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Boundedness of Calderon—-Zygmund
Operators on Non-homogeneous Metric
Measure Spaces

Tuomas Hytonen, Suile Liu, Dachun Yang, and Dongyong Yang

Abstract. Let (X, d, 1) be a separable metric measure space satisfying the known upper doubling con-
dition, the geometrical doubling condition, and the non-atomic condition that u({x}) = 0 for all
x € X. In this paper, we show that the boundedness of a Calderé6n—Zygmund operator T on L(u) is
equivalent to that of T on LP(u) for some p € (1,00), and that of T from L!(x) to L) °°(p). As an
application, we prove that if T is a Calderén—Zygmund operator bounded on L?(), then its maximal
operator is bounded on LP(p) for all p € (1,00) and from the space of all complex-valued Borel
measures on X to L *(y). All these results generalize the corresponding results of Nazarov et al. on
metric spaces with measures satisfying the so-called polynomial growth condition.

1 Introduction

The classical theory of singular integrals of Calderon—Zygmund type started with the
study of convolution operators on the Euclidean space associated with singular ker-
nels and has been well developed into a large branch of analysis on metric spaces.
One of the most interesting cases is the “space of homogeneous type” in the sense
of Coifman and Weiss [31/4]. Recall that a metric space (X, d) equipped with a non-
negative Borel measure p is called a space of homogeneous type if (X, d, 1) satisfies
the following measure doubling condition that there exists a positive constant C,, such
that for any ball B(x,r) = {y € X : d(x, y) < r} withx € X and r € (0, c0),

(1.1) p(B(x,2r)) < Cppu(Bx, 7).

The measure doubling condition (LI)) was considered the cornerstone of any exten-
sion to abstract frameworks of the theory of singular integrals. However, recently,
many results on the classical Calderén—Zygmund theory have still proved valid if the
measure doubling condition is replaced by a less demanding condition; see, for ex-
ample, [2,[12H14}[16H18]] and the references therein.

In particular, let k € (0, 00), and let X be a separable metric space endowed with a
metric d and a nonnegative “x dimensional” Borel measure x in the sense that there
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exists a positive constant Cy such that for all x € X and r € (0, c0),
(1.2) w(B(x, 1)) < Cor”.

Such a measure need not satisfy the doubling condition (LI). In [13]], Nazarov, Treil,
and Volberg showed that if T is a Calderén—Zygmund operator bounded on L*(1),
then T is bounded on L?(u) for all p € (1,00) and from L!(1) to LY (1), and the
corresponding maximal operator T? is also bounded on L?(u) for any p € (1, 00)
and from the space . (X) of all complex-valued Borel measures on X to L' °°(p).
Moreover, Nazarov et al. [13] also proved that if T is a Calderén—Zygmund operator
bounded from L' (1) to L' (), then T is also bounded on L?( ).

Notice that measures satisfying the polynomial growth condition (2] are only
different, not more general than measures satisfying (LI). Thus, the Calderén—
Zygmund theory with non-doubling measures is not in all respects a generalization
of the corresponding theory of spaces of homogeneous type. In [9], Hyténen intro-
duced a new class of metric measure spaces satisfying the so-called upper doubling
condition and the geometrical doubling condition (see Definitions[[.Iland[L.3]), and
a notion of the space of regularized BMO. This new class of metric measure spaces is
a simultaneous generalization of the spaces of homogeneous type and metric spaces
with power bounded measures. Later, Hytonen and Martikainen [10] further es-
tablished a version of the T(b) theorem for Calder6n—Zygmund operators in such
spaces.

Let (X, d, ) be a separable metric space that satisfies the upper doubling condi-
tion, the geometrical doubling condition and the non-atomic condition that pu({x}) =
0 for all x € X. The goal of this paper is to generalize the corresponding results of
Nazarov et al. in [I3]]. Precisely, in this paper we show that the boundedness of a
Calderén—Zygmund operator T on L2(u) is equivalent to that of T on L (1) for some
p € (1,00), and that of T from L' () to L' *°(1). As an application, we prove that if
T is a Calderén—Zygmund operator bounded on L?(1), then its maximal operator is
bounded on L? () for all p € (1, 00) and from the space of all complex-valued Borel
measures on X to L' >°(p).

To state our main results, we first recall some necessary notions and notation. We
begin with the definition of the upper doubling spaces in [9].

Definition 1.1 A metric measure space (X, d, (1) is said to be upper doubling if jis a
Borel measure on X and there exists a dominating function A : X x (0, 00) — (0, 00)
and a positive constant C, such that for each x € X, r — A(x, r) is non-decreasing,
and for allx € X and r € (0, c0),

(1.3) 1(B(x,r)) < Alx, 1) < ChA(x,1/2).

Remark 1.2 (i) Obviously, a space of homogeneous type is a special case of upper
doubling spaces, where one can take the dominating function A(x,r) = u(B(x, 1)).
On the other hand, a metric space (X, d, ) satisfying the polynomial growth con-
dition (L2) (in particular, (X, d, u) = (R",|-|, u) with u satisfying (I2)) for some
k € (0, n]) is also an upper doubling measure space if we take A(x, r) = Cor".
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(ii) Let (X, d, p) be an upper doubling space and let A be a dominating function
on X x (0,00) as in Definition [L.Il It was shown in [1I] that there exists another
dominating function A such that A < A, G < Gy and, for all x, y € X with
d(x,y) <r,

(1.4) Ax, 1) < CA(y, 7).
Thus, in this paper, we always assume that A satisfies (1.4

We now recall the notion of geometrically doubling spaces introduced in [9].

Definition 1.3 A metric space (X, d) is called geometrically doubling if there exists
some Ny € N = {1,2,...} such that for any ball B(x,r) C X, there exists a finite
ball covering {B(x;, r/2)}; of B(x,r) such that the cardinality of this covering is at
most Nj.

Remark 1.4 Let (X, d) be a metric space. In [9, Lemma 2.3], Hytonen showed that

the following statements are equivalent:

(i) (X, d) is geometrically doubling.

(ii) For any € € (0,1) and any ball B(x,r) C X, there exists a finite ball covering
{B(x;, er)}; of B(x, r) such that the cardinality of this covering is at most Noe ™",
where, and in what follows, Ny is as in Definition[[.3]and # = log, Np.

(iii) For every € € (0, 1), any ball B(x,r) C X can contain at most Noe~" centers
{x;}; of disjoint balls with radius er.

(iv) There exists M € N such that any ball B(x,r) C X can contain at most M
centers {x; }; of disjoint balls {B(x;, r/4)}M,.

Now we recall the notions of standard kernels and corresponding Calderén—
Zygmund operators in the current setting from [10]. Let .#(X) be the space of
all complex-valued Borel measures on X. For a measure v € .#(X), we denote by
[v|| = [y |dv(x)| the total variation of v and by supp v the smallest closed set F € X
for which v vanishes on X \ F (such a smallest closed set always exists since X is sepa-
rable; see [[13}, p. 466]). Also, for any function f, supp f means the essential support of
the function f, namely, the smallest closed set F C X such that f vanishes at p-almost
everyx € X \ F.

Definition 1.5 Let A = {(x,x) : x € X}. A standard kernel is a mapping
K: (X xX)\ A — C for which there exist positive constants 7 € (0,1] and C
such that for all x, y € X with x # y,

1
(1.5) KRGl = CxT6 7y

and that for all x, X, y € X with d(x, y) > 2d(x, x),

[d(x,x)]"
[d(x, )] A(x, d(x, y))

(1.6) |K(x,y) — K(x, y)| + |[K(y,x) = K(y,%)| < C
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A linear operator T is called a Calderén—Zygmund operator with K satisfying
and (L6) if for all f € Lp°(u), the space of bounded functions with bounded support,

and x ¢ supp f,
Tf(x) = /x KGx, ) f(y) dudy).

A new example of operators with kernel satisfying (L5) and is the so-called
Bergman-type operator appearing in [19]; see also [10] for an explanation.

Assume that T is a Calder6n—Zygmund operator with K satisfying (I.5) and (L8).
For any v € . (X) with bounded support and x € X'\ supp v, define

Tu(x)E/xK(x,y)dy(y).

