Canad. Math. Bull. Vol. 31 (1), 1988

THE NUMBER OF ROOTED CONVEX POLYHEDRA

BY
EDWARD A. BENDER AND NICHOLAS C. WORMALD

ABSTRACT. Let p; be the number of rooted convex polyhedra
with i + 1 vertices andj + 1 faces. We express p;; as a singly indexed
summation whose terms decrease geometrically. From this we

deduce that
: ( " )( ; )
Pi =355\ + 3\ +3

uniformly as max(i, j) — oo.

1. Introduction. Let p; be the number of rooted 3-connected planar maps
with i + 1 vertices and j + 1 faces. When i, j = 3, this is the same as the

number of rooted convex polyhedra with i + 1 vertices and j + 1 faces by
Steinitz’s theorem. Our goal is to prove

THEOREM 1. For i, j = 3 we have

Py = Bii =f(}_l—_1_) %Ak(—lﬁ)(zi j_—kz_ 4)(:’ - ]2(j—~ 1)

=j(j - D({ i 22+ 1) ; Bk(—/—f4)(2i ;'lf 3~ 5)(i EJ:_I 1)

where
Ay =j— kj — 2 + 2k + 2,
B, = —6ki* — (k + 2)id + 2(k — 2)d*
+ 23K + 10k + 2)i — (3k* — 2k — 20)d — 6(k + 2)*,
d=2—j
and k ranges from 0 to min(i — 1, 2i — j — 2).

Received by the editors May 26, 1986.

Research of the first author partially sponsored by the Office of Naval Research under
Contract N00014-85-K-0495.

AMS-MOS Subject Classification (1980): 05C30.
® Canadian Mathematical Society 1986.

99

https://doi.org/10.4153/CMB-1988-015-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1988-015-2

100 E. A. BENDER AND N. C. WORMALD [March

THEOREM 2. Uniformly as max(i, j) — oo

=50 2l )
Pi =355\ + 3\i + 3

where the right hand side is zero when Pj = 0 and max(i, j) = 4.

Theorem 1 is more efficient when i = j than when i = j: there are fewer terms
and they decrease geometrically in magnitude after the first few. When d = 3,
there are only 2 terms which combine to give Tutte’s formula [4] for the number
of rooted triangulations. To calculate p;; to n significant digits requires at most
O(log n) terms in the latter summation in Theorem 1 independent of i and j
provided i = j. Theorem 2 simplifies and extends the range of Bender and
Richmond’s formula [1, Theorem 1]. It now follows from Bender and Wormald
[2, Corollary 4.2] that the number of combinatorially distinct convex polyhedra
is asymptotic to

w2l o)
2235ij(i+j)j+3 i+ 3

uniformly as max(i, j) — oco.
Unless otherwise noted, we shall assume that i, j = 3 for the remainder of the

paper.
2. Proof of Theorem 1. Mullin and Schellenberg [3, (6.24), (6.5) ] obtained
. 1 1
Ei»x’f=x( + —l)ﬂF
Py > 1+ y
where

F— __’S__?
(1+r+y
and (r, s) is given implicity by (#(0, 0), s(0, 0) ) = (0, 0) and
(x, p) = (r/(1 + s)%, s/(1 + P

They applied Lagrange inversion to this to obtain p;; as a double summation. By

arranging terms differently, we obtain a single summation. By Lagrange in-

version, Py 1s the constant term in
—F

x(r, )y, sy

ox/dr 0dx/9ds
dy/dr 9dy/os

rs
A+ TN+ s —r s — 1)
r TN 4+ s’

A+ ¥4 + n¥! ro\73
=3 pim2gi72 b 1+
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(1 + %31 + p¥! ro\72
B rimlgs ™l b+ 1+ s/

By expanding the last factor in each of the terms and then extracting
coefficients we obtain

@1 =2 3(—,(3)(% j__k 2 4)(1’ g 2)
SR

Write K = k — 1 and
-2 -3 -3
(k)=<k)+(1<)

in the second sum of (2.1), regroup terms by replacing K with k in the
appropriate summation index, and perform a bit of algebra to obtain the first
summation in Theorem 1. The second summation is obtained in a similar
fashion after first writing

Ak(—k3) -2+ 2){(7{4) + (—K“)} 43— 2)(‘1{4).

3. Proof of Theorem 2. We will use the latter summation in Theorem 1 and
will assume, without loss of generality, that j = i. By Euler’s theorem,
d=2—j=3

with equality for triangulations. For e > 0 and d = O(i 17, it can be shown by
straightforward calculations that the first two terms in the summation suffice
to obtain Theorem 2 uniformly. We suppose € < 1/3 and d = i' ¢ for the

remainder of the paper.
We have

PN ) - =) - (o

where 0 = fand, for k = O(*), f = OG*”") uniformly. Similarly,

%+ 1 2j+1)_( i )k B
(i—k+l)/(i+l BT ACIE
where 0 = g and, for k = O(), g = OG**"!) uniformly. Combining these
results we obtain

Py~ 2%4(3'__ I 11){2 (© + pw )t + 0(,-'+3<)}
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where C = —4d? — 2id, D = 2d*> — id — 6i* and

__ d i
22— i) 2

I\

0
By using
—4\ k _ -4 —4\ k _ -5
2| =0 +p) and 2k, = —4p(1 + p)

and a bit of algebra,
SRNCER TR e
SRV R VT

Theorem 2 follows with a bit of algebra.
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