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Abstract

In this paper, using pseudo path algebras, we generalize Gabriel's Theorem on elementary algebras
to left Artinian algebras over a field k when the quotient algebra can be lifted by a radical. Our particular
interest is when the dimension of the quotient algebra determined by the nth Hochschild cohomology is
less than 2 (for example, when k is finite orchard = 0). Using generalized path algebras, a generalization
of Gabriel's Theorem is given for finite dimensional algebras with 2-nilpotent radicals which is splitting
over its radical. As a tool, the so-called pseudo path algebra is introduced as a new generalization of path
algebras, whose quotient by ken is a generalized path algebra (see Fact 2.6).

The main result is that

(i) for a left Artinian ^-algebra A and r = r(A) the radical of A. if the quotient algebra A/r can be
lifted then A = PSEk{&.sz/, p) with Js c (p) C J for some s (Theorem 3.2);

(ii) If A is a finite dimensional A:-algebra with 2-nilpotent radical and the quotient by radical can be
lifted, then A = k(A,g/. p) with P C (p) C 72 + J l~l ker<p (Theorem 4.2),
where A is the quiver of A and p is a set of relations.

For all the cases we discuss in this paper, we prove the uniqueness of such quivers A and the generalized
path algebras/pseudo path algebras satisfying the isomorphisms when the ideals generated by the relations
are admissible (see Theorem 3.5 and 4.4).

2000 Mathematics subject classification: primary 16G10.

1. Introduction

In this paper, k will always denote a field and all modules will be unital. An algebra
is said to be left Artinian if it satisfies the descending chain condition on left ideals.

It is well-known that for a finite dimensional algebra A over an algebraically closed
field k and the nilpotent radical N — J(A), the quotient algebra A/N is semisimple,
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that is, there are uniquely determined positive integers nx < n2 < • • • < nr such that
A/N = Mni(k) © • • • © Mnr(k), where Mni{k) denotes the algebra of «, x n, matrices
with entries in k, which is trivially a jt-simple algebra. In the special case that A is an
elementary algebra [1], every n,< = 1, that is Mnj = k, so that A/N, as a k algebra, is
a direct sum of some copies of k and we can write A/N = I_]r(&).

Obviously, every finite dimensional path algebra is elementary. Conversely, by
Gabriel's famous theorem [1], for each elementary algebra A one can construct the
corresponding quiver F(A) of A such that A is isomorphic to a quotient algebra of the
path algebra kT (A). On the other hand, the module category of any algebra A is always
Morita-equivalent to that of some elementary algebra [3]. Therefore, from the point
of view of representation theory, it should be enough to consider representations of
elementary algebras, or equivalently. quotient algebras of path algebras. In particular,
this approach has provided the description of finitely generated modules over some
given algebras (see for instance [1, 5]).

However, from the point of view of the structure of algebras, finite dimensional
algebras cannot be replaced by elementary algebras. This applies, for example, if one
wishes to make a classification of finite dimensional algebras.

For this reason, Shao-xue Liu, one of the authors of [2], raised an interesting
problem, that is, how to find a generalization of path algebras so as to obtain a
generalization of Gabriel's Theorem to arbitrary finite dimensional algebras which
would allow these algebras to be represented as quotient algebras of generalized path
algebras. The first step in this direction was taken in [2], where an appropriate concept
of generalized path algebra was introduced (see Section 2), but results of the desired
type could not be found.

In this paper, we hope to solve the Liu's problem by using pseudo path algebras
and generalized path algebras in the sense of [2].

Some preparation is given in Section 2. In fact, we find that generalized path alge-
bras are not sufficient to characterize finite-dimensional algebras other than those with
2-nilpotent radicals. For this reason, so-called pseudo path algebras are introduced
as a new generalization of path algebras, which can cover generalized path algebras
(see Fact 2.6). In Section 3, using pseudo path algebras, we generalize Gabriel's
Theorem on elementary algebras to cover left Artinian algebras over a field k in the
case that the quotient algebra is lifted by a radical, in particular, when the dimension
of the quotient algebra determined by the «th Hochschild cohomology is less than 2
(for example, when k is finite or char k = 0). On the other hand, in Section 4,
relying on generalized path algebras, a Generalized Gabriel's Theorem is given for
finite dimensional algebras with 2-nilpotent radicals in the case where the quotient
algebra is lifted. In all the cases we discuss, we prove the uniqueness of the relevant
quivers A and generalized path algebras/pseudo path algebras if the ideals generated
by the relations are admissible (see Theorems 3.5 and 4.4).
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[3] Pseudo path algebras 387

Under some conditions, the generalized forms of Gabriel's Theorems are not de-
pendent on the ground field and this offers the possibility of an approach to modular
representations of algebras and groups.

Note that when A = k(A,#/)/{p) or A = PSEk(A, ,e?)/{p). the structure of A is
determined by the ideal (p) generated by a set of relations p. From this, one can try to
classify those associative algebras satisfying the theorems, including many important
kinds of algebras. We intend to address these questions in future papers which will
shed further light on the significance of the present work.

2. On generalized path algebras and pseudo path algebras

In this section, we first introduce the definitions of generalized path algebra [2] and
pseudo path algebra and then discuss their properties and relationship.

A quiver A is given by two sets Ao and A i together with two maps s. e : A i —*• Ao.
The elements of Ao are called vertices, while the elements of A| are called.ar-
rows. For an arrow a e Ai, the vertex s(a) is the start vertex of a and the ver-
tex e(a) is the end vertex of a. and we write s(a) —> e(a). A path p in A is
(a\at • • -an\b), where or, € A| , for / — 1.. . . ,/?, and s(ct\) = a. e(a:) — s (a ,+ ) ) for
/ = 1 . . . . ,« + 1, and e(a,,) — b. s{ct\) and e(an) are also called respectively the
start vertex and the end vertex of p. Write s(p) = s(at) and e(p) = e(an). The
length of a path is the number of arrows in it. To each arrow a, one can assign an
edge a where the orientation is forgotten. A walk between two vertices a and b is
given by (a\cr[ • • -o^b) , where a e M a , ) , e(a{)}, b e {s(an), e(ot,,)}, and for each
/ = 1. . . . , / ? — 1, {s(ai), e(oti)} n [s(ai+]), e(ai+l)} ^ 0. A quiver is said to be
connected if there exists a walk between any two vertices a and b.

In this paper, we will always assume the quiver A is finite, that is. the number | Ao|
of vertices and the number | A, | of arrows are both finite.

DEFINITION 2.1. For two algebras A and B, the rank of a finitely generated A-B-
bimodule M is defined as the least cardinal number of a set of generators. In particular,
if M = 0, it is said to have rank 0 as a finitely generated /^-B-bimodule.

Clearly, every finitely generated /i-fl-bimodule has a uniquely determined rank.

2.1. Generalized path algebra and tensor algebra Let A = (Ao, A|) be a quiver
and &/ — [Aj : i e Ao} be a family of A:-algebras /\, with identity et, indexed by the
vertices of A. The elements a, of U,-e& ^< a r e called the £/-paths of length zero,
whose start vertex s(fl,) and end vertex e(a,) are both /. For each n > 1. an tf-path P
of length n is given by arf^fc • ••an^nan+x, where (s(pt)\P\ • • • Pn\e(Pn)) is a path
in A of length n and a, € As(Pj) for / = ! , . . . , « and an+l 6 AeiPii). T h e terms
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and e(Pn) are also called respectively the start vertex and the end vertex of P. Write
s(P) = s(oti) and e(P) — e(an). Now consider the quotient R of the /:-linear space
with basis the set of all ^ -pa ths of A by the subspace generated by all the elements
of the form

a , 0 , • • • P j - X ( a ) + • • • + a J

where (s(Pi)\Pi • • • pn\e(pn)') is a path in A of length n, a{ € AsiPi) for each / =
1, . . . , n and an+i e Ae(Pn) and a'- € Av<̂ > for / = 1 , . . . , m.

Given two elements [a\P\a2P2 "" 'anPr,on+i] and [b}ytb2y2 • • •b,,ynbn+]] in R. de-
fine the product [a,pta2p2 • • • anpnanJr{\ • [biy]b2y2 • • • bnynbn+l] to be equal to
[alpia2p2 • ••anp,,(a,,+lb{)yib2y2 • • • b,,ynba+l] if an+l and b\ are in the same Ah and 0
otherwise.

It is easy to check that the above multiplication is well-defined and makes R into a
^-algebra, called the srf-path algebra of A. Denote it by R = k(A, srf). Clearly, R
is an /1-bimodule, where A = ®ie&oAio. All such algebras are said to be generalized
path algebras.

We note the following facts.

(i) R = k(A, &/) has an identity if and only if Ao is finite,
(ii) Any path (s(P\)\Pi • • • P,,\e(Pn)) in A can be considered as an ,sf-path with

a, = e,. Hence the usual path algebra kA can be embedded into the .e^-path algebra
k(A, #/). If Aj = k for all / € Ao then k(A, srf) = it A.

(iii) For R = A(A, nf), d\mk R < oo if and only if dim<7\, < oo for each i e Ao

and A is a finite quiver without oriented cycles.