Moreover, the maximal operator T* associated with T is defined as follows. For every
feLy(u) andv € A (X), we set, for all x € X,

T f(x) = sup | T, f(x)| and T v(x) = sup|T,v(x)|,

r>0 r>0

where for every r > 0,

TfW= [ K ) ad Tow= [ Kepd),
d(x, y)>r d(

X, y)>r
The main result of this paper reads as follows.

Theorem 1.6 Let T be a Calderon—Zygmund operator with kernel K satisfying (L3))
and (L8)). Then the following statements are equivalent:

(i) T is bounded on L*(1); namely, there exists a positive constant C such that for all
feLl*(p),
ITf gy < Clif -

(ii) T is bounded on L¥ () for some p € (1,00); namely, there exists a positive con-
stant C(p), depending on p, such that for all f € LP (),

IT fllzeny < CPI fllLogo-

(iii) T is bounded from L'(u) to LY °°(1); namely, there exists a positive constant Cc
such that for all f € L' (),

(1.7) 1Tl o < Cllfllrgo-

As an application of Theorem [L6 we also obtain the following boundedness of
the maximal operators associated with the Calderén—-Zygmund operators.

Corollary 1.7 Let T be a Calderén—Zygmund operator with kernel K satisfying
and (L), which is bounded on L*(y1), and let T* be the maximal operator associated
with T. Then the following statements hold:
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(1) Let p € (1,00). There exists a positive constant ¢ such that for all f € LP(u),

1T fllerg < ell fllergo-

(ii) There exists a positive constant ¢ such that for allv € .# (X),
(L8) 1Tl < vl
Moreover, for all f € L'(u),

(1.9) IT* fllp e < €l fllL-

Together, Theorem [[.@land Corollary [L.7] consist of a generalization of Nazarov—
Treil-Volberg’s [13} Theorems 1.1 and 10.1] from measures of type (I.2) to general
upper doubling measures.

This paper is organized as follows. Let (X, d, 1) be a separable metric space satis-
fying Definitions [[.J]and [[L3] and the non-atomic condition. In Section 2] we make
some preliminaries, including a Whitney-type Covering Lemma[2.2land a Hérman-
der-type inequality, Lemma 24 In Section [B] we first establish a Cotlar type in-
equality and an endpoint estimate for T in terms of the so-called elementary mea-
sures, which is an alternative to the Calder6n—Zygmund decomposition introduced
by Nazarov, Treil, and Volberg [[13] in the case of X = R" and the polynomial bound
(L2). As an application of these estimates and the non-atomic assumption, we fur-
ther obtain (i) = (ii), (i) = (iii), and (ii) = (iii) of Theorem[[.6l We remark that the
non-atomic assumption is to guarantee that every A C X of positive y-measure can
be further divided into two subsets, both of positive ;-measure (see Definition
and Remark[3.4). Notice that the non-atomic condition is automatically true under
the polynomial growth condition (L.2).

Section[is devoted to the proof of (iii) = (i) of Theorem[L.8] while the proof of
Corollary[[7]is presented in Section[5l We point out that in [13]], the size condition
of a given Calder6n—Zygmund kernel K (x, y) is just related to the distance d(x, y) of
x and y, which is a very important fact used in [13]. However, this may be false in
our context, since K(x, y) is controlled by [A(x, d(x, ¥))] ! and A(x, d(x, y)) depends
not only on d(x, y), but also on x. To overcome this difficulty, we first restrict 4 to
the closure of some ball, B(xy, M) for some fixed x, € X and large radius M, where,
and in what follows, for an open ball B, B means the closure of B, and show that (iii)
= (i) of Theorem [ holds for the restriction of y with constant independent of M.
Then by a limiting argument we obtain (iii) = (i) of Theorem [L.6] for y. A similar
method is used in the proof of Corollary[L.7lin Section[5 In Section5} we also obtain
an endpoint estimate for T* via the elementary measures. Then, as in [13], using this
and some tools of probability theory, we establish Corollary[[.7}

While this manuscript was in its final stages, we learned that (i) = (ii) and (i) =
(iii) of Theorem[L.@land a variant of Lemma[3.lin this paper were also independently
obtained by Anh and Duong in [1]] via a different approach modeled after the work
of Tolsa [16] for measures of type (I2) on R". In fact, Anh and Duong in [1]] first
established a variant of the Calderén—Zygmund decomposition in this setting; then
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as an application, they further proved Theorem[L.6land a variant of Lemma[3.1l Our
approach, on the other hand, consists of extending the techniques of Nazarov, Treil,
and Volberg [13].

Finally, we make some conventions on symbols. Throughout the paper, C, C o
and ¢ stand for positive constants that are independent of the main parameters, but
which may vary from line to line. Constants with subscripts, such as C; and ¢;, do
not change in different occurrences. Also, C(«, 3, ...) denotes a positive constant
depending on v, 3, . ... If f < Cg, we then write f S gorg 2 f;andif f S¢S f,
we then write f ~ g. For any g € (1,00), let ¢’ = q/(q — 1) be the conjugate
index of q. Sometimes, the characteristic function of a set E in X is denoted by xg or
1g, depending on what seems convenient in a particular place. For p € (0, 00) and
B = B(x, r), the notation pB = B(x, pr) means the concentric dilation of B. For any
f € L. (w), its average in a set E is denoted by

e / £0) dya(x).

1(E)

2 Preliminaries

In this section, we present some preliminary lemmas used in the rest of the paper.
We begin with a covering lemma from [[11]] that is a simple corollary of [8, Theorem
1.2] and [9, Lemma 2.5].

Lemma 2.1 Let (X,d) be a geometrically doubling metric space. Then every fam-
ily & of balls of uniformly bounded diameter contains an at most countable disjointed
subfamily G such that Jpc 5 B € Upeg 5B

The following Whitney type covering lemma was included in [3} p. 70, Theo-
rem (1.3)] (see also [4} p. 623, Theorem (3.2)] or [2]]). We present the proof here for
completeness.

Lemma 2.2 Let Q C X be a bounded open set. Then there exists a sequence {B;}; of
balls such that:

(w);i Q =, Bi and 2B; C 2 for all i;
(w)ii there exists a positive constant C such that for allx € X, Y, x5,(x) < C;
(w)iii foralli, (3B;) N(X\ Q) # .

Proof Foranyx € §,let7(x) = 15 L dist (x, X\ ), where, and in what follows, for any
y and set E, dist (y, E) = inf,cg d(y, z). The function 7(x) is strictly positive, because
2 is open and the balls centered at x form a basis of neighborhood of x. Then by
Lemma 2.1} there exists a sequence {B;}; = {B(x;, 7(x;)) }; of balls with {x;}; C Q
satisfying that {B; }; are pairwise disjoint and {B;}; = {5B;}; forms a covering of 2.
Moreover, for each i, set r; = 57(x;). Then for any i and y € 2B;, since X\ € is closed,
we have that

dist (y, 0\ ) > dist (x;, X \ Q) — d(y,x;) > dist (x;, X \ Q) — 2r; = 0.
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This yields y € Q and hence 2B; C €, which implies (w);. On the other hand, since,
by the definition of r;, 3r; = % dist (x;, X \ ), we then see that (3B;) N (X \ Q) # &,
which implies (w);.

It remains to show (w);. To this end, we claim that for any i and x € B; N €2,

(2.1) %dist(x,DC\Q) <1 < dist(x, X\ Q).
Indeed, by the fact that X \ 2 is closed, we have

dist (x;, X \ Q) < dist (x, X0\ Q) + d(x, x;),
which further implies that
(2.2) dist (x;, X \ Q) — r; < dist (x, X\ Q).

Observe that by the definition of r;, dist (x;, X \ ©) = 2r;. This together with
gives us that

(2.3) r; < dist (x, X\ Q).
On the other hand, by this, we also have
dist (x, X'\ Q) < d(x,x;) + dist (x5, X \ Q) < 37,

which combined with ([2.3) implies (2.)), and hence the claim holds.
Now let x € Q) and B; contain x. Then by (2.I]), we see that

B; C B(x,2dist (x, X\ ©)).

