independent of M.

By the density of boundedly supported L2
loc (µ)-functions in L2(µ) and the monotone

convergence, this suffices to conclude the proof of (iii) ⇒ (i) of Theorem 1.6. Thus,

from now on we work with the measure µM , recalling that it satisfies, uniformly in

M, the same assumptions as µ, so that everything shown for µ above applies equally

well to µM .

By Theorem 4.1, we see that T♯ is bounded from L1(µM) to L1,∞(µM), which

implies that {Tr}r∈(0,∞) is uniformly bounded from L1(µM) to L1,∞(µM), and the

bound (denoted by N1) depends only on the norm of T as the operator from L1(µ)

to L1,∞(µ).

Let p ∈ (1,∞). It follows from Lemma 4.2 that for any r ∈ (0,∞), Tr is bounded

on Lp(µM) with p ∈ (1,∞), but with the norm a priori depending on M and r.

We claim, however, that {Tr}r∈(0,∞) is uniformly bounded on L2(µM). That is, if we

denote the corresponding norm by Np(r,M), then we have that there exists a positive

constant C depending on N1, but not on r or M, such that

(4.16) N2(r,M) ≤ C.
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To this end, we define for any r ∈ (0,∞) and x ∈ X,

Tψ
r f (x) ≡

∫

X

K(x, y)ψ
( d(x, y)

r

)
f (y) dµ(y),

where ψ is a smooth function on (0,∞) such that suppψ ⊆ [1/2,∞), ψ(t) ∈ [0, 1]

for all t ∈ (0,∞), and ψ(t) ≡ 1 when t ∈ [1,∞), and K is the kernel of T. It follows,

from the definition of Tψ
r , (1.5) and (1.3), that for any x ∈ X,

∣∣Tr f (x) − Tψ
r f (x)

∣∣ ≤
∫

B(x, r)\B(x, r/2)

|K(x, y)|| f (y)| dµ(y)

.

∫

B(x, r)

| f (y)|

λ(x, r/2)
dµ(y) . M f (x).

This fact, together with Lemma 2.3(i), implies that the boundedness of Tr on Lp(µM)

for p ∈ (1,∞) or from L1(µM) to L1,∞(µM) is equivalent to that of Tψ
r . Moreover, if

{Tr}r∈(0,∞) is uniformly bounded on Lp(µM) or from L1(µM) to L1,∞(µM), then so

is {Tψ
r }r∈(0,∞); and vice verse.

Now we denote by Ñp(r,M) the norm of Tψ
r on Lp(µM) and by Ñ1 the (finite)

supremum over r and M of the norms of Tψ
r from L1(µM) to L1,∞(µM). Then to

show (4.16), we only need to prove that

(4.17) Ñ2(r,M) ≤ C̃

for some positive constant C̃ independent of r and M.

We now prove (4.17). Observe that for each r, Tψ
r is bounded on L2(µM) and

from L1(µM) to L1,∞(µM). Then from the Marcinkiewicz interpolation theorem, we

deduce that Tψ
r is bounded on L

4
3 (µM) and Ñ 4

3
(r,M) . Ñ

1
2

1 [Ñ2(r,M)]
1
2 . By duality,

the right-hand side also gives the bound for the norm of (Tψ
r )∗ on L4(µM). Observe

that

(Tψ
r )∗(g)(x) =

∫

X

K(y, x)ψ
( d(x, y)

r

)
g(y) dµM(y).

Then (Tψ
r )∗ is also a Calderón–Zygmund operator. Thus (Tψ

r )∗ is bounded from

L1(µM) to L1,∞(µM), and the norm is bounded by cÑ
1
2

1 [Ñ2(r,M)]
1
2 + c̃ for some pos-

itive constants c and c̃. Another application of the Marcinkiewicz interpolation theo-

rem yields that the norm of (Tψ
r )∗ on L

4
3 (µM) is also bounded by cÑ

1
2

1 [Ñ2(r,M)]
1
2 + c̃.

By duality, we further see that Ñ4(r,M) ≤ cÑ
1
2

1 [Ñ2(r,M)]
1
2 + c̃. Using interpolation

again, we have that Ñ2(r,M) ≤ cÑ
1
2

1 [Ñ2(r,M)]
1
2 + c̃, from which (4.17) follows. Thus,

(4.16) holds and the claim is true.