Associated with the pair (A,A MA) for a A:-algebra A and an /4-bimodule M, we
write the n-fold y4-tensor product M ®A M <g> • • • ®A M as M". Then

T(A, M) = A e M e M2 e • • • © M" e • • •

is an abelian group. Writing M° = A, 7"(A, M) becomes a /:-algebra with multiplica-
tion induced by the natural A-bilinear maps M' x M> —>• M' + / for / > 0 and _/ > 0.
T(A, M) is called the te/zsor algebra of M over A.

We now define a special class of tensor algebras so as to characterize generalized
path algebras. An srf-path-type tensor algebra is defined to be a tensor algebra
T(A, M) satisfying

(0 A — 0 , e A o Aj for a family of ^-algebras srf = {Aj : / e Ao),
(ii) M = 0 . : jel jMj for finitely generated A,-Ay-bimodules jMj for all / and j

in / and Ak • ,-Afy- = 0 if A: ^ / and ,-M,- • AA. = 0 if /: ^ 7.

A free srf-path-type tensor algebra is an .cf-path-type tensor algebra T(A, M) in
which each finitely generated /\,-i4;-bimodule ,M7 for i and j in / is a free bimodule
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with a basis and the rank of this basis is equal to the rank of ,• A/,- as a finitely generated
/4,-/4j-bimodule.

^-path-type tensor algebras and generalized path algebras can be constructed from
each other as follows.

For an .e^-path algebra k(A, &/), let A = ©,e A Ah For any i and j , let ,A/f

be the free /4,-v4y-bimodule with basis given by the arrows from / to j . It is easy
to see that the number of free generators in the basis is the rank of ,A/;

F as a finitely
generated bimodule. Define Ak •,MF = 0 if k ^ i and , A/j7 • Ak = 0 if k ^ j . Let
MF = ® ; • ,A/j\ which is clearly an A-bimodule. Then we get uniquely the free
•(/-path-type tensor algebras T(A, MF).

Conversely, assume that T{A, M) is an .sZ-path-type tensor algebra with a family
of k-algebras srf = {At : / e /} and finitely generated /l,-/4y-bimodules ,-A/7- for
/, j e l such that A = 0 , € / A, and M — 0 ( . jel -,Mj and Ak • /Mj —Oifk £ i and
jMj • Ak — 0\ik ^ j . Trivially, ,-A/7 = A,M Aj. Let the rank of, A/7 be r,7. Now we
can associate with T(A, M) a quiver A — (Ao, A,) and its generalized path algebra
R = &(A, $/) in the following way. Let Ao = / as the set of vertices. For i, j € I,
let the number of arrows from i to j in A be the rank rn of the finitely generated
A,-/47-bimodules ,M7. Obviously, if ,-Mj = 0 then there are no arrows from / to j .
Thus we get a quiver A = (Ao, A,) which is called the quiver ofT(A, A/), and its
£/-path algebra R — k{A, #/) which is called the corresponding srf-path algebra of
T{A,M).

One can find two nonisomorphic finitely generated bimoduies which possess the
same rank, therefore there exist two ^-path-type tensor algebras T(A, M\) and
T(A, M2), with nonisomorphic bimoduies M, and M2, such that their induced quivers
and js^-path algebras are the same in the above way.

From the above discussion, every ,e/-path-type tensor algebra T(A, M) can be
used to construct its corresponding ^/-path algebra &(A, stf)\ but, from this £/-path
algebra k(A, #/), we can get uniquely the free .^/-path-type tensor algebra T(A, MF).
Thus, we have the following lemma.

LEMMA 2.2. Every g/-path-type tensor algebra T(A, M) can be used to con-
struct uniquely the free srf-path-type tensor algebra T(A, MF). There is a surjective
k-algebra morphism n: T(A, MF) -» T(A, M) such that 7r(,A/f) = ,A/, for an\
i, j e l .

PROOF. We need only prove the second conclusion. For T(A, M), let the rank
of jMj be r^. Thus, for the corresponding j^-path algebra k(A,&/), the number
of arrows from / to j is r,7, and then, in T(A, MF), the rank of the free generators
of jMj given by the arrows is also ru. Define n: T(A, MF) -»• T{A, M) by giving
a bijection between the set of the free generators of ,MF and the set of the chosen

https://doi.org/10.1017/S144678870003799X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003799X


390 Fang Li [6]

generators of, M} with cardinal number equal to the rank. Then n can be expanded
to become a surjective /:-algebra morphism with 7r(,-M0 = ,A/;- for any /', j e I. •

Next, we will show in the following Proposition 2.10 that every j^-path-type tensor
algebra is a homomorphic image of its corresponding ^-path algebra.

The following criterion (see [1, Lemma III. 1.2]) is useful for constructing algebra
morphisms from tensor algebras to other algebras.

LEMMA 2.3. Let A be a k-algebra and M an A-bimodule. Let A be ak-algebra and
f : A © M -> A a map such that the following two conditions are satisfied:

(i) f\A : A —> A is an algebra morphism;
(ii) viewing f(M) as an A-bimodule via f\A : A —*• A, f\jn : M -» f{M) c A

is an A-bimodule map.

Then there is a unique algebra morphism f : T(A, M) —> A such that /\A@M = f and
generally, /(£n°°=0m?®• • • ®IB") = £f=0 / («? ) • • • f(mn

n)form]®---®mn
ne M".

Note that the condition that f(M) is an /\-bimodule via f\A : A —> A is sufficient
for the proof of (ii) in [1].

Clearly, all .e^-paths of length zero, that is, the elements of U,eA0 ^ " c a n ge n e r a t e

a subalgebra of k(A, srf), which is denoted by k(A0, &?)• Also, denote by k(Au srf)
the /:-linear space consisting of all ^/-paths of length 1 and by J the ideal in an
.e^-path algebra ^(A, srf) generated by all elements in&(A|, sf). It is easy to see that
k(At, #/) is an A-subbimodule

2.2. Pseudo path algebra and pseudo tensor algebra Let A = (Ao, A,) be a
quiver and srf — [Aj : i e Ao] be a family of /c-algebras A, with identity eh indexed
by the vertices of A. The elements a, of U,eA0 ^ ' a r e ca^e<^ ^e srf-pseudo-paths of
length zero, whose start vertex s(a,) and the end vertex e(a,) both are /. For each
n > 1, a pure srf-pseudo-path P of length n is given by alfilbl • ajfobi • •• •• anf)nbn,
where (^(/Si)|/3j • • • y3n|e(/3n)) is a path in A of length n and for each i — 1,..., n,
6,_i € Aei0i_t) and a-, e AsiPi) with sift) = e{fi,_\). s(^) and e(fin) are also called
respectively the start vertex and the end vertex of P. Write s{P) = s{fi\) and
e{P) — e{fin). A general stf-pseudo-path Q of length n is given in the form

« i • C\ • a2 • c2 • • • • • ck • ak or c 0 • oci • C\ • a2 • c2 • . •. • ck • ak o r

or, • c , • a2 • c2 • . . . • ck • ak • ck+] or c0 • « i • c , • a2 • c2 • . . . • ck: • ak • ck+l

where a,- is a pure ^/-pseudo-path of length n, and J^*=) n, = n, and the start vertex
of a,+1 is just the end vertex of a,, that is, e{at) = s(ai+i) and c, € Ae(aj).

Let V be the A:-linear space with basis the set of all general ^/-paths of A.
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Consider the quotient R of the /t-linear space V by the subspace generated by all
the elements of the form

(2.1) axhh • ••ajfij (*] + . . . + bj) • y - f > M , • --ajPjb'j • y
i=\

(2.2) a • (a\ + • • • + < ) 0,J>, • • • anpnbn - £ o r • a%b, • • • anpnbn

(2.3) (ab) -c0d-a-(b- cfid), a fib • (cd) - (a fib • c) • d

(2.4) afibl- afib, \ • afib - afib

where a, b, c, d, b'j, a\ e U,6A0 ^> an^ ' ' s t n e identity of A — ©,-€A0>4I-
In R, define the following multiplication. Given two elements

[cr,£|fc, • a2p2b2 • • • anpnbn] and [C,KI<^I • c2y2d2 • • • cnymdm\

in which at least one is of length n > 1, define [a\fi\b\ • a2fi2b2 • • -anpnbn] • [c\y\d\ •
c2y2d2 • • • cnymdm\ to be equal to [a\P\b\ -a2fi2b2 • • • anfinbn-C\ y\dx -c2y2d2 • • • cny,,,dm]
if bn and cx are in the same A,-, and 0 otherwise.

Given two elements a, b of length zero, that is, a, b e U,eA0 ^ " define

I ab, if a, b are in the same A,, where ab means the product of a, b in Ah

0, otherwise.

It is easy to check that the above multiplication in /? is well-defined and makes R into
aA:-algebra, called tht £?-pseudo path algebra of A. Denote it by R = PSE^A, srf).
Clearly, R is an A-bimodule.

Note the following facts.

(i) R — PSEk(A, jrf) has identity if and only if Ao is finite.
(ii) Any path (s(fil)\fil • • • f}n\e{fin)) in A can be considered as an ^/-path with

a, — et the identity of Ah Hence the usual path algebra A:A can be embedded
into the ^-pseudo path algebra PSEk(A,^/). If A, = k for each i € Ao then
PSEk(A,tf) =kA.