On the other hand, observe that {1B;}; = {B;}; are mutually disjoint. This, together
with another application of (2.1)), implies that {B(x;, % dist (x, X\ ©))}; are also
pairwise disjoint. From this and Remark[L.4[iii), we deduce that the cardinality of
{B(xi, 1—15 dist (x, X'\ Q)) } ;
contained in B(x, 2 dist (x, X \ §2)) is at most Ny30", and so is the cardinality of {B; };
containing x. Thus, (w);; holds, which completes the proof of Lemma[2.2} [ |

Let p € (0,00), f € LY (u) and v € .#(X). The centered maximal functions

loc

M, f and Mv are defined by setting, for all x € X,

1
pf ()= sup L(B(x,sm /B(x,r> FOIF duly )}

p

and
v(B(x, 1))

Mre) = sup - e, 5m))

If p = 1, we denote M, simply by M, which is called the centered Hardy—Littlewood
maximal operator.
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Lemma 2.3 The following statements hold.

(i) Letp € [1,00). Then M,, is bounded on L(y) for all g € (p, oo] and from LP (1)
to LP>*° ().

(ii) Letp € (0,1). Then M, is bounded on L' >° ().

(iii) There exists a positive constant C such that for all v € # (X), Mv € LV (u)
and

MY |3y < Clwl-

Proof The proof of (ii) mimics the proof of [13} Lemma 3.2], and the proof of (iii)
is similar to that of boundedness of M from L' (1) to L' *°(u) in (i). Thus, it suffices
to prove (i) by similarity. By [9, Lemma 2.5], any disjoint collection of open balls
is at most countable. So is any disjoint collection of closed balls. Moreover, by an
argument similar to that used in the proof of [€9, Proposition 3.5], we see that M,
is bounded on L1(u) for all g € (p, co] and bounded from L?(u) to L *°(u). This
finishes the proof of Lemma[2.3] [ |

Lemma 2.4 Letn € #(X) such that n(X) = Oand supp n C B(x, p) for some
p € (0,00) and x € X, and let T be a Calderén—Zygmund operator with kernel K
satisfying and ([I.8) as in Definition Then there exists a positive constant C,
independent of 1, x, and p, such that for all nonnegative Borel measures v on X,

(2.4) / T diy) < Cllnl| M ().
X\B(x, 2p)

Moreover, for any p € [1,00) and f € LY (i),

loc

(2.5) / I T f ()] duly) < Clnl|M, f(x)
X\B(x,2p)
and
(2.6) / |Tn(y)|du(y) < Clnl|,
X\B(x,2p)

where C is a positive constant, independent of 1), x, p, and f.

Proof By similarity, we only prove (2.4). By n(X) = 0, supp 1 C B(x, p), and (L.4),
we have that for any y € X\ B(x, 2p),

ITn(y)| = / K(y, 3 dn(®)| = / K(7,%) - K(y,)] dn(®
B(x, p) B(x, p)
_ < r | 1
< Inl_sup K0~ K091 < EeiBreans
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Therefore, by (L3]), we have that

T 1
o) dv(y) < p d
/x\B(x,z,,)' )l du(y) S linl x\B(x.zm[d(x,y)} e, e,y )

s 1 1
<l S / Ly
k=1"B

(x, 2K+ p)\B(x, ka) 2k7— )\(X, 2kp)

<l i 1 v(B(x,2""p))
~ kT . k+1
23 p(Bx,5 - 21p))

=1
Sl D 5 M) < M),
k=1

which completes the proof of Lemma[2:4l [ |

3 Proof of Theorem (1.6} Part |

This section is devoted to the proof of the implications (i) = (ii), (i) = (iii), and
(ii) = (iii) of Theorem To this end, we first establish an endpoint estimate
for T via the so-called elementary measures which are finite linear combinations of
unit point masses with positive coefficients. We begin with the following Cotlar type
inequality inspired by [13].

Lemma 3.1 Let T be a Calderén—Zygmund operator with kernel K satisfying
and ([LG), which is bounded on L*(11). Then there exist positive constants C and c such
that for any f € Ly°(p) and x € supp p,
(3.1) TH(f)(x) < CM(Tf)(x) + Mo (f) ().
Proof Letx € suppp, r € (0,00),and r; = 5/ rand Wi = 1(B(x, ri))forjez, =
NU {0}. We claim that there exists some j € Nsuch that pj;; < 4C§uj_1, where C),
is as in ([L3). Otherwise, by (L3)), we would have that for every j € N,

po < (4C) ;= (4CS) T p(Blx, 12))) S (4CS) I A(x, 571) < 57 A(x, ).
Letting j — 0, we have u(B(x, r)) = 0, which contradicts the fact that p(B(x, r)) > 0
for each r > 0 and each x € supp p. Thus, the claim holds.

Let k € N be the smallest integer such that .1 < 4CSuk—1 and R = ey =
5k=17. Then we see that

(3.2) 1(B(x,25R)) < p(B(x,R)).
Observe that for all j € {1,...,k}, we have that 41,1 < (2C3)/* ¥ and

Alx, 1) < (CM ORI\ (e, 740).
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Let f € Lp° (). From this, (L.5), (L.3), and the Holder inequality, we deduce that

(33) T () — Tsef ()] < / K )L F0)] duaty)
B(x, 5R)\B(x, 1)
k
B K I f ()] dp(y)
jz—;/Bu-,r,-)\B(x,n_l) xSl dply

Z N(B(x rJH))M(f)( )

X, ]+1)

< Z 2TRM(f)(x) £ M(f)().
j=1
Let
1

= —— T d .
Valx) 1(B(x,R)) JEx.r) ) duty)

Then we have
(3.4) [Vr()| S M(Tf)(x).
On the other hand, observe that

Tsrf(x) = / K,y f()duly) = / K(x, y)Xox\Bx, s (0 f (7) dpuly)
X\B(x, 5R) x

= T(fXx\E(x, spy) (%) = <5x, T(fXC)C\E(Jg 5»)) >

— (T8 frwguse) = [ TEOI0) ),

X\B(x, 5R)

where, and in what follows, J, denotes the Dirac measure at x, and for a linear oper-
ator T, T* means the adjoint operator of T. By writing

Vr(x) = XBee, ) VT (y) duly)

1
fu(B(x,R)) /x

1
u(B(xR))/XXBu,R)()’)T(fXB(x,SR))(J’)dﬂ(}’)

* XExR
+/xT (m) DX x\Bx, 50) (P dp(y),

we obtain that

(3.5) |Tsrf(x) = Vr(x)| <

XB(
T (6, — 751 d
/x - (3= s ) () u(y)‘

1
+’/MAC[TfXB(x,5R)(y)] XB(x7R)(J’)d/J(J’)’

=L +L,.

https://doi.org/10.4153/CJM-2011-065-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-065-2

902 T. Hytonen, S. Liu, Da. Yang, and Do. Yang

By (23), we have L; < M(f)(x). From the Holder inequality, the boundedness of T

~

on L*(u), and (3.2), we further deduce that

2

1 < [(BxR)] | [ 170 ) O] )

< [u(BeR)] [ / . If(y)lzdu(y)} <M.

Then combining the estimates for L; and L, and using (3.3)), (3.4), and (3.3]), we have
that for any r € (0, c0),

IT, f(x)| <|T,f(x) — Tsg f(x)| + | Tsp f(x) — Vr(x)| + [Vr(x)|
S Mo (f)(x) + M(T f)(x).

Taking the supremum over r € (0, 00), we obtain (3.1]), and hence complete the proof
of Lemmal[3.11 [ |

Remark 3.2 We point out that if we replace the boundedness of T on L?(u) in
Lemma 311 by the boundedness of T on Li(1) for some g € (1,00), then (3.1 still
holds with M, replaced by M,.

To prove Theorem[I.6] we still need to recall the notion of non-atomic spaces; see,
for example, [6]].

Definition 3.3 A subset A of a measure space (X, p) is called an atom if u(A) > 0
and each B C A has measure either equal to zero or equal to ;4(A). A measure space
(X, w) is called non-atomic if it contains no atoms.

Remark 3.4 We know from Definition 3.3] that X is non-atomic if and only if for
any A C X with u(A) > 0, there exists a proper subset B C A with p(B) > 0 and
(A \ B) > 0. By this, it is straightforward that if u({x}) = 0 for any x € X, then
(X, p) is a non-atomic space. Moreover, it is known that if (X, ) is a non-atomic
measure space, then for any sets Ag C A; C X such that 0 < p(A;) < oo and
WAy) <t < u(Ay) for some t € (0, 00), there exists a set E such that Ay C E C A
and p(E) = t; see, for example, [6} p. 65].