As a result of (4.16), we see that {Tr}r∈(0,∞) is uniformly bounded on L2(µM),

with bounds also uniform in M. By letting M → ∞, we have that {Tr}r∈(0,∞) is

uniformly bounded on L2(µ). Then there exists a weak limit T̃ bounded on L2(µ)

and some sequence ri → 0 as i → ∞. That is, for all f ∈ L2(µ) and g ∈ L2(µ),

〈g, T̃ f 〉 = lim
ri→0

〈g,Tri
f 〉.

https://doi.org/10.4153/CJM-2011-065-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-065-2


918 T. Hytonen, S. Liu, Da. Yang, and Do. Yang

By a standard argument (see, for example, [7, Proposition 8.1.11]), it is easy to

check that T̃ is a Calderón–Zygmund operator with the same kernel K as T. It follows,

from (i) ⇒ (iii) of Theorem 1.6 for the operator T̃, that T̃ is also bounded from

L1(µ) to L1,∞(µ). Applying Lemma 4.5, we have that T is also bounded on L2(µ).

This finishes the proof of (iii) ⇒ (i) of Theorem 1.6 and hence the proof of Theorem

1.6.

5 Proof of Corollary 1.7

As an application of Theorem 1.6, we prove Corollary 1.7 in this section. We begin

with an inequality for T♯ on the elementary measures.

Lemma 5.1 Let p ∈ (0, 1) and let T be a Calderón–Zygmund operator with kernel K

satisfying (1.5) and (1.6), which is bounded on L2(µ). Then there exist positive constants

C and C(p) such that for all elementary measures ν =
∑

i αiδxi
and x ∈ suppµ,

(5.1)
[

T♯ν(x)
] p

≤ C
[
MpTν(x)

] p
+ C(p)[Mν(x)]p.

Proof As in Lemma 3.1, let r ∈ (0,∞), r j ≡ 5 jr, µ j ≡ µ(B(x, r j)) for j ∈ Z+, let

k be the smallest positive integer such that µk+1 ≤ 4C6
λµk−1, and R ≡ rk−1 = 5k−1r.

Similarly to the proof of (3.3), we have

(5.2) |Trν(x) − T5Rν(x)| . Mν(x).

Now decompose the measure ν as ν = ν1 + ν2, where

ν1 ≡
∑

i:xi∈B(x, 5R)

αiδxi
and ν2 ≡

∑

i:xi /∈B(x, 5R)

αiδxi
.

Applying (2.4) to T∗, we have that for any x̃ ∈ B(x,R),

|T5Rν(x) − Tν2(x̃)| =

∣∣∣∣
∫

X

K(x, y)χX\B(x, 5R)(y) dν(y) − Tν2(x̃)

∣∣∣∣

=

∣∣∣∣
∫

X

K(x, y) dν2(y) − Tν2(x̃)

∣∣∣∣

= |Tν2(x) − Tν2(x̃)| = |〈δx, Tν2〉 − 〈δx̃, Tν2〉|

≤

∫

X

|T∗(δx − δx̃)(y)| dν2(y)

≤

∫

X\B(x, 5R)

|T∗(δx − δx̃)(y)| dν(y) . Mν(x).

This implies that

(5.3) H1 ≡
1

µ(B(x,R))

∫

B(x, R)

|T5Rν(x) − Tν2(x̃)|p dµ(x̃) . [Mν(x)]p.
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On the other hand, write

H2 ≡
1

µ(B(x,R))

∫

B(x, R)

|Tν2(x̃) − Tν(x̃)|p dµ(x̃)

=
1

µ(B(x,R))

∫

B(x, R)

|Tν1(x̃)|p dµ(x̃)

=
1

µ(B(x,R))

∫ ∞

0

psp−1µ
({

x̃ ∈ B(x,R) : |Tν1(x̃)| > s
})

ds.

Since T is bounded on L2(µ), by Theorem 3.5, we have that for every s ∈ (0,∞),

(5.4) µ
({

x̃ ∈ B(x,R) : |Tν1(x̃)| > s
})

. min
(
µ
(

B(x,R)
)
,
‖ν1‖

s

)
.