(iii) For R — PSEk{A, srf), dim* R < oo if and only if dim* A, is finite for each
/ € Ao and A is a finite quiver without oriented cycles.

Associated with the pair (A, AMA) for a A:-algebra A and an A-bimodule M, we
write the «-fold A>tensor product M <3>k M ® • • • ®k M as M" and we denote by
A/(«) the sum ]TMi Wj Mn M\ <g>k M2 ®k • • • <S)k Mn where each A/,- is either M or A
but no two As are neighbouring and at least one M, is equal to M. Then we define

, M) = A © M{\) © M(2) © • • • © M(n) © • • • as an abelian group. Denote
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by M{n, I) the sum of these items Mx ®k M2
 (S>k • • • <8>* Mn of M(n) in which there

are / A/,s equal to M. Clearly, (n - l)/2 < / < n and M(n) = £(n_i)/2</<n M(n, I).
Writing M° — A, £?3?{A, M) becomes a ^-algebra with multiplication induced by
the natural A:-bilinear maps:

A/'

M'

A x
and the natural A-bilinear

A x

x M>
x A -

MJ -
map:

A - •

•> M1

-¥ A(J

A ® .

"+^ for
®t A for

^ Mj for

A= A.

/
i

j

> 1,

> l;

> l

The associative law of 3s & {A, M) follows from (A ®A A) ®k M = A ®A (A <g>* M).
We call ^^{A, M) a pseudo tensor algebra.

Now, we define a special class of pseudo tensor algebras so as to characterize
pseudo path algebras. An &/-path-type pseudo tensor algebra is defined to be the
pseudo tensor algebra ^ ^ ( A , M) satisfying

(i) A = ®,eAo Aj for a family of A:-algebras sf — {A, : < e Ao},
(ii) M = © , y s / iMj for finitely generated Ar/lj-bimodules ,M; for all / and j

in / and Ak • ,Mj =O\fk^i and ,M; • Ak - 0 if k ^ y.

Afree £? -path-type pseudo tensor algebra is the .e/-path-type pseudo tensor algebra
3?^~(A, M) in which each finitely generated /4,-A;-bimodule ,A/; for / and j in / is
a free bimodule with a basis and the rank of this basis is equal to the rank of,• A/,- as a
finitely generated i4,-A;-bimodule.

cg^-path-type pseudo tensor algebras and pseudo path algebras can be constructed
from each other as follows.

Given an jz^-pseudo path algebra PSEk(A,£f), let A = 0,-eAoj4/. For any i
and j , let, A/j7 be the free /I,-A,-bimodule with basis given by the arrows from i to j .
It is easy to see that the number of free generators in the basis is the rank of,-Af j 7 as
a finitely generated bimodule. Define Ak • ,-Mj = 0 if k ^ i and , Mf • Ak = 0 if
k ^ j . Let MF = 0 , ^ ; ,Mj, which is clearly an A-bimodule. This gives a uniquely
defined free ^/-path-type pseudo tensor algebra denoted £?&(A, MF).

Conversely, assume that 3? S?{A, M) is an ^-path-type pseudo tensor algebra with
a family of ^-algebras srf = \A, : i € /} and finitely generated /l,-/4;-bimodules ,Mj
for all i and j in / such that A = ®.e y A, and A/ = 0 , ^ / ,-Mj and A^ • ,• A/,- = 0
if A: 7̂  / and ,A/y • Â  = 0 if k ^ j . Trivially, ,-A/,- = A;MAj. Let the rank of ,-M,-
be ry. Now we can associate with ^^(A, M) a quiver A = (Ao, A)) and its pseudo
path algebra R = PSEk(A, s?) in the following way. Let Ao = / as the set of
vertices. For /, j € I, let the number of arrows from i to j in A be the rank r(J of
the finitely generated A,-A;-bimodules ,M;. Obviously, if, A/; = 0 then there are no
arrows from i to j . Thus, we get a quiver A = (Ao, A,) which is called the quiver of
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, M), and its ^-pseudo path algebra R = PSEk(A, srf) which is called the
corresponding £?-pseudo path algebra of £?^(A, M).

One can find two non-isomorphic finitely generated bimodules which possess the
same rank, therefore there exist two ^-path-type pseudo tensor algebras ^^{A, Mx)
and &!?(A, M2), with non-isomorphic Mi and M2, such that their induced quivers
and .^-pseudo path algebras are the same.

From the above discussion, every ,g/-path-type pseudo tensor algebra £P£?(A, M)
can be used to construct its corresponding ^-pseudo path algebra PSEk(A, s*f); but,
from this ^-pseudo path algebra PSEk(A, #/), we can get uniquely the free j^-path-
type pseudo tensor algebra ^^(A, MF). Thus, we have the following lemma.

LEMMA 2.4. Every srf-path-type pseudo tensor algebra & £?(A, M) can be used
to construct uniquely the free srf-path-type pseudo tensor algebra &??{A, MF).
There is a surjective k-algebra morphism n: ^^{A, MF) -> &3?{A, M) such
thatn{jMF) = ,M; for any i, j € /.

PROOF. We need only prove the second conclusion. For 3^^(A, M), let the rank
of jMj be rtj. Thus, for the corresponding ^"-pseudo path algebra PSEk(A, #/), the
number of the arrows from / to j is r,7, and then, in ^S^(A, MF), the rank of the"
free generators of ;MF given by the arrows is also ru. Define n: £P?7(A, MF) -*•
£??7(A, M) by giving a bijection between the set of the free generators of ,MF and
the set of the chosen generators of, Mj with cardinal number equal to the rank. Then TC
can be expanded to become a surjective A>algebra morphism with n(jMF) = ,Mj for
any i, j e I. D

Next, we will show (in Proposition 2.9) that every ^-path-type pseudo tensor
algebra is a homomorphic image of its corresponding ^-pseudo path algebra.

The following criterion for constructing algebra morphisms from pseudo tensor
algebras to other algebras is useful, which is modified from [1, Lemma III. 1.2].
Contrast it with Lemma 2.3.

LEMMA 2.5. Let A be a k-algebra and M an A-bimodule. Let A be a k-algebra
and f : A ® M —> A a k-linear map such that f\A : A -> A is an algebra morphism.
Then there is a unique algebra homomorphism f : ^^(A, M) -*• A such that

f\A9U = f and generally, /(J27=o m" ®* • • • ®* < ) = Etc / K ) • • • / « ) / < " •
ml ®k • • • ®k m"n 6 M{n).

PROOF. Consider the map <j> : M x M -*• A defined by <j>(m,, m2) = f(.m1)f(.m2)
for mt and m2 in M. We have for a € k that

4>{mxa, m2) = /(mia)/(/n2) = / (m l ) / (am 2 ) = </>(mu am2).
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Hence there is a unique group morphism f2 : M ®k M ->• A such that

/ 2 (m, ®k m2) =

Moreover, f2 is a fc-linear map. Similarly, for the map $ : M x A -+ A defined
by 4>(m, a) = f(m)f(a) for m e M and a e A, one can induce the ^-linear map
fi : M ®* A -* A satisfying /2(/n ®* a) = f(m)f(a).

By induction, we can obtain the unique /c-linear map /„ : M(n) -> A satisfying
/«(vi ®* • • • <8>* u«) = /(vi) • • • f(vn). Since f\A is a ^-algebra homomorphism, we
define / : 0>&{A, M) - • A by /|AejM = / and

(
)

n=0 / n=0

form"®*- • -<8>it/w" € M[n), which can easily be seen to be ai-algebra homomorphism
uniquely determined by / .

In fact, formi ®k. • • • ®k mn e Af (n)and mi ®t. • • • <S>A. m; € M(/), if mn, rh\ 6 A,
then

/((«?, ®t. • • • ® t m,,) • (m, ®t • • • ®t m,))

— / ( m i ®/t • • • ® t mn_i ig>t mn ®,t m, ®k m2

= / ("ii ®*: • • • ®* mn_i ®t mnm, ®t m2 ®A •

= /(mi) • • • f{mn_i)f(mnm\)f{mi) • • • f(m,)

= / ( /« , ) • f(mn.l)f(mn)f(mi)f(m2) • • • f(m,)

= /(mi ®* • • • ®* mn)j{m\ ®k • • • ®k m,).

In the other cases, it can be proved similarly. •

Comparing the definitions of generalized path algebra, tensor algebra and pseudo
path algebra, pseudo tensor algebra, the following facts hold:

FACT 2.6. (1) There is a natural surjective homomorphism

i : PSEk(A,rf)—>k(A,s>/) with

ker i = (a fib • c - afibc, c • afib - cafib, aab • cpd - aal • be • I fid)

for any a, b,c,d € A = ©,/4,, a, fi e A,, where 1 is the identity of A. It follows that

PSEk(A,^)f keri = lc(A, si)

as algebras.

https://doi.org/10.1017/S144678870003799X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003799X


[11] Pseudo path algebras 395

(2) There is a natural surjective homomorphism

T : &&{A, M) —• T(A, M) with

ker T = (m <g> c — me <%> 1, c <g> m — 1 <8> cm, mb <g> en — m <g> be <8> n)

for any b,c € A,m,n e M, where 1 is the identity of /I. It follows that

&&(A, M)/kerr = 7(/\, M)

as algebras.