We say that v is an elementary measure if it is of the form

N
V= E @0y,
i=1

where N € N, §,, is the Dirac measure at some x; € Xand o; > Ofori € {1,...,N}.
To prove Theorem[I.6] we first establish an endpoint estimate for T on these elemen-
tary measures. This generalizes [13, Theorem 5.1], where it was proven for polyno-
mially bounded measures as in (L2)) on R".
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Theorem 3.5 Let T be a Calderén—Zygmund operator with kernel K satisfying (L3
and (L6), which is bounded on L*(u). Then there exist positive constants C; and C,
such that for all elementary measures v,

(3.6) 1TV |y < [Cr+ Call Tl 2g—r200] IV]I-

Proof Without loss of generality, we may normalize v such that |[v|| = SN | oy = 1,
and hence we only need prove

(3.7) [Tv]|L o0 < Cr+ Co| Tl| 2 220 -
Since for ¢ € (0,1/1(X)], we have
tp({x € X+ |Tv(x)] > t}) <tpu(X) < 1.
Therefore it remains to conside;r the case t € (1/u(X),00). Let B(x;, p;) be the
smallest closed ball such that p(B(x;, p1)) > a;/t. Indeed, since the function p —

w(B(x, p)) is increasing and continuous from the right, and greater than 1/f > «; /¢
for sufficiently large p > 0, such p; exists and is strictly positive. Then

. — «
u(BGxi, p1)) = lim p(B(xi, p)) < —.
p—p1—0 t

Since (X, u) is non-atomic, by Remark[3.4] we can find a Borel set E; such that
B(x1, p1) € Ey € B(x1, p1)
and u(El) = <L B
Let B(x,, p2) be the smallest closed ball such that p(B(x,, p2) \ E1) > «y/t. Simi-

larly, for the corresponding open ball B(x;, p,), we have u(B(x;, p2) \ E1) < ap/t and
henceforth find a Borel set E, with the property:

(B(x2,p2) \ E1) C E, C (B(x2,p2) \ E1)
and p(Ey) = 2.

Repeating the process, for i € {3,--- ,N}, we have B(x;, pi) and E; such that
B(x;, p;) is the smallest closed ball satisfying that (B(x;, p;) \ U;;ll E) > a;/t,

(B(xi,Pi) \ IIUI1 El) CE C (B(xi,Pi) \ IIUIIEZ)

and pu(E;) = L. Let E = Ufil E;. Then by the fact that Zf\il a; = 1, together with
the choices of {B(x;, p;) }I, and {E; }¥¥ |, we see that

N N
\J B(xi, pi) C E C |J B(xi, pi)
P

i=1
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and u(E) = %
Outside E, let us compare Tv to to, where

N
T= Y Xar\Blw 20 TOXE dp)-

i=1

We have

N N
(3.8) Ty —to = T< aiéxi) — tz XJC\E(x,-,Zp,-)T(XEi du)
i=1 i=1

N N
= Z [ Tox — tX o0\ By, 20 T(XE dR)] = Z i
i=1 i=1
Notice that for any i,
(3.9) / i) dp(x)
X\E

- /x 108 T 2 (T O )G9 )
E;

i=1

<[ T8 = g T O 0]
X\B(xi, 2pi)
N /
B(xi, 2pi)\B(xi, pi)
= [ [Tt~ e d) )] duto)
X\B(xi, 2pi)
+[ a;|Toy, (x)| du(x) =1 + .
B(xi, 2pi)\B(xi, pi)

For each i, using (2.6) and p(E;) = 2, we see that

t
Ih 5 ||ai5xf — IXE d:uH S Q.

Moreover, from (I.3)), (I.4) and (L.3)), we deduce that

a
O
’ B(xi, 2pi)\B(xi, pi) Alx, d(x, x:))
Qi N(E(X,‘, ZPz))
S ——————dpulx) S ai——F——— S ;.
/13(96172/1{)\3(961,;7,') Axi, d(x, xi)) Hex) A, pi)
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By the estimates of J; together with J, and (3.9), we obtain that fx\E|<p,-| du < o,
which, together with (3.8)) and the fact that Zfil «; = 1, further implies that there
exists a positive constant C; such that

N
(3.10) | —owldun < Y- [ el duta) <
X\E i—1 Y X\E

Via (B.10), to accomplish the proof of Theorem 35 it suffices to show that there
exist positive constants C4 and Cs such that Cs = Cy + Cs | T||12(,)— 12(s) Satisfying

(3.11) p{x e X:lo(x)] > Cs}) <

o

Indeed, assume that (3.11)) holds for the moment. Then from p(E) = %, (B10) and
(B.11), we deduce that
,u({x eX:|Tv(x)| > (Cs +C6)t})
< pu({x € X\ E:|Tv()] > (Cs+Colt}) + ()
< u({x e X\ E: |Tv(x) —to(x)| > C3t})
4
+u({xeX:|ox)| > Cs}) + wE) < "

This implies (3.7)), and hence finishes the proof of Theorem[3.5] up to the verification
of (B.11)), which we do in the following lemma. [ |

Lemma 3.6 The estimate (3.11)) holds.

Proof We first claim that there exist C4 and Cs such that for any set F with u(F) = %,

1

< —[Cat Gl Tl 21200 -

(3.12) ‘ /x (X () dp()] <

Indeed, let F be such a set. Then the definition of o gives us that
N
(3.13) / (xF) du(x) = 3 / TXE (X)X 505 2y (¥) dp(0)
x = Jx

N
- Z/ XEi(x)T*XF\E(xi,Zpi)(x) dp(x).
i=1 /X

From (L4) and (L3)), it follows that for all x € E; C B(x;, p;) and y € B(x;, 2p;) \
B(x, pi), A(xi, pi) < Ay, d(x, y)), which, together with (L3) and (T4), further im-
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plies that for all x € E; C B(x;, pi),

T XP\B(x, 200 @) = T X\, ) ()] < / |K(y,x)| du(y)

B(xi, 2pi)\B(x, pi)

< / 1
~ B(xi, 2pi)\B(x, pi) /\()’, d(x, }/))

< w(B(xi,2pi)) <
Axi, pi)

du(y)

This, combined with the fact that T" Xp\Bix, () < (T*)xp(x) and Lemma 3.1}
yields that for all x € E; C B(x;, p;),

|T*XF\§(x,-,2m>(x)| < |T*XF\§(x,-,zm>(x) - T*XF\E<x,p,-)(x)| + | T*Xp\Bix, p,->(x)|
ST+ (T xe(x) S 1+ M(T*xp) ().

Furthermore, by this, (3.13), E = vazl E; (disjoint union), and p(E) = %, we have
that

N

< Z /DCXE’(x)[T*XF\E(XMp,)} (x) dpu(x)

i=1

(3.14) ‘ /x 0 ()X () dp(x)

N
S /x X (0)[1+ M(T*xr) ()] dpu(x)
=1

1
~o T / XE()M(T xp) (x) dp(x).
x
Since T is bounded on L*(11), by duality, we see that T* is also bounded on L?(y) and

1T 20— 2200 = Tl 2gy—r12G0)-

From this fact, Lemma 2.3(i), u(F) = % = w(E), and the Holder inequality, we
further deduce that

/ NECOM(T* ) () dpa() < sl VT X0 2
he

IN

Xl 220 VU 22y = 220 T T 2 )= 22 | XE N 2200

1
i M 20— 20 | Tl 20— 22000

which together with (3.14) gives that there exist C; and Cs satisfying (3.12). There-
fore, claim (3.12)) holds.
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Suppose that pu({x € X : |o(x)| > Cs}) > 2/t. Then either

(3.15) u({x cX:o(x) > C(,}) > %

or
,u({x eX:0x) < —C6}) > %

Without loss of generality, we may only consider (3.15]) by similarity. Pick some set
F C X with u(F) = 1/t such that o(x) > Cs everywhere on F (such F exists because
of Remark[34). Then apparently,

(3.16) /x (X () () > .