Observe that ‖ν1‖ = ν(B(x, 5R)). This, together with (5.4), the definition of Mν,

and (3.2), gives that

µ
({

x̃ ∈ B(x,R) : |Tν1(x̃)| > s
})

. µ
(

B(x,R)
)

min
(

1,
1

s

ν(B(x, 5R))

µ(B(x,R))

)

. µ
(

B(x,R)
)

min
(

1,
1

s
Mν(x)

)
,

which further implies that

H2 .

∫ ∞

0

psp−1 min
(

1,
1

s
Mν(x)

)
ds

∼

∫ Mν(x)

0

psp−1 ds +

∫ ∞

Mν(x)

psp−2Mν(x) ds .
[
Mν(x)

] p
.

From this, combined with (5.3), we deduce that

1

µ(B(x,R))

∫

B(x,R)

∣∣T5Rν(x) − Tν(x̃)
∣∣ p

dµ(x̃) . H1 + H2 . [Mν(x)]p.

Using this and (5.2), we see that

|Trν(x)|p
=

1

µ(B(x,R))

∫

B(x,R)

|Trν(x)|p dµ(x̃)

≤
1

µ(B(x,R))

∫

B(x,R)

[
|Trν(x) − T5Rν(x)|p

+ |T5Rν(x) − Tν(x̃)|p + |Tν(x̃)|p
]

dµ(x̃)

. [Mν(x)]p +
1

µ(B(x,R))

∫

B(x,R)

|Tν(x̃)|p dµ(x̃)

. [Mν(x)]p +
[
MpTν(x)

] p
.

Taking the supremum over r > 0, we see that (5.1) holds, which completes the proof

of Lemma 5.1.
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As a result of Lemma 5.1, by Theorem 3.5 and Lemma 2.3(i) and (ii), we have the

following corollary.

Proposition 5.2 Let T be a Calderón–Zygmund operator with kernel K satisfying

(1.5) and (1.6), which is bounded on L2(µ). Then there exists a positive constant C such

that for all elementary measures ν ∈ M (X),

‖T♯ν‖L1,∞(µ) ≤ C‖ν‖.

Proof of Corollary 1.7 By Theorem 1.6, Remark 3.2, Lemma 2.3(i), and a density

argument, we have (i). To prove (ii), it suffices to prove (1.8), since for any f ∈ L1(µ),

if we define dν ≡ f dµ, then we see that ν ∈ M (X) and (1.9) follows from (1.8).

Moreover, recall that for any complex measure ν ∈ M (X), |ν|(X) < ∞; see, for

example, [15, Theorem 6.4]. Then, by considering the Jordan decompositions of

real and imaginary parts of ν, we only need to prove (1.8) for any finite nonnegative

measure.

To this end, assume that ν is a finite nonnegative measure and fix t > 0. We show

that

µ
(
{x ∈ X : |T♯ν(x)| > t}

)
.

‖ν‖

t
.

Let R > 0 and consider the truncated maximal operator T
♯
Rν ≡ supr>R |Trν|. Since

T
♯
Rν(x) increases to T♯ν(x) pointwise on X as R → 0, it suffices to show that there

exists a positive constant C such that for every R > 0,

(5.5) µ
({

x ∈ X : |T♯
Rν(x)| > t

})
≤

C‖ν‖

t
.

In what follows, we use P to denote a probability measure on a probability space

Ω, P(A) the probability of the event A ⊂ Ω, E(ξ) the mathematical expectation of a

random variable ξ ∈ L1(P), and V(ξ) ≡ E[(ξ − Eξ)2] = Eξ2 − (Eξ)2 the variance of

ξ ∈ L2(P).

For each N ∈ N, consider the random elementary measure νN ≡ ‖ν‖
N

∑N
i=1 δxi

,

where the random points {xi}
N
i=1 ⊆ X are independent and P({xi ∈ E}) =

ν(E)/‖ν‖ for every Borel set E ⊆ X. This immediately implies that

E f (xi) =
1

‖ν‖

∫

X

f (z)dν(z)

for f = 1E by definition, for simple functions f by linearity, and finally for all f ∈
L1(ν) by approximation. From this, we deduce that for every x ∈ X and r > R,

(5.6) E[(Trδxi
)(x)] =

1

‖ν‖
Trν(x).

Indeed,

‖ν‖ · E[(Trδxi
)(x)] =

∫

X

(Trδz)(x)dν(z) =

∫

X

∫

d(y,z)>r

K(x, y)dδz(y)dν(z)

=

∫

X

1d(x,z)>rK(x, z)dν(z) = Trν(x).
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Thus, (5.6) holds.