Clearly, all ^/-pseudo-paths of length zero (equivalently, ^/-paths of length zero),
that is, the elements of |J.eAo Ah can generate a subalgebra of PSEk(A, srf) (respec-
tively, &(A, s/)). Denote this subalgebra by PSEk(A0, srf) (respectively, A:(A0, srf)).
Then, PSEk(A0, st) = it(A0, ^),orsay, tW£t(Ao.^) = id. Denote by PSEk(Au srf)
(respectively, k(A\, srf)) the /:-linear space consisting of all pure ^-pseudo-paths (re-
spectively, all £/-paths) of length 1 and by J (respectively, J) the ideal in PSEk(A, srf)
(respectively, k(A, &/)) "generated by all elements in PSEk{A\, srf) (respectively,

It is easy to see that PSEk(A\, stf) (respectively, it(Ai, srf)) is an /4-sub-bimodule
of PSEk(A, si/) (respectively, k(A,£/)\ and

(i) i{PSEk(Au£/))=k(Aurfy,
(ii) iJ = 7 , t - ' 7 = y .

We will now show some useful properties of ^/-pseudo-path algebras which hold
similarly for jz/-path algebras under the relationships in Fact 2.6.

LEMMA 2.7. Let ̂ ^{A, MF) be the free srf-path-type pseudo tensor algebra built
by an s^-pseudo path algebra PSEk(A, srf). Then there is a k-algebra isomorphism
4> : 3^^{A, MF) -+ PSEk(A, £/) such that for any t > 1,

\n,l>'

PROOF. By the multiplication in PSEk(A, #/), [«,]•[«;] = Ofor/ / j and a, 6 Ait

as 6 Aj. Obviously, we have a A:-algebra isomorphism

+ 1- an) = [fl|] H 1- [an]. Also we can define

i.jel
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by giving a bijection between a chosen basis for each ,MF and the set of arrows
from / to j , that is, f(amaijb) — aaub where a,y is an arrow from / to j and majj

is the corresponding element in the basis of tM
F, a, b e A. Since PSEk(A0, srf)

is a A:-subalgebra of PSEk(A, s<f), there is, by Lemma 2.5, a k-algebra morphism
/ : &2T(A, MF) -* PSEk(A, sf) such that

(
J2 m? ® • • • ® m"\ = Y, / K ) • • • / « )
«=0 /

for m? <g> • • • (8> m"n e MF{n). Thus, /((A ®4. M
F ®k A)') = (A • PSEk(Au #/) • A)'

and moreover, / ( © n / > , MF{n, /)) = J', in particular, / (©*>, MF(k)) = J- But,

PSEk(A, srf) = PSEk(A0, srf) U J U •• • U J' U • • •. Hence / i s surjective.
Let {xx} denote a it-basis of A. For MF(n, I), we have a A:-basis formed by some

elements of the formxkil <8> xkjim\xkti <g> xkh <S> xkj2m2Xkt2 <8> • • • <S> xki) ® xkjimixkti ® • • •

where there is some ^-pseudo-path

in PSEk(A,#/) such that, for j — 1, . . . , t, nij is amongst the chosen basis elements
in SHSJ)MF^., ]} for the corresponding arrow /},•. Then

/ (xkij ® jci;i m, xktj ® A, , ® *x,2 »»2-«At, ® • • • ® Jfi,-, ® xkji mixkki ® • • •)

This implies that distinct basis elements are mapped to distinct ^-pseudo-paths and,
fora\-\ \-an ^ Oin A, f(at-\ \-an) = [at]-\ \-[an] j^O. Hence/ isinjective.
Therefore <f> = f is a /:-algebra isomorphism with the desired properties. •

By Lemma 2.7, PSEk(A,s>/) = ff>S^{A,MF). Then keri = kerr. Thus a
natural induced algebra homomorphism^-' is obtained from 0"1 so that

PSEk(A,jrf)/ken = ^^{A, Mr)/kerr.

Moreover, by Fact 2.6, we get the following <f> from </>~' as above so as to obtain the
result on ^-path algebras analogous to Lemma 2.7 for JZ/-pseudo-path algebras.

LEMMA 2.8. Let T(A, MF) be the free srf-path-type tensor algebra built by an srf-
path algebra k(A, g/). There is a k-algebra isomorphism <f>: T(A, MF) -*• k(A,
such that for any t > 1,

MFJ\ = I1.
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From this, we obtain the commutative diagram

(2-5) [r

T(A,MF)

PROPOSITION 2.9. Let &&(A, M) be an srf-path-type pseudo tensor algebra with
the corresponding srf-pseudo path algebra PSEk(A, si/). Then there is a surjective
k-algebra homomorphism cp : PSEk(A, #/) —> ^^(A, M) such that for any t > 1,

PROOF. Let ^^{A, MF) be the free ^/-path-type pseudo tensor algebra built
by the ^/-pseudo path algebra PSEk(A, £?). Then, by Lemma 2.7, there is a k-
algebra isomorphism 0 : ^^(A, MF) ->• PSEk(A,J2?) such that for any t > 1,

On the other hand, by Lemma 2.4, there is a surjective ^-algebra morphism
n : 9>&(A, MF) - • &>£T(A, M) such that ^( ,M/) = ,M7 for all i, j e I, so
n(MF) = M.

Therefore, <p = jt(f)~i : PSEk(A, srf) —* ^^{A, M) is a surjective A-algebra
morphism with <p(J') = jr(®n ,>, MF(«,/)) = 0 n /2, M(n, 1) for any t > 1. D

From the equation <p — nfi'1 and the description of kert and kerr in Fact 2.6,
we have ip(ken) = kerr. Then, by Proposition 2.9, we naturally induce a surjective
k -algebra homomorphism

<p : PSEk(A,£/)/keri ->• <p(PSEk(A,£/))/<p(ken) = <?&(A, M)/kerr.

Thus the following analogue of Proposition 2.9 holds for ^/-path-type tensor algebras.

PROPOSITION 2.10. Let T(A, M) be an &/-path-type tensor algebra with the cor-
responding srf-path algebra k(A, &/). Then there is a surjective k-algebra homomor-
phism <p : k(A, #/) -*• T(A, M) such that for any t > 1,

Also, we obtain the commutative diagram

(2.6) | , | r

—^-+ T(A,M).
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A relation a on an j^-pseudo path algebra PSEk(A,sz/) (respectively, .e^-path
algebra k(A, si/)) is a it-linear combination of some general ^-pseudo paths (re-
spectively, some ^/-paths) />, with the same start vertex and the same end ver-
tex, that is, a = kxPx + ••• + knPn with &, e k and s(P^) = ••• = s(Pn) and
*>(/>,) = • • • = e(Pn). Ifp = {CT,},er is a set of relations on P S E ^ A,.«/) (respectively,
A:(A, si/)), the pair (PSEk(A,s/), p) (respectively, (k(A, s/), p)) is called an s/-
pseudopath algebra with relations (respectively, srf-path algebra with relations). As-
sociated with (PSEk(A, #/), p) (respectively, (k(A, si/), p)) is the quotient fc-algebra
PSEk(A, srf, p) = PSEk(A,si/)/{p) (respectively, k(A, st, p) = k(A,tf)/(p)),
where (p) denotes the ideal in PSEk(A, £/) (respectively, in k(A, #/)) generated by
the set of relations p. When the length /(P,) of each P, is at least j , we have (p) C JJ

(respectively, {p) c J').
For an element x e PSEk(A, srf) (respectively, e A:(A, si/)), we denote by x the

corresponding element in PSEk(A, s/, p) (respectively, A:(A, s/, p)).

FACT 2.11. 8 e k(A, n/) is a relation if and only if all a 6 <"'(<$) are relations on
PSEk{A,si/).

This fact can easily be seen from the definition of i. Note that the lengths of paths
in a relation are not restricted here, so we have the following.

PROPOSITION 2.12. Suppose that A is a finite quiver. Then

(i) each element x in PSEk(A, s4) (respectively, k(A, s/)) is a sum of some
relations;

(ii) every ideal I of PSEk{A. si/) (respectively, k(A. s/)) can be generated by a
set of relations.

PROOF. (i) Let 1 be the identity of A and et the identity of A; for i € Ao.
Then 1 = Z!,€A e-, is a decomposition into orthogonal idempotents et and we have
x = 1 • x • 1 = Yli eA(,

 ei' ' x ' ej- ^ u e t 0 t n e multiplication of |A0| = n < oo,
e,: • x • ej can be expanded as a A>linear combination of some such ,«/-paths which
have the same start vertex / and the same end vertex j , so e, • x • e} is a relation on
PSEk(A.s/).

(ii) Assume / is generated by \x-,\K^- By (i), each xK is a sum of some relations
{<7;..,}. Then / is generated by all {CT;.,}. rj

By the definition of J, we have

PSEk(A, sf, p)/J = {PSEk(A, s2/)/(p))/(J/(p)) = PSEk(A,*/)/J = ©,6Aoi4,-.