Thus, we get a contradiction by combining (B.12]) with (3.18]), which implies (3.11]),
and hence completes the proof of Lemma 3.6. ]

Remark 3.7 (i) Theorem also holds with finite linear combinations of Dirac
measures with arbitrary real coefficients. Indeed, every such measure v can be repre-
sented as ¥ = v, — v_, where v, and v_ are finite linear combinations of Dirac mea-
sures with positive coefficients and ||v|| = ||| + [[v—||. Therefore, || Tv||11 o, <
2(Cy + G| T2y 2 ) 171

(ii) If we replace the assumption of Theorem 3.5 that T is bounded on L?(u) by
the assumption that T is bounded on L1(y) for some g € (1, 00), then via a slight
modification of the proof Theorem we have (B.6) with || T/ 12(4)—12() replaced
by [|T

La(p)—L(p)+

Proof of Theorem[I.6} PartI In this part, we show that Theorem[[.6)i) implies The-
orem[L.6(ii) and (iii) and that Theorem [T.6(ii) implies Theorem [T.6(iii).

We first assume that (i) holds and show that (ii) and (iii) hold. By the Marcinkie-
wicz interpolation theorem and a duality argument, we obtain (ii) via (iii). Therefore,
we only need to prove (iii). To this end, observe that forany f € L'(u), f = f*—f~,
where f* = max{f,0} > 0and f~ = max{—f,0} > 0. Moreover, if we let C;(X)
be the space of all continuous functions with bounded support, by [9, Proposition 3.4]
and its proof, we see that for any f € L'(x) and f > 0, there exist { fj}jen € Cp(X)
and f; > Oforall j € Nsuchthat || f;— f||(,) — 0as j — oo. By these observations,
combined with the linear property of T, we see that to show (iii), it suffices to prove
that (L7) holds for all f € C,(X) and f > 0.

Lett >0,G ={x € X: f(x) >t}, f = fxooand fi = fxx\g- Then
Tf = Tf"+ Tf,. Notice that

/ (01 dux) < t / £6) dux) < ] flloo.
X he

This and the boundedness of T on L*(u) yield that

/x ITHGP dia) < 1T1ogr ot 1l
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which implies that
(3.17) ,u({x € X |Thx) > t||THLz(N)_>Lz(u)}> < ”f”f““)

We now estimate Tf*. Since, by f € Cy(X), G is a bounded open set, by
Lemma there exists a sequence {B;}; of balls with finite overlap such that
G = |J; Bi and 2B; C G for all i. Without loss of generality, we may assume that
the cardinality of {B;}; is just N. Then the fact that {B;};cn has the finite overlap

implies that
fz _ Z f XB; = Z f.

ieN JENXBj N
Then it is easy to see that f; > O foralli € N. Forany N € Nandi € {1,2,...,N},
define f™ = S"N f and

iE i d = d .
o /x f(y) ducy) /B ) du)

Then o; > 0 foralli € N. By G = U,cnB; and the finite overlap property of {B; }ien,
we have

619 Y a<Y [0 S [ 000 S Il
i=1 i=1 /B G
Pick x; € B; and define v™) = Zf\lzl ;0. We obtain that ||vN)|| = Zil o;. By

(B:13), the fact that 2B; C G for all i € N, and (2.6)), there exists a positive constant
C7 such that

(3.19) / | TN () = Tv'™N(x)| dpu(x)
X\G

oo

N N
<3 / | T = s8] ) £ 3 i < Col
— Jx\B

i=1

dpi(x)

N
T<Z[fi dy — Ozi5x,-]) (x)
i1

On the other hand, by Theorem[3.5 we see that

1 1
u({x €X:|Tv™M(x)| > (C +Cz||THL2<u)—>L2(u>)t}) < ;||V(N)H < ;HfHLl(u)a

from which, together with (B.19]), we deduce that
/,6( {x < X\ G: |Tf(N)(x)| > (C7 +C, + C2||T||L2(#)4)L2(#))t})

< u({x eX\G: |Tf(N)(x) — TZ/(N)(X)| > C7t}>

2
+M({x e X\ G: |TvN(x)| > (C, +C2||T||L2(/1,)—>L2(/4))t}) < ;HfHU(u)-
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This, combined with the fact that 1(G) < || |11/t implies that

3
(320) ,u({x e X: |Tf(N)(x)| > (C7 +C1 +C2||T||L2(;L)4>L2(u))t}) < ;HfHL'(u)'

Observe that f™) — f*in L?(11) as N — oo. From the L?(p)-boundedness of T,
we then deduce that Tf™) — Tf* also in L?(u) as N — oc. By this fact and (3.20),
we have

3
n({x € X: T > €+ Cr+ CallTllgo)t} ) < =l

from which, together with (3.17), it follows that there exist positive constants Cg and
Cyg such that

supt pu({x € X : |[Tf(x)] > t}) < (Cs + Coll Tl 2gy—r20) | fll1r0)-

t>0

This implies (I.7), and hence finishes the proof of the implication (i) = (iii).

Now assume that (i) holds. Then by Remark B.7(ii) and a similar proof of
(i) = (iii), we see that (iii) holds. We omit the details, which completes Part I of
the proof of Theorem [L.6l ]

4 Proof of Theorem 1.6} Part Il

This section is devoted to proving (iii) = (i) of Theorem[L.& To do so, we first estab-
lish the boundedness of T# from L'(u) to L' °(u), which implies that {7} },¢(0.00)
is uniformly bounded from L!(p) to L} (). By restricting 1 to gy, where puy
is the restriction of i to a given ball B(xy, M) for some x, € X and M € (0, c0),
we will prove that for any r € (0,00) and p € (1,00), T, is bounded on L?(fip).
Then, using a smooth truncation argument, we will further show that { T, },¢(0.00) is
uniformly bounded from L?(1) to L?(ups) with the constant independent of M. By
letting M — 00, {T;}r(0,00) is uniformly bounded on L2(). An argument involving
the random dyadic cubes from [10] will yield the desired conclusion.

Theorem 4.1 Let T be a Calderén—Zygmund operator with kernel K satisfying (L5])
and (L.8), which is bounded from L' () to L' °(11). Then there exists a positive constant
C such that for any f € L'(p),

IT# fllse ey < Cllf Nl
Proof Let p € (0,1). By Lemma[23(i) and (ii), we see that M is bounded from
L'(p) to L'°°(p), and M, is bounded on L' *°(y). Then by the boundedness of T
from L!(u) to LY (1), to show Theorem 1] we only need to prove that for any
feLy(u)andx € X,

[T F(0)12 < M, TF(x)]P + [Mf(x)]P.
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Moreover, it suffices to prove that for any r > 0, f € L°(u) and x € X,
(4.1) T f(x)[P < [M,Tf(x)]? + [Mf(x)]?.

To this end, for any j € N, let r; = 5/r and Wi = 1(B(x, r;)) be as in the proof of
Lemma[3.1] Again let k be the smallest positive integer such that ju; < 4C$pk—1 and
R = ri_; = 55 !r. Similarly to the proof of (3.3), we see that

(4.2) [T, f(x) — Tspf(x)] S Mf(x).

Let fi = fXpusp and fo = f — fi. Forany u € B(x,R), if K is the kernel
associated with T, then by (L) and (T3), we see that

| THG) — Thw)| g/

d(x, y)>5

|K(x,y) = K(u, )| | f()|dp(y)
R

RS )
5;{ 5R } /B(&SkﬂR),\(x,SkR)du(y)SMf(x).

This, combined with (4.2)) and the fact that

TR = [ Ky ) dnty) = Ton 0
implies that
T, fG)| < T, f(x) — Tspf(x)| + | Tsrf(x) — ThHw| + | T fo(u)]
S Mf) +[Tfw)]+|Thi(w),
from which, together with p € (0, 1), it further follows that for all u € B(x, R),
(4.3) T, P < [MF)] T + | TF@)|P +|Tfi(w)P.

Since T is bounded from L!(u) to L' °°(u), by the Kolmogorov inequality (see,
for example, 5, p. 102]), we obtain that

1 1
44) — T P du(u) < ——
D) B R) Sy 0N i) S [u(B(x,R)nP{/W

Taking the average of the variable u over B(x, R) on both sides of (£.3)), and using
([#4), the Holder inequality, and (3.2), we see that

p
) | fi(u)] du(u)] .