Fix some x0 ∈ X and M ∈ (R,∞). On the other hand, from (1.4) and (1.3), we

deduce that for any x ∈ B(x0,M),

λ(x0,M) . λ(x,M) . C
1+log2(M/R)

λ λ(x,R),

where Cλ is as in (1.3). By this, the fact that r > R, (5.6), and (1.5), we have that for

any x ∈ B(x0,M),

V[Trδxi
(x)] ≤ E

[
|Trδxi

(x)|2
]
=

∫

Ω

[∫

X

K(x, y) dδxi
(y)

] 2

dP

=

∫

Ω

[K(x, xi)]2χX\B(x, r)(xi) dP .
1

[λ(x, r)]2
.

C
2[1+log2(M/R)]

λ

[λ(x0,M)]2
.

(5.7)

Moreover, by (5.6), we see that

(5.8) E[(TrνN )(x)] =

N∑

i=1

‖ν‖

N
E[(Trδxi

)(x)] = Trν(x).

This, together with the Cauchy inequality and (5.7), implies that there exists a posi-

tive constant c, independent of x0, M, r, R, and N, such that

V[TrνN (x)] =
‖ν‖2

N2
V

[ N∑

i=1

Trδxi
(x)

]
≤

‖ν‖2

N

N∑

i=1

V
[

Trδxi
(x)

]

≤ c
‖ν‖2

N

C
2[1+log2(M/R)]

λ

[λ(x0,M)]2
.

Fix a number γ ∈ (0,∞) small enough. From the fact above, the Chebyshev in-

equality, and (5.8), we deduce that for every point x ∈ B(x0,M) such that |Trν(x)| >
t ,

P({|TrνN (x)| ≤ (1 − γ)t}) ≤ P({|TrνN (x) − Trν(x)| > γt})

≤
V(TrνN )(x)

γ2t2
≤ c

1

γ2t2

‖ν‖2

N

C
2[1+log2(M/R)]

λ

[λ(x0,M)]2
≤ γ,

provided N ≥ c
‖ν‖2

γ3t2

C
2[1+log2(M/R)]

λ

[λ(x0,M)]2 . Since r > R is arbitrary, we infer that for each x ∈ X

satisfying T
♯
Rν(x) > t ,

P

({
T
♯
RνN (x) ≤ (1 − γ)t

})
≤ γ.
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Let E be any given Borel set with µ(E) <∞ such that T
♯
Rν(x) > t for every x ∈ E.

Then

E

(
µ
(
{x ∈ E : T

♯
RνN (x) ≤ (1 − γ)t}

))
=

∫

E

P

({
T
♯
RνN (x) ≤ (1 − γ)t

})
dµ(x)

≤ γµ(E).

Thus, there exists at least one choice of points {xi}
N
i=1 such that

µ({x ∈ E : T
♯
RνN (x) ≤ (1 − γ)t}) ≤ γµ(E),

and therefore, µ({x ∈ E : T
♯
RνN (x) > (1 − γ)t}) ≥ (1 − γ)µ(E). From this, together

with Proposition 5.2, it follows that

µ(E) ≤
1

1 − γ
µ
({

x ∈ E : T
♯
RνN (x) > (1 − γ)t

})

≤
1

(1 − γ)2t
‖T

♯
RνN‖L1,∞(µ) .

1

(1 − γ)2t
‖νN‖ .

1

(1 − γ)2t
‖ν‖.

Since γ > 0 is arbitrary, we obtain that µ(E) .
‖ν‖

t
. As E is an arbitrary subset of

finite measure of the set of the points x ∈ X for which T
♯
Rν(x) > t , we obtain (5.5),

which completes the proof of Corollary 1.7.

Remark 5.3 If we replace the assumption of Corollary 1.7 that T is bounded on

L2(µ) by the assumption that T is bounded on Lq(µ) for some q ∈ (1,∞), then

Corollary 1.7 still holds.

References

[1] B. T. Anh and X. T. Duong, Hardy spaces, regularized BMO spaces and the boundedness of
Calderón–Zygmund operators on non-homogeneous spaces. J. Geom. Anal., to appear.

[2] M. Bramanti, Singular integrals in nonhomogeneous spaces: L2 and Lp continuity from Hölder
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