Suppose all A, are ^-simple algebras and J' c (p) for some integer t. Then
PSEk(A, s/, p)/J = ®ie&0Ai is semisimple and J' = 0. It follows that
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J = rad PSEk(A, &/, p). Similar reasoning holds for J of k(A, srf). Hence we
get the following.

PROPOSITION 2.13. (i) Let (PSEk(A,g/), p) be an srf-pseudo path algebra
with relations where A, is simple for all i e Ao- Assume that J' C (p) for
some t. Then the image J of J in PSEk(A, £?, p) is rad PSEk(A, sz/, p), that is,
J = rad PSEk(A, srf, p);

(ii) Let (k(A, &/), p) be an srf-path algebra with relations where A, is simple for
each i 6 Ao. Assume that J' C (p) for some t. Then the image J of J in k(A, srf', p)
is rad k(A, s/, p), that is, J = rad k(A, #/, p).

Now. suppose that A is a left Artinian algebra over/: andr = r(A) is the radical of A.
Then, for all / > 0, the ring r'/rl+1 is an A-bimodule by a • (r'/rl+]) • b = ar'b/r'+l

for a, b e A. From r • r'/rl+1 = 0 and r'/rM • r — 0, we know that r'/rl+1 is a
semisimple left and right A-module. For x — x + r e A/r, let

x-(rl/rl+l)=x-(rl/rl+])=xr'/rl+\ and

(r ' /r '+ l ) • x - (r'/r '+1) • x = r'x/r'+l.

Then r ' /r / + l is also an A/r-bimodule and a semisimple left and right A/r-module.

PROPOSITION 2.14. Let A be a left Artinian algebra over k and let r — r(A) be
the radical of A. Write A/r = ®-=, A, where A, is a simple subalgebra for each i.
Then; for all I > 0,

(i) r'/r'+l is finitely generated as an A/r-bimodule;
(ii) jMj* = A, -r1 /rl+l • Aj is finitely generated as ArA j-bimodule for each (/, j).

PROOF. (i) Since A is left Artinian, r'/r'+] is finitely generated as a left A-
module by [1, Corollary 1.3.2], so we can write r1 /r / + l = Yl"p=\ Ax~p with some
xp € r'/rl+l. But, due to the definitions of actions,

a*

Axp = (A/r)xp and r'/r'+' = ^(A/r)*, , .
/>=•

Moreover,

( if \ u-

Y^i.A/r)xp I (A/r) = ^(A/'r)xP(A/>),

which means that r1 / r ' + l is finitely generated as an A/r-bimodule.
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(ii) We note that

w

= / AjXpAj.

Hence, ,A/j° is finitely generated as an A,-A j-bimodule. D

In particular, for / = 1, ,-A/,- =f A, -r/r2 • Aj is finitely generated as an ArAr

bimodule for each pair (/, j). Henceforth the rank of tMj will be denoted by r,7.
For k ^ i , w e have

~Ak • iMj = A k • ( A , • r/r2 • A , ) = (AkA,) • (r/r2 • Aj) = 0 • r/r2 -Aj=0

and similarly, for& ^ j,weha\ejMj-Ak = 0. Thus we obtain the ̂ /-path-type pseudo
tensor algebra £?^(A/r, r/r2), the ^-path-type tensor algebra T(A/r, r/r2) and the
corresponding ^-pseudo path algebra PSEk(A., srf) and ,c/-path algebra /c(A, sf),
with &/ = [A, : i € Ao}, where A is called the quiver of the left Artinian algebra A.

In what follows, A is always a left Artinian algebra. We will firstly show that
under some important conditions, a left Artinian algebra A is isomorphic to some
PSEk(A,*/,p).

3. When the quotient algebra can be lifted

Firstly, we introduce the concept of the set of primitive orthogonal simple subalge-
bras of a left Artinian algebra. For a left Artinian algebra A and A/r — 0* = l A, with
simple subalgebras At for all'/, where r = r(A) is the radical of A, assume that there
are simple &-subalgebras B\, • • • , B5 of A such that, for all /, B, = A, as ^-algebras
under the canonical morphism t) : A -*• A/r and

Then, B = {Bt, • • • , Bs} is said to be the set of primitive orthogonal simple subalge-
bras of A.

Obviously,
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By the definition, r)(Bi) = A, for all /. Every B, is a simple &-subalgebra of A, so
B = B{ H (- i?j is a semisimple subalgebra of A.

Our original idea is to introduce the concept of primitive orthogonal simple subal-
gebras as a generalization of primitive orthogonal idempotents and then transplant the
method of primitive orthogonal idempotents in elementary algebras into a left Artinian
algebras.

In a left Artinian algebra A, we will show the existence of the set of primitive
orthogonal simple /:-subalgebras when A/r can be lifted.

An algebra morphism e: A/r -> A satisfying rjs = 1 will be called a lifting of the
quotient algebra A/r. In this case, we say that A/r can be lifted. Evidently, a lifting e
is always a monomorphism and ime = B is a subalgebra of A which is isomorphic to
A/r. Then B is semisimple. Moreover, A = B © r as a direct sum of A:-linear spaces.
Hence A/r can be lifted if and only if A is split over its radical r.

Now, we assume that A/r can be lifted such that A = B © r as above. For the
canonical morphism n: A -> A/r, imr)\B — (B + r)/r — A/r, andker^|B = 0since

r n B = 0. Thus rt{B) = A/r and B = A/r as ̂ -algebras. Since B is semisimple,
we write B = ®-=, B, with simple ^-subalgebras B, for all /. Then

Moreover, >?(Z?) = Yl'=\ i(^i) where >?(fi,) is a simple ^-subalgebra of A/r for all i.
Let A, denote r?(5,). Then fi = {5,, • • • , Bs] is the set of primitive orthogonal simple
subalgebras of A.

LEMMA 3.1. Assume that A is a left Artinian k-algebra with r — r(A) the radical
of A, and that A/r can be lifted so that A = B © r with B = [Bu • • • , Bs) the
set of primitive orthogonal simple subalgebras of A as constructed above. Write
A/r = 0"J=1 A, where A,- is a simple algebra for all i. The following statements
hold.

(i) Let {rk '• ^ € I} be a set of elements in r with the index set I such that
the images 7k in r/r2 for all X e I generate r/r2 as an A/r-bimodule. Then
B\ U • • • U Bs U [rk : A e 1} generates A as a k-algebra.

(ii) There is a surjective k-algebra homomorphism f : &S?{A/r, r/r2) —> A
with

n>rt(A) max|W(/l). (n-l)/2|</<n j>2

where rl(A) denotes the Loewy length of A as a left A-module.
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PROOF. (i) Since r is nilpotent, there is a least m such that rm = 0 but r"1"1 ^ 0.
It is easy to see that m is just the Loewy length rl(A).

In what follows, we will prove this result by using induction on m.
When m = 1, we have r = 0 and A is semisimple. Thus B, = A,-. Hence A is

generated as a A:-algebra by Bx U • • • U Bs.
When m — 2, we have r2 = 0 and, for the canonical morphism r), we have

?j(B,) = A,-. So, as a ^-algebra, A/r can be generated by (B, + r) U • • • U (Bs + r).
Write A/r — (B, + r, • • • , B.s + r ) / r . We have

(B, + r, • • • , fl, + r)/r = ((B,, • • • , Bs> + r)/r.

Thus, A/r = ((£,, ••• , B.v) + r)/r. Hence A = (Bt, • • • , Bs) + r. But,

r/r2 = Y.

Then from r2 = 0 we get r = X^e/ Arx. It follows that

A = <£,,••• ,Bs)+r = ^

Xe/

as a A--algebra.
Assume now that the claim holds for m = / > 2. Then consider the claim in the

case m = I + ].
Let f be the A-subalgebra of A generated by B{ U • • • U Bs:U {rk : k e / } . Firstly,

we will show that P/(P n r') = A/r'.
Since (A/r1)/(r/r1) = A/r is semisimple, r(A/r') = r/r' holds. By the induction

assumption, r'+i — 0 and r1 ^ 0 for any i < /. For any t, (r/r1)'(A/r1) — r' A/r' =
r'/r' since r'A = r' due to the existence of the identity of A. Thus (r/r1)'(A/r') = 0
if and only if t > /. (If there were; < / such that r' — r', then r'+i = r'+l = 0, which
contradicts rl(A) = w = / + 1). Therefore rl(A/r') = /.

Let £ : A -»• A//-' be the canonical morphism and B, = £(B,) be simple alge-
bras for all i and n the canonical morphism from A/r' to (A/r')/(r/r') = A/r.
Then ?r£ = rj. It follows that 7r(B,) = 7,. This means that B = {B,, • • • , Bs\ is the
set of primitive radical-orthogonal simple algebras of A/r'. We have that all elements
in {?)-. X e 1} in r/r2 generate r/r2 as an A/r-module. But, A/r = (A/r')/(r/rl)
and r / r 2 = (r/r')/(r/r')2. So, all elements in {F,. : X e /} in (r/r')/(r/r')2 generate
(r/r')l(r/r')2 as an (A/r')/(r/r')-module. Let o. = f fo) e r/r'. Then wft) = rx.
Thus, by the induction assumption, B, U • • • U Bs U [7k : X e /} generates the A:-algebra
A/r' .
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On the other hand, Bx U • • • U Bs U {rA : k e /} generates P. It follows that
B, U • • • U Bs U {n, : A. e 1} generates the /t-algebra P/(P n r'). But P/(P n r') can
be embedded into A/r1. Therefore, we deduce that P/(P n r') = A/r1.