1

» P b,
T f@F < [Mf0)]" + [Mp(TH)] T ABER) S

| Th(w)|P dp(u)

< [MF@] 7+ [M(THE)]”

1
+ _—
[1(B(x,25R))]? |:/B(x, 5R
S [Mf)]" + [MTHE)] "
which implies (£.1)), and hence completes the proof Theorem [£.1] ]

P
I du(u)]
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Let xp € X and M € (0, 00). We now obtain the boundedness of the truncated
operators { T, }re(0,00) 00 LP(p1pr) for all p € (1, 00). Notice that the set X \ B(xo, M)
has par-measure zero by definition, and hence we may agree that any f € LP(up)
satisfies fx\5(x, ) = 0. With this agreement, observe that

T, f(x) = /d( Ko duty) = / KGe ) f) diane(y)
xX,y)>r

d(x,y)>r

for f € LP(up), so we may also replace 11 by gy in the formula of T, f when consider-
ing functions f € L?(uys). Finally, observe that puy, also satisfies the upper doubling
condition with the same dominating function A, so that all results shown for y apply
equally well to s, with constants uniform with respect to M.

Lemma 4.2 Letp € (1,00) andr € (0,00). Let M € (0, 00) and puy be as above.
Then there exists a positive constant C, depending on M and r, such that for all f €
L7 (), B

1T fllrno < Cllfllieguo-

Proof We first claim that there exists a positive constant C such that for all x €

E(9(:07 M))
(4.5) T, £ ()] < CING D] ll oy -
To this end, let By = B(x,r). Then (L3) together with the Holder inequality gives
that
du(y) v
4.6 T, < _—
o 1015 |, Tty Mo

We prove the claim by inductively constructing an auxiliary sequence of radii,
{ro,71,12,...}, such that ro = r and r;,, is the smallest 2%r; withk € N satistying

(4.7) Ax, 25r) > 2M\(x, 17),

whenever such a k exists. We consider the following two cases.

Case (i) For eachi € 7., there exists k € N such that holds. In this case, r;;
will be the smallest 2kr; satisfying @D for all k € N, and {B;}ien = {B(x, ;) }ien-
Now by (L3)) and the fact that 2’ A(x, r) < A(x,r;) forall i € Z,, we have that

dny) X plBi)
(48 /x\Bo 3G s, TP 2 Do 7 2 G ro) 7T T
> 1 1
& ;, 27AGe 1P =TT A )] T

and hence

dﬂ(y)] P
|:/DC\B0 [A(x, d(x, y))]p’ ~ Alx, )] 7,
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which, combined with (4.6]), implies ([4.5)), and the claim holds in this case.

Case (ii) For some iy € Z,, ([&7) holds for all i < i, but does not hold for 7,. In this
case, if ig € N, we let {B;}}° | be as in Case (i), rj,+1 = 00 and Bj,+1 = X; otherwise,
if ip = 0, we then let r; = 0o and B; = X. Then we see that A(x, Zkr,-o) < 2A(x,14,)
forall k € Nand

w(X) = lim w(B(x, 1)) < lim A(x,t) = AMx, 00) < 2A(x,13,),
t—00 t— 00

which, together with (T3) and the fact that 2'\(x, ) < A(x,7;) for all i < i, gives
(4.3) in this case, and the claim holds.

Ifx € supp pap = B(xg, M), then supp ppr C B(x, 3M). By this and the definition
of supp p, we get that

1+log,(3M /1)

(X)) = pn(B(x, 3M)) < A(x,3M) < C, Alx, 1),
thus
1 Ciﬂogz (M/r)

<
Alx, 1) ppr (X0)
By this fact, we obtain that

dpy(x) < €=,

() _ /
x A T (X)) Jx

From this and (&3], it follows that

Ay ()] 7
T fllrgun S I ll2egun [/x A(Axl, ) ]

3+log,(M/r)1 3~
S Mz [C5 7] 7 = CML )| fllzo -

This finishes the proof of Lemmal[£.2] [ |

We will need the following result, which shows that two bounded Calderén—Zyg-
mund operators having the same kernel can at most differ by a multiplication oper-
ator.

Proposition 4.3 Let T and T be Calderén-Zygmund operators that have the same
kernel K satisfying (L)) and and that are both bounded from LP (1) to LP*° ()
for some p € [1,00). Then there exists b € L* () such that for all f € LP(p),

Tf—Tf=0bf and |bllrq) < |IT — Tllrrg—rro-

The proof will rely on the following lemma.

Lemma 4.4 For a suitable § € (0, 1), there exists a sequence of countable Borel parti-
tions, { QX }oe o k € 7, of X with the following properties:
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€ X and constants 0 < ¢, < ¢ < oo, B(xk,c0%) € QF C

«?

(i)  For some xﬁ
B(x, c20%);
(i) {QX"}ocwm,, is a refinement of { QX } e,

Moreover, it may be arranged that

(4.9) w(Uaa) =o,

a, k
where foraset Q, 0Q = {x € X : d(x, Q) = d(x, X \ Q) = 0} is the boundary.

Proof Let {Qﬁ}a, ez be the random dyadic cubes constructed in [10]], so in fact Qﬁ =
Qk (w), where w is a point of an underlying probability space 2. We use IP to denote
a probability measure on (2 (as constructed in [[10]), so that IP(A) is the probability of
the event A C (). By the construction given in [10], these sets automatically satisfy
the other claims for all w € €2, and it remains to show that we can choose w € 2 so

as to also satisfy (£9).
The “side-length” of Qﬁ is defined E(Qﬁ) = 6k, where 6 € (0, 1) is a fixed param-
eter entering the construction. For € € (0, 00), let

6:Q={x:d(x,Q) < el(Q}{x:d(x, X\ Q) <el(Q)}

It was shown in [I0, Lemma 10.1] that there exists an 77 > 0 such that for any fixed
x€ Xandk €7,

]P’(x e UéEQﬁ) < e,

In particular, by taking the limit as ¢ — 0, we obtain that
lP’(x c Uaoﬁ) —o0.
Then it is possible to sum the zero probabilities over k € Z to deduce
]P’(x eU aQ’;) ~0.
ko

Now we can compute (the integration variable of the dP-integrals is w € (2, the
random variable implicit in the random dyadic cubes Q¢ = Q¥ (w)):

/ u(anﬁ) dp = / / U, a0 () dp(x) dP = / / 1 a0 (0) dP du(x)
0 ‘ka QJx TFeTe xJo TReTTC

= /xIP’(x cU GQ’,;) dp(x) = 0.

k, a

So the integral ofu(Uk,aan(w)) > 0 is zero. This means that (|, , 8Qﬁ(w)) =0
for P-almost every w € €. Now we just fix one such w, and for this choice, the
boundaries of the corresponding dyadic cubes Qﬁ = Qﬁ(w) have p-measure zero.
This implies (£.9) and hence finishes the proof of Lemma 4.4 ]
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Proof of Proposition[d.3] LetS= T — T. Then S is bounded from L? () to LP-2° ()
for some p € [1, 00) as in the proposition, and it has kernel 0. We will prove that for
all M € Nand all f € L?(u) with supp f C By = B(xo, M), and p-almost every

x e X,

(4.10) SF) = f(0)S(15,)(x) = f(x)bu(x)
and

(4.11) 16a oo vy < ISHzoy— L0001y 5

where iy = plp,,-

Suppose for the moment that (£10) and (417 are already verified. If M < M’,
then for all f € LP(p) with supp f C By C By, we have fby = Sf = fby almost
everywhere on By,. Since this is true for all such f, we must have by;s = by on By,
and hence we can unambiguously define b(x) for all x € X by setting b(x) = bp(x)
for x € By The uniform bound (&IT) implies that ||b]|zs )y < ||S||ze(u)—rroe ()
andwehave Sf = bf forall f € L?(u) with bounded support. Finally, by density this
holds for all f € LP(u). Thus, proving (£10) and (@II) will prove the proposition,
and we turn to this task.

Now we prove (£.10). Let us consider functions of the form

(4.12) > lgnny
«

where {Qﬁ}m « are the dyadic cubes with zero-measure boundaries as provided by
Lemma 44l Since (X, d) is geometrically doubling and By, is bounded, we see that
only finitely many Q¥ intersect By, and hence the sum in (#I2) may taken to be
finite.

We claim that for p-almost every x € X,

(4.13) S(1gtnpy) (%) = 1gkng, (x) - S(1p,) (x).