It will be proved below that in fact P — A, which means that A is generated by
B, U • • • U Bs U {rk : k e / } .

Let * 6 A. Then there exists y e P such that x + r' = j + P D r'. It follows that
j - ) > 6 r ' . Thus there are or, € r'"1 and Bt e r such that x — y = Yll=\ a<$i- But
a, + r' and ft + r' in A/r' and A/r' = P / (P n rl). Then there are a, and fc, in f
such that a, + r' = a,- + P D r' and 0, + r' = b,• + P n r'. Since a, € r'"1 and £,• 6 r,
we have a, 6 r'~' and b, € r. Let a,' = a, — a, and b\ — P; — fc,. Then a\, b\ 6 r'.
Hence a,£, = (a, +a-)(fc, +*,') = atbx -\-a-b,+aib'j +a'ib'j = a,b, € P for all / where
a'Jb; e rl+i = 0, a,b\ € rv~l = 0, a;fc; € r2' = 0. It follows that x - y e P. Hence
x e P.

(ii) r/r2 = A/r • r/r2 • A/r — ^ ._, A, • r/r2 • Aj is a direct sum decomposition

since A] = A,- and A,Ay = 0 for / ^ j . Corresponding to this, in A, we let
n

W — J2"i j=\ BirBj, where B,: = Ah W is a direct sum of B,rBj since B,2 = B, and
BjBj = 0 for / T̂  _/. Obviously W is a subalgebra of r and then of A. Also r/r2 is an
(/\/r)-bimodule with the action of A/r as above.

(A/r) © (r/r2) is a fc-algebra in which the multiplication is derived from that of
A/r and r/r2 and the A/r-bimodule action of r/r2.

For each pair of integers /, j with 1 < i, j < s, choose elements {^;}nen0 in
B,rBj such that {7'/}uen;; is a /:-basis for A, • r / r 2 • Ay where J'j = >'̂  + r2 is the
image in r/r2. Then (J, =] {3̂ ^J'Leny ' s a basis for r/r2 . It follows from (i) that
Ui.j.u {y'u^ueaij U B, U • • • U Bs generates A as a ^-algebra.

It is easy to see that {y'J}uen,, is ̂ -linear independent in B,rBj. From the fact that W
is a direct sum of BjrBj, it follows that [J* ^{y'J},*^ is a it-linear independent set
in W.

Define / : (A/r) 0 (r/r2) ->• A by / | j . = rT1 and /(y|/) = >»y. Then

f\A/r- A/r —> B = f(A/r) is a /t-algebra isomorphism since B = A/r, and
/ | r / r : : r / r 2 ->• f(r/r2) (c IV C r) is an isomorphism of k-linear spaces. Thus
/ : (A/r) © (r/r2) -> A is a A:-linear map. Hence, by Lemma 2.5, there is a unique
algebra morphism / : {?&(A/r,r/r2) —> A such that f\(A/rmr/r*) = / • As said
above, \JiJtU{yi;j}u<zn,j U B, U • • • U B, generates A as a ^-algebra. Therefore / is
surjective.

By the definition of / , we have f{(r/r2)') = f(r/r2)J C rj C r2 for j > 2,
where (r/r2)' denotes r/r2 ®k r/r2 ®k • • • ®k r/r2 with j copies of r/r2. Also f\A/r

and f\r/r2 are monomorphic. By the definition of / on A/r and r/r2, it is easy to see
that/|(/,/r)ffi(r/r2): (A/r)(&(r/r2) -*• A is amonomorphism with image intersecting r2
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trivially. In the notation of Section 2, M(n) = Y1MI.M-,.-.M* M\ ®t M2 <8>* • • • ®* Mn

where each A/, is either r/r2 or A/r but no two A/r's are neighbouring and at least
one M,equals M. Then &&(A/r, r/r2) = A/r©M(l)0M(2)©- • -®Af («)©•• •.
It follows that ker / C 0 ; > 2 M(y).

On the other hand, M(n. I) equals the sum of those items M\ ®k M2 <8>*: • • • <8>* M,
of M(n) in which there are / A/,s equal to r/r2 and M(n) = 5Z(n-o/2<;<n ^ ( n - 0 a s

in Section 2. Also f((r/r2)j) = 0 for _/ > r/(A) since r! = 0 in this case. It follows
that f{M{n, /)) = 0 for any n and any possible / > rl(A). Therefore we get

0 0 Af(n,/)cker/. D
n>rl(A) max(r/(A). (n-l)/2)<Kn

THEOREM 3.2 (Generalized Gabriel's Theorem Under Lifting). Assume that A is
a left Artinian k-algehra and A/r can be lifted. Then A = PSEk{A, $/, p) with
Js C (p) C J for some s, where A is the quiver of A and p is a set of relations on

PROOF. Let A be the associated quiverof A. By Lemma 3.1(ii), there is a surjective
^-algebra morphism / : &!7{A/r, r/r) —*• A with

M{n,l) C ker / (
n>rl(A) max\rl(A). (n-\)/2)<l<n ,/>2

By Proposition 2.9, there is the surjective /:-algebra homomorphism

<p : PSEk(A, si/) -> &&(A/r, r/r2)

such that for any t > 1,

Then f<p : PSEk(A, srf) ->• A is a surjective A>algebra morphism with the kernel
/ = ker(f(p) = ^~'(ker/) .

But, <p(JrM>) = (Bnj>r,(AiM(n,l) and <p(J2) = ©n ,> 2M(«, / ) . So, by
Lemma3.1(ii), <p{JrHA)) c k e r / c <p(J2) + M(2, 1) +Af(3, 1).

One can show

V C <p-l<pW) C J' + 0 ( 0 0 Mf(«, /) j ntfKkerjr)

for t > 1. In fact, trivially, 7' c <p~]<p{J'). On the other hand, ^ = n<p~* and
^~' = 4>n~\ By Proposition 2.9, ^ ( i ' ) = ®,, ;>, A/(n. /). From the definition of n
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in Lemma 2.4, it can be seen that

*"' ( 0 M("'')) c © MF ("• O + J 0 0 MF(n, I)) n kerTr.

Thus, by Lemma 2.4, we have

C (p ( 0 MF(n, /) J + 0 ( 0 0 MF(n, 1)j n0(ker7r) .

= f + 0 ( 0 0 Mf (n, /) J n 0(ker7T).

Hence,

( ) ( ) () , 1)).

C J2 + (p(MF(3, \) + MF(2, \) + MF(\, l ))

' Af(3, 1))

since 4>{MF(\, l))n0(ker;r) = 0, and then

4>{MFQ, \) + MF{2, 1) + MF(1, l))n0(ker7r) + v-'(A/(2, 1) + M(3, 1))
= A- PSE(Au\e/)- A.

But it is clear that J2 + A • PSE(A\,JZ/) • A = J. Therefore, we get:

jrl(A) C ( p - l ( k e r ^ = ; c j

Lastly, by Proposition 2.12, there is a set p of relations such that / can be generated
by p, that is, / = (p). Hence, PSEk(A,s/,p) = PSEk(A, #Z)/(p) = A with
(p> = ker(/>) and JrliA) c (p) C J. •

Usually, for a left Artinian algebra A, the set p of relations in Theorem 3.2 is
infinite. But when A is finite dimensional, we can show that p is finite.

In fact, suppose that A is finite dimensional, so that At is finite dimensional for
all /. Thus the &-space consisting of all ^-pseudo paths of a certain length is finite
dimensional. It follows that Jrl(A) is the ideal finitely generated in PSEk(A, srf) by all
^-pseudo paths of length rl(A). Similarly, PSEk(A, s?)/JrHA) is generated finitely
as a /:-space by all j^-paths of length less than rl(A), and so also is 1 / Jrl(A) as a
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jfc-subspace. Then it is easy to see that / is a finitely generated ideal in PSEk(A, s#).
Assume [a),..., op] is a set of finite generators for the ideal /. For the identity 1 of
A/r, we have the decomposition into orthogonal idempotents as 1 = ? H + es,
where ?, is the identity of A,. Then a, = 1 • o> • 1 = J2i<ij<s */'• °i '• f/» w n e r e eity'ej
can be expanded as a A:-linear combination of some such ^-pseudo paths which have
the same start vertex / and the same end vertex j . So a'1' = 1, • a, • e~j is a relation on
the j*'-pseudo path algebra PSEk(A, srf). Moreover, / is generated by all a'u since
o\ = J (̂. a'1'. Therefore we have a finite set p = {o'1' : 1 < /, j < 5, 1 < / < p)
with / = (p) such that PSEk(A, &?, p) = PSEk(A, rf)/(p) = A. Therefore the
following holds.

COROLLARY 3.3. Assume that A is a finite dimensional k-algebra and A/r can be
lifted. Then A = PSEk(A, srf, p) with Js C (p) C J for some s, where A is the
quiver of A and p is a finite set of relations on PSEk(A, srf).

When A is elementary, /4, = A}•, — k and , A/, = r/r2 is free as a k-hne&r space.
Thus 7i is an isomorphism, so ker^ = 0 and ker̂ > = 0. According to the classical
Gabriel Theorem, we have Jrl(A) C <p) C J2, which is a special case of the results of
Theorem 3.2 and Corollary 3.3.

By the famous Wedderburn-Malcev Theorem (see [4]), for a left Artinian k-
algebra A and its radical r, if Dim A/r < 1 then A/r can be lifted. Here, Dim A is
the dimension of a fc-algebra A and

Dim A = sup{n : Hj!(A, M) ^ Ofor some A-bimodule M)

where H£ (A, M) means the nth Hochschild cohomology module of A with coefficients
in M. In particular, Dim A/r = 0 if and only if A/r is a separable k-algebra. By [4,
Corollary 10.7b], when k is a perfect field (for example, char/: = 0 or k is a finite
field), A is separable. So, we have the following.

PROPOSITION 3.4. Assume that A is a left Artinian k-algebra. Then
A = PSEk(A, srf, p) with Js C (p) C J for some s, where A is the quiver of A and p
is a set of relations of PSEk(A, srf), if one of the following conditions holds:

(i) Dim A/r < 1, where r is the radical of A;
(ii) A/r is separable;

(iii) k is a perfect field (for example, when char/: = 0 or k is a finite field).

Note that in Proposition 3.4, the condition (ii) is a special case of (i), and (iii) is a
special case of (ii).

In Theorem 3.2, A = PSEk(A, #f,p) holds where A is the quiver of A from
the corresponding ^-pseudo path algebra of the .^-path-type pseudo tensor alge-
bra ^^{A/r, r/r2) by the definitions in Section 2. Moreover, in the case where
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(p) C JA, we will discuss the uniqueness of the corresponding pseudo path algebra
and quiver of a left Artinian algebra under isomorphism, that is, whether there ex-
ists another quiver and its related pseudo path algebra so that the same isomorphism
relation is satisfied. In fact, we have the following statement on the uniqueness.

THEOREM 3.5. Assume that A is a left Artinian k-algebra. Let A/r(A) = @f=l A,
with simple algebras A,. If there is a quiver A and a pseudo path algebra PSEk (A, 38)
with a set of simple algebras 38 = {Bu • • • , Bq) and p a set of relations such that
A = PSEk(A,38,p)withJ'A c (p) C J\for some t and JA the ideal in PS Ek(A, 38)
generated by all pure paths in PSEk(At, 38), then A is just the quiver of A and p = q
and A, = fi, for i = 1, ..., p after reindexing.

PROOF. PSEk(A,38)/JA = B\-\ 1- Bq by the definition of 7A. Since JA c (p),
it follows that (JA/(p))' = J'A/{p) = 0. Also,

PSEk(A, 0, p)/{JJ(p)) =

is semisimple. Hence JA/{p) is the radical of PSEk(A, 38, p). Thus, from
A = PSEk(A,@,p), it follows that A/r(A) = PSEk(A, @)/JA. However,
A/r(A) = ®f=I A, and PSEk(A, 38)/ JA = B] H V Bq where ~A-, and Bj are
simple algebras. Therefore p = q and At = 5,- for / = 1, p after reindexing,
according to the Wedderburn-Artin Theorem.

On the other hand, A/r(A)2 = PSEk(&, 3§)/J2
A. Thus the quivers of A/r(A)2

and PSEk(A. 38)/J\ are the same.
But

PSEk(A, m/Jl = {PSEk{A,38)l(p))/{Jll(p)) = PSEk(A,3$, p)/{J2J(p))

and the radical of PSEk{A,38, p) is JA/{p). Then the radical of PSEk{A,88)/J\
is (JJ(p))/Ul/{p)) = JJJl- So, the quivers of PSEk(A, 3$)/J\ are that of the
<e^-path-type pseudo tensor algebra

, 38)/J^ JA/J2
A).

Now, we consider the quiver T of ^^(PSEk(A, 3§)/JA, JJJl). From the defini-
tion of the quiver associated to an ^-path-type pseudo tensor algebra in Section 2, we
know that Fo = {1, • • • , q} = Ao. For any i, j e Fo, the number of arrows from / to j
in F is the rank ru of ,Mj — B, • JA/Jl

A • Bj as a finitely generated 5,-fi;-bimodule.
However, by the definition of JA, B, • JA/J\ • Bj can be constructed as an fi,-B;-linear
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expansion of all ^/-pseudo-paths of length 1 from i to j in PSEk(A{, £8). It means
that r(J is equal to the number of arrows from i to j in A. Thus the number of arrows
from / to j in F is equal to the number of arrows from / to ; in A. Then T\ = Ai.
Therefore T = A.

The above discussion implies that the quiver of A/r{A)2 is just A. Moreover,

A/r{A) = (A/r(A)2)/(r(A)/r(A)2) and

r{A)/r{A? = {r(A)/r(A)2)/(r(A)/r(A)2)\

where r(A)/r(A)2 is the radical of A/r(A)2. So the quiver A of A/r(A)2 is also that
of

&& ((A/r(A)2) / (r(A)/r(A)2), (r{A)/r(A)2) / (r(A)/r(A)2)2) .

But

&ST (A/r(A),r(A)/r(A)2)

= && ({A/r{A)2) / (r(A)/r(A)2), (r(A)/r(A)2) / (r(A)/r(A)2)2) .

It follows that A is the quiver of A. D

According to this theorem, we see that for a left Artinian algebra A, the existence
of the pseudo path algebra such that A is isomorphic to its quotient algebra (see
Theorem 3.2) can imply its uniqueness. That is, such pseudo path algebra, whose
quotient is isomorphic to .4, is uniquely determined by the quiver and the semisimple
decomposition of A.

Our main result, Theorem 3.2, means that when the quotient algebra of a left
Artinian algebra is lifted, the algebra can be covered by a pseudo path algebra under
an algebra homomorphism. We know that a generalized path algebra must be a
homomorphic image of a pseudo path algebra and its definition seems to be more
concise than that of pseudo path algebra. So it is natural to ask why we do not look for
a generalized path algebra to cover a left Artinian algebra. In fact, this is our original
idea. However, unfortunately, in general, as shown by the following counter-example,
a left Artinian algebra with lifted quotient may not be a homomorphic image of its
corresponding <«/-path-type tensor algebra. Thus one cannot use the above method
(that is, through Proposition 2.10) to gain a generalized path algebra in order to cover
the left Artinian algebra. The following counter-example was given by W. Crawley-
Boevey.

EXAMPLE 1. There is an example of a finite dimensional algebra A over a field k
such that

(a) A is split over its radical r, that is, Ajr can be lifted;
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(b) there is no surjective algebra homomorphism from T(A/r, r/r2) to A, that is, A
cannot be equivalent to some quotient of T(A/r, r/r2).

Concretely, we describe A in the following eight steps.

(1) Let F/k be a finite field extension, and let 8 : F -> F be a nonzero ^-derivation.
For example, one can take k — Z2(t), F = Z2(VF) and 8(p + qVt) = q for
p, q e Z2(r) where Z2 denotes the prime field of characteristic 2. It is easy to check
that 8 is a ^-derivation since char k = 2.
(2) Define E = F ® F and consider it as an F-F-bimodule with the actions:

f(x, y) = {fx, fy), (x, y)f = {xf + y8(f), yf)

for x, y, f e F. Let 6 and 4> be F-F-bimodule homomorphisms respectively from F
to E and from E to F satisfying

for JC, v € F. Then we have a nonsplitting extension of F-F-bimodules:

In fact, if there were an F-F-bimodule homomorphism \jr : E -*• F with \j/-9 = \F

then for all / e F we would have

S(J) = W(8{f)) = iK8(f), 0) = ir(S, / ) - V(0, / ) = V((0, D/) - VK/(O, D)

= V(0, D/- /VCO, l ) = 0 ,

and hence <5 = 0, which contradicts the assumption on 8.

(3) Define A = F © F © E with multiplication given by

(x, y, e) (x1, y\ e') = (xxr, xy' + yx', xe' + 9(yy') + ex').

Let 5 = {(x, 0, 0) : x € F}. Then 5 is a subalgebra of A isomorphic to F.
Let r = {(0, y , c ) : ) i e F , c e £}. Then r is an ideal in A with

r2 = {(0, 0,e):ee im(<9)} and r3 = 0.

Thus r is the radical of A, and A = 5 © r, so A is split over r.

(4) As an F-F-module, r/r2 is isomorphic to F © F due to the surjective F-F-
module homomorphism n : r —»• F (& F satisfying 7r(0, >>, e) = (y, $(e)) with
ker7r = r2.
(5) By (3) and (4), the ^/-path-type tensor algebra T(A/r, r/r2) = T(F, F © F).