Indeed, observe first that for p-almost every x € X,

(4.14) S(1p,)(x) = S(Z 1ngBM> () =3 S(1gt ) (0)-
B

]

On the other hand, the assumption that S has kernel 0 means that for any f € Lp°(u)
and p-almost every x ¢ supp f,

57 = [ 07 du(y =o.
X
This gives that
supp (S(ngﬂBM)) C supplyinp, = Q’; N By

C Q5 UBw = (QNBu) U (0Q5 N By).
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Recall that Q and Q’é are disjoint if « # (3, which together with (4.9) implies that
almost every x € Qﬁ N By is outside supp (S(lQ§ N By)). Hence SUQ@mBM)(x) =0
for p-almost every x € Qg N Bur, and thus, for p-almost every x € X,

Lt gy, (x)S( lQémBM) (x) = 0aplgtnpy (x0)S( 1Q§mBM) (x) = dapS( lQﬁgmBM) (%),

where d,p3 = 1if @ = 3 and d,3 = 0 otherwise, and the last equality follows from
the fact that 1, (x) = 1 for p-almost every x € supp (S(1g:np,,))- Multiplying
(14 by 1k, gives

Loty (%)S(1p,,) (x) = Z lQﬁmBM(x)S(lQ{}mBM)(x) = S(Lgt Ay, ) (%),
5

which is precisely (£.13).

Now it is easy to complete the proof of (4I0). For any f of the form (@12), it
follows from (4.13)) that

(4.15) Sf=>_ xkS(girp,) = > % 1gens,SUs,) = fSUs,).

On the other hand, recall that martingale convergence implies that for any f € L!(y),
Ef=) (Haley = f

for p-almost every x € X and in LP(p) as k — oo. If f € LP(u) is general, apply
to [Exf - 1p,,. Then as k — oo, we have Exf - 15, — f - 1p,, in LP (1), hence
S(Exf-1g,,) — S(f-1p,,) in LP>*°(u), and thus almost everywhere for a subsequence.
Also, by (@T15]), we obtain that

S(Exf - 1B,) = Exf - 13, - S(1,) = f - 1p, - S(1p,,)
for p-almost every x € X. Asaresult, for all f € LP(u),
S(f - 1py) = f - 1p, - S(1p,) = f - 15, - by,
where by, = S(1p,) € LP*°(u), since 15, € LP(u). Thus, holds for all
f € LP(u) with supp f C By

It remains to prove (A.I1)). Let A € (0,00), f = 1{jp,|>A}n8, and

B = |IS||zequy— 1o (-

Then || fllry = [p({x € X : |ba(x)] > A} N By)]'/P. By this, (&I0) and the
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boundedness of S from L?(u) to LP°°(4), we see that

/
/\[u({xe X |bm(x)| > /\}ﬁBM)} v

= )\[,u({x € X : |bpu(x)f(x)| > )‘})} v

1/p

= A € X1 15509 > A))]

< NISfllreein < Bl fllzrgo

/
:B{u({xe X |bp(x)| > )\}ﬂBM)} v

This means that either p({x € X : |by(x)] > A} NBy) = 0 or A < B, which is
the same as ||by|| < () < B. This implies (£I1)), and hence finishes the proof of
Proposition [ |

From Proposition[4.3] we easily deduce the following consequence.

Lemma 4.5 Let T and T be Calderén—Zygmund operators having the same kernel K
satisfying (L3) and (LE) and which are both bounded from L' (u) to LY *° (). Assume
that T is bounded on L*(11). Then T is also bounded on L*(w).

Proof By Proposition[:3} we have Tf = Tf + bf, where b € L°°(11). Hence

ITf g < NT flleg + 10fleg < (ITzw—ze + 18w ) 1z,
which completes the proof of Lemmal[4.3] [ |

Proof of Theorem[I.6, Part II In this part, we show that Theorem [T.6(iii) implies
Theorem [L6(i). Let pn = pulg(y, ar) be as before. The assumption clearly implies that
T is bounded from L' (ppr) to LY °°(uyy), with a norm bound independent of M. We
will then prove that T is bounded on L?(yyy), still with a bound independent of M.
By the density of boundedly supported L3 _ (11)-functions in L?(11) and the monotone
convergence, this suffices to conclude the proof of (iii) = (i) of Theorem[L.8 Thus,
from now on we work with the measure iy, recalling that it satisfies, uniformly in
M, the same assumptions as y, so that everything shown for p above applies equally
well to pps.

By Theorem 1] we see that T* is bounded from L!(jy) to LY °°(upr), which
implies that {T;},¢(0.00) is uniformly bounded from L!(y5r) to L' (ups), and the
bound (denoted by N;) depends only on the norm of T as the operator from L ()
to L1 (1),

Let p € (1, 00). It follows from Lemma[L.2] that for any r € (0, c0), T is bounded
on LP(up) with p € (1,00), but with the norm a priori depending on M and r.
We claim, however, that {7} },¢(0.00) is uniformly bounded on L?(ps). That is, if we
denote the corresponding norm by N, (7, M), then we have that there exists a positive
constant C depending on Ny, but not on r or M, such that

(4.16) No(r, M) < C.

https://doi.org/10.4153/CJM-2011-065-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-065-2

Boundedness of Calderén—Zygmund Operators 917

To this end, we define for any r € (0,00) and x € X,

15 = [ Koy (CE2) ) duty)

where 1 is a smooth function on (0, 00) such that supp ) C [1/2,00),9(t) € [0, 1]
forallt € (0,00),and ¢ (t) = 1 whent € [1,00), and K is the kernel of T. It follows,
from the definition of T, and (L3), that for any x € X,

T, fx) — TV £ < / K, 7)1 ()] da(y)
B(x,r)\B(x,1/2)

|f()]
< AT aA N <
</ g ) S M)
This fact, together with Lemma[R2.3)i), implies that the boundedness of T, on L? (1)
for p € (1, 00) or from L' (157) to L' *°(pups) is equivalent to that of T¥. Moreover, if
{T,}+e(0,00) is uniformly bounded on L?(ypr) or from L' () to LY *°(pup), then so
is {T¥},e(0.00); and vice verse.

Now we denote by Np(r, M) the norm of TY on LP(j1,) and by N, the (finite)
supremum over r and M of the norms of T,‘L' from L'(upr) to L (upr). Then to
show (£.16)), we only need to prove that

(4.17) Ny(nM) < C

for some positive constant C independent of r and M.
We now prove ([@I7). Observe that for each r, TV is bounded on L?(uys) and
from L' (j1ps) to LY °°(p1as). Then from the Marcinkiewicz interpolation theorem, we
4 ~ <1 ! .
deduce that T¥ is bounded on L5 (j1p) and Ni(r,M) < Ny [Ny(r,M)]2. By duality,
the right-hand side also gives the bound for the norm of (T¥)* on L*(pp). Observe
that

“ d
(Tf’)*(g)(x>=/xK(y’xW( L) ) din).

Then (TY)* is also a Calderén-Zygmund operator. Thus (T)* is bounded from
L' (p1ar) to L' > (1), and the norm is bounded by ¢N; [N (r, M)]? +¢ for some pos-
itive constants ¢ and ¢. Another application of the Marcinkiewicz interpolation theo-
rem yields that the norm of(T;/’)* onlL3 (ppr) s also bounded by cﬁf [Nz(r, M)] 14C
~ ~1 ~ L

By duality, we further see that Ny(r, M) < cN [Ny(r, M)]: + ¢. Using interpolation
again, we have that Na(r,M) < cﬁf [N, (r, M)]? +¢, from which (@I7) follows. Thus,
(@.146)) holds and the claim is true.

As a result of ([£I6), we see that {T}},c(0.00) is uniformly bounded on L*(up),
with bounds also uniform in M. By letting M — oo, we have that {T},¢(0.00) 18

uniformly bounded on L?(z1). Then there exists a weak limit 7' bounded on L?()
and some sequence r; — 0 as i — oo. That s, forall f € L*(u) and g € L*(p),

(g Tf) = lim (8. T, f).
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By a standard argument (see, for example, [7, Proposition 8.1.11]), it is easy to
check that T is a Calderén—Zygmund operator with the same kernel K as T. It follows,
from (i) = (iii) of Theorem for the operator T, that T is also bounded from
L'(p) to L*°(u). Applying Lemma we have that T is also bounded on L?(p).
This finishes the proof of (iii) = (i) of Theorem[L.6land hence the proof of Theorem
11.6) |

5 Proof of Corollary[1.7]

As an application of Theorem we prove Corollary[L.7]in this section. We begin
with an inequality for T* on the elementary measures.

Lemma 5.1 Letp € (0,1) and let T be a Calderén—Zygmund operator with kernel K
satisfying (L3) and (LG), which is bounded on L*(j1). Then there exist positive constants
C and C(p) such that for all elementary measures v =y, o0y, and x € supp L,

(5.1) [Tr(x)] " < C[M,Tv(x)] "+ C(p) My (x)]P.

Proof Asin Lemma[3.} let r € (0,00), rj = 577, pj = p(B(x, rj)) for j € Z,, let
k be the smallest positive integer such that pg < 4Cf’\,uk_1, and R = 1, = 5 Ir.
Similarly to the proof of (3.3]), we have

(5.2) |Tv(x) — Tspr(x)| < Mu(x).

Now decompose the measure v as v = vy + 1, where

v = Z aidy, and 1, = Z @i 0y, -

ix; €B(x, 5R) i:x; € B(x, 5R)

Applying 24) to T*, we have that for any x € B(x, R),

| Tsrv(x) — Ty (X)| = ‘/XK(x, Y)X\Bix, ) (V) dv(y) — Tra(x)

= ‘/XK()C, }/) de(}’) - TVZ(@

— |Ta(x) — T ®)| = |(8e, Tva) — (s, Tis)]

S/x|T*(5x—5§)()’)|de(}’)
< / T — 8] di(y) < M),
X\B(x, 5R)

This implies that

1

5.3 Hi = ——=——=
(5.3) "= u(B(x,R)) B(x, R)

| Tsrv(x) = Tir B du(® S V()17
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On the other hand, write

1
= - _ 4
H, = B R) /B(X’R) [Ty (%) — Tv(X)|F du(x)

1
u(B(x, R)) /B(x,R) T @I du®

= M/ psp_lu({fe B(x,R) : |[Tvi(%)] >s}) ds.
) 0

Since T is bounded on L?(11), by Theorem[3.3} we have that for every s € (0, 0o),

~ = . = 1%
(5.4) ,u({x € B(x,R) : |Tv1(%)| > s}) < mm(/L(B(x,R)) , I ;H) .
Observe that ||v;|| = v(B(x,5R)). This, together with (5.4), the definition of Mwv,
and (3.2)), gives that
1 v(B(x, SR)))

u({kve B(x,R) : |[Tvi(X)| > 5}) < M(F(x,R)) min(l, S (B R)

< M(E(x, R)) min(l, %My(x)) ,

which further implies that

H, §/ pspflmin(l, 1J\/[zx(x)) ds
0 S

Mur(x) oo
~ / ps” Vs + / P 2 Mu(x) ds S [Mu(x)] .
0 Mu(x)

From this, combined with (5.3)), we deduce that
1
w(B(x,R)) Jxr)
Using this and (5.2)), we see that
1
1(B(x,R)) Jar)
<L
~ p(B(x,R)) SR

+ [ Tsgp(x) — Tv@)|? + | Tv @] du()

| Tsgv(x) — Tv(®)| " dp®) < H +Hy < [Mr(x)]P.

Tl = TP du(®)

[T (x) — Tsp(x)|?

S My ()P + [T (%)|? du(X)

1
1(B(x, R)) JBxr)
< IM@)]? + [M,Tr)] .

Taking the supremum over r > 0, we see that (5.0]) holds, which completes the proof
of Lemmal[5.1] [ |
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As a result of Lemma 5.1} by Theorem[3.5and Lemma[2.3(i) and (ii), we have the
following corollary.

Proposition 5.2 Let T be a Calderén—Zygmund operator with kernel K satisfying
(L) and (L.8), which is bounded on L* (). Then there exists a positive constant C such
that for all elementary measures v € .# (X),

IT* o) < Cllvl.

Proof of Corollary[l.7] By Theorem Remark Lemma [2.3(i), and a density
argument, we have (i). To prove (ii), it suffices to prove (L), since for any f € L!(p),
if we define dv = fdu, then we see that v € .#(X) and follows from (L.8).
Moreover, recall that for any complex measure v € .Z(X), [v|(X) < oo; see, for
example, [I5, Theorem 6.4]. Then, by considering the Jordan decompositions of
real and imaginary parts of v, we only need to prove (L8] for any finite nonnegative

measure.
To this end, assume that v is a finite nonnegative measure and fix t > 0. We show
that
v
p({x € X [Tv(x)| >1t}) < ”t—H

Let R > 0 and consider the truncated maximal operator Tf{V = sup,.p | T;v|. Since
T}gu(x) increases to T%v(x) pointwise on X as R — 0, it suffices to show that there
exists a positive constant C such that for every R > 0,
(5.5) y({xEx:|T£V(x)|>t}) S%.

In what follows, we use P to denote a probability measure on a probability space
Q, P(A) the probability of the event A C €, E(&) the mathematical expectation of a
random variable ¢ € L'(P), and V(&) = E[(£ — E€)?] = E€2 — (E€)? the variance of
¢ e LX(P).

For each N € N, consider the random elementary measure vy = H;\%” Zfil Ox;»>
where the random points {x;}}¥, C X are independent and P({x; € E}) =
v(E)/||v|| for every Borel set E C X. This immediately implies that

1
IEf(xi) = m /X f(Z)dV(Z)

for f = 1 by definition, for simple functions f by linearity, and finally for all f €
L'(v) by approximation. From this, we deduce that for every x € X and r > R,

1
Il

(5.6) E[(T;05,)(x)] Tiv(x).

Indeed,

Il EI(T6) (0] = / (T,6,)(x)di(z) = / / K(x, )db.()dv(2)
X X Jd(y,z)>r

- / Litesyor K (e, 2)d1(2) = Tv(x).
X
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Thus, holds.
Fix some xy € X and M € (R, 00). On the other hand, from (I4)) and (L.3]), we
deduce that for any x € B(xy, M),

Ao, M) S Ax, M) S CLHo8M P 5 (R,

where C), is as in ([3). By this, the fact that r > R, (5.8]), and (L.5), we have that for
any x € B(xq, M),

2
(5.7) VIT,6,(0] < E[|T,8, (0] = / [ / K(x,7) déxi(y)] dp
X

Q

Ci[l+10g2(M/R)]

<
[AGe, )2~ [ACxo, M)]

= /[K(x, Xi)]ZXx\g(xJ)(xi) dapP 5
Q

Moreover, by (5.6), we see that

N
(5.8) E[(Trvn)(x)] = Z %JE[(T@{)(:C)] = Tv(x).
i=1

This, together with the Cauchy inequality and (5.7)), implies that there exists a posi-
tive constant ¢, independent of xg, M, r, R, and N, such that

V[ Tn(x)] = [y EN:N x| < vl - V[T,0,(x)]
rVN Nz o rUx; =N rYx;

i=1

HI/||2 Ci[l+logz(M/R)]

=N Ao, M2

Fix a number v € (0, 00) small enough. From the fact above, the Chebyshev in-
equality, and (5.8)), we deduce that for every point x € B(xy, M) such that |T,v(x)| >
t)

P{|T,vn(x)| < (1 —y)t}) < P{|Tron(x) — Trv(x)| > vt})

V(Twy)(x) 1 |y|2 s M/R
g Sthn TS
YA Y2 N [Axg, M)]

rovided N > c””Hz M
p Z CT G M

satisfying Tﬁy(x) > t,

. Since r > R is arbitrary, we infer that for each x € X

P({Thw@ < =r}) <7,
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Let E be any given Borel set with (E) < oo such that szy(x) > t for every x € E.
Then

lE(u({x c€E: T}%VN(x) <(1- 'y)t})) = /]P’({TﬁyN(x) <(1- W)t}) du(x)
E
< YU(E).

Thus, there exists at least one choice of points {x;}Y | such that
p{x € E: Tomw () < (1= 7)t}) < yulE),

and therefore, u({x € E : TﬁyN(x) > (1=7)t}) > (1 — v)u(E). From this, together
with Proposition[5.2] it follows that

n(B) < = {x € E: T > (1= r} )

1 1 1
< —— Ttl/ , 00 < — |y < |

Since v > 0 is arbitrary, we obtain that u(E) < ”'—;” As E is an arbitrary subset of

finite measure of the set of the points x € X for which szy(x) > t, we obtain (5.5),
which completes the proof of Corollary[I.7] ]

Remark 5.3 If we replace the assumption of Corollary [[.7] that T is bounded on
L*(11) by the assumption that T is bounded on L9(u) for some g € (1,00), then
Corollary[T.7still holds.
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