Let 5 = (1, 0) and t = (0, 1), so that F © F = Fs® Ft. Thus 7"(F, F © F) (equiv-
alently, say T(A/r, r/r2)) can be considered as the free associative algebra F{s, t)
generated by two variables s, t over F. It follows that the centre Z(T(A/r, r/r2)) of
T(A/r, r/r2) is equal to F.
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(6) If (x, y, e) € Z(A) the centre of A, then for all e' e E, (x, y, e) commutes
with (0, 0, e'), thus (0, 0, xe') = (0, 0, e'x), so xe' = e'x. Taking e' = (0, 1), we get
x(0, 1) = (0, 1)JC. But by (2), *(0, 1) = (0, JC) and (0, 1)* = (<$(•*), x). It follows
that <5(jc) = 0. Therefore, we have

Z(A) c {(x, y, e) : x, y e F,e € E, 8(x) = 0}.

(7) If L is a subalgebra of Z{A) and is a field, then dim;. L ^ dim* F.

In fact, the composition

L <-+ Z ( A ) <-> {(x, y , e ) : x , y £ F,e e E , 8(x) = 0 } -*• {x : 8(x) = 0 }

is an algebra homomorphism. Assume that / = (JT, y, e) € L is in the kernel of
this composition. Then x = 0 and / = (0, v, e), so/ e r the radical of A. By (3),
/3 = 0. But L is a field, so / = 0 which means that this composition is a one-one map.
Therefore,

<
dim* L < dirru{jr: 5(JC) = 0}^dimA F

where "j^" is from 8 ^ 0.

(8) If there were a surjective algebra homomorphism X : T(A/r, r/r2) -> A, it
would induce a homomorphism of the centre Z(T(A/r, r/r2)) of T(A/r, r/r2) into
the centre Z{A) of A. By (5), Z(T(A/r, r/r2)) = F. Thus, L = l(F) would be

<
a field and a subalgebra of Z(A). By (7), we have dim* L ^ dim* F. On the other
hand, if there is an x satisfying 0 ^ x e ker>.|/r, that is, k(x) = 0, then, since F is
a field, we get X(\) = A(1/JT)AU) = 0, which implies X — 0 since A is an algebra
homomorphism. This is impossible since k is surjective. Hence ker k\F — 0, that is,
k\F is injective, so F = L which contradicts dim* L ^ dim* F.

This completes the description of Example 1. Due to this example, we know
that a general left Artinian algebra with lifted quotient cannot be covered by its
corresponding .{/-path-type tensor algebra. This is the reason that we introduce
pseudo path algebras and .(/-path-type pseudo tensor algebras to replace generalized
path algebras and ,e/-path-type tensor algebras in order to cover left Artinian algebras
with lifted quotients.

However, there still exist some special classes of left Artinian algebras which can
be covered by the corresponding ^/-path-type tensor algebras and moreover by a
generalized path algebra. This point can be seen in the next section, but we will have
to restrict a left Artinian algebra to be finite dimensional.
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4. When the radical is 2-nilpotent

In this section, we will always assume that the radical r of a finite dimensional
algebra A is 2-nilpotent, that is, r £ 0 but r2 = 0. Also, suppose that A is split over its
radical r such that A = B © r with B = {/?,, . . . , Bs) the set of primitive orthogonal
simple subalgebras of A as constructed in Section 3. For x = x + r e A/r, let
x • r = xr and r • x = rx. Then r is a finitely generated /4/r-bimodule. If
A/r = © ; = 1 A-, where A, is a simple subalgebra for each /, then, for each pair (/, j),
r is a finitely generated /4,-Aj-bimodule whose rank is written as lu. Now

s s

r = A/r r • A/r = ^ 1 " , • r • 1 , = ])T ,-M;

where ,My = A/ • r • Aj. Then, for/: ^ /,

% • iMj = X* • ( I , • r • ~A}) = fiAfi,r^ - 0,

so i4jt • ,Mj = 0; similarly, for k ^ j , ,Mj • Ak = 0. Hence, we get the .c/-path-
type tensor algebra T(A/r, r) and the corresponding .eZ-path algebra k(A, srf) with
srf = {A, : / e Ao}. A is called the quiver of A. In a manner similar to the proof of
Lemma 3.1, we obtain the following results.

LEMMA 4.1. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r(A) and A is split over the radical r. Let B — {B\, . . . , Bs] be the set
of primitive radical-orthogonal simple subalgebras of A as constructed above. Write
A/r = ® ' = ] Ah where A, are simple algebras for all i. Then the following statements
hold.

(i) / / { / • , , . . . , r,} is a set of generators of the A / r-bimodule r then Bt U • • • U Bs U
{r\, • • •, r,} generates A as a k-algebra;

(ii) There is a surjective k-algebra homomorphism f : T(A/r, r) —> A with

k e r / = @j>2(
ry> where (r)J denotes r <g>A/r r ®A/r • • • ®A/r r with j copies ofr.

PROOF. It is easy to see that r is an (A/r)-bimodule with the action given
by A,•• • r — B/r. Note that A, A}•, • r = 0 • r = 0 and, on the other hand,

~A~Aj • r = (BiBj +r)-r = BiBjr C rr = 0,

so that this action is well-defined. The proof of (i) can be given in a manner similar to
the proof of Lemma 3.1(i) in the case rl(,4) = 2.

Next, we prove (ii). r = A/r • r • A/r = £/.,=i ~A, • r • ~A} = Y!ij=\ B'rBJ i s a

direct sum decomposition since Bf — Bt and 5 , 5 , = 0 for / / j .
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(A/r) @r is a /:-algebra in which the multiplication is derived from the A/r-module
action of r and the multiplication of A/r and r.

For each pair of integers i, j with 1 < i, j < 5, choose elements {j^} to form a
A:-basis in BtrBj. Then I J / . ^ iW} ' s a basis for r.

Define / : (A/r) © r '^> A by f\r = idr, that is, f(yij) = y'J, and / | I ; = »»-'•

Then, f\A/r '• A/r -*• B = f{A/r) is afc-algebra isomorphism since B = A/r, and
/I/-: r ->• / ( r ) = r c A is an embedded homomorphism of A/r-bimodules. Hence,
by Lemma 2.3, there is a unique algebra morph'ism / : T(A/r,r) —> A such that

/I(i4/r)er = / • ^

Firstly, \JijJy'uJ) C / ( r ) and B, U • • • U B.v c J{A/r). From (i), it follows that
U/.j:«{>'«"'} UB| U —U Bs generates A as a ^-algebra and then / is surjective. On
the other hand, f\A/r and f\r are monomorphic, so f\(A/r)®r • (A/r) © r -> A is a
monomorphism. Then ker / c 0 > 2 ( r ) ' . Moreover, /((r)J ') = 0 for j > 2 since
rj = 0 in this case. Therefore, 07>2(r)J C ker / . Thus, ker / = ©,->2(r)>'. D

In the proof of this lemma, since f\r — idr, it is naturally a A/r=homomorphism.
So, the condition of Lemma 2.2 is satisfied by T(A/r, r). In general, this is not true
for 7(A/r, r) in the case that r2 £ 0.

THEOREM 4.2 (Generalized Gabriel's Theorem With 2-NilpotentRadical). Assume
that A is a finite dimensional k-algebra with 2-nilpotent radical r = r{A) and A is
split over the radical r. Then, A = k(A, #/, p) with J2 C (p) C J2 + JC\ ker£>
where A is the quiver of A and p is a set of relations ofk(A', srf), cp is defined as in
Proposition 2.10.

PROOF. Let A be the associated quiver of A. By Lemma 4.1(ii), we have the
surjective k-algebra homomorphism / : T(A/r,r) —>• A. By Proposition 2.10,
there is a surjective ^-algebra homomorphism <p : it(A, srf) -*•• T(A/r, r) such that
(p(T') = 0J->,(r)-' for all t > 1. Then J<p : k(A,#/) - • A is a surjective A:-algebra
morphism where / = ker(/$5) = ^~'(®; > 2( ' ' )7) since ker / = ®J > 2(r) J = <p(J2)-

As a special case of the corresponding part of the proof of Theorem 3.2, we have

J' C $-lv(J') C J' + 4> I 0 (r)fM n 0(ker7r)
/

for t > 1. Hence,
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But,0(ker7r) = 0(JT-'(O)) = £"'(0) = ker£. Then we get/2 c / C 72 + 7nker£.
The ideal J2 is finitely generated in k(A, srf) by all ^-paths of length 2, while the

^-linear space k(A, srf)/J2 is finitely generated by all jz^-paths of length less than 2,
as is I /J2 as a £-subspace. Then / is a finitely generated ideal in k(A, si/). Assume
that (CTI, . . . , ap) is its finite set of generators. Moreover, o, = Y*\<t i<s^iai*j where
<?,CT,e; is a relation on the .2^-path algebra k(A, srf). Therefore, for

p = [ewej :\<i,j<s,l<l<p],

we get / = (p). Hence k(A,sif, p) = k(A, &/)/{p) = A with (p) = ker (/<p) and
72 c (p) C J2 + In ker£. D

COROLLARY 4.3. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r(A). Then, A = k(A, £?, p), with J2 C (p) C J where A is the
quiver of A and p is a set of relations ofk(A, £/), if one of the following conditions
hold:

(i) Dim A/r < ! for the radical r of A;
(ii) A/r is separable;

(iii) k is a perfect field (for example, when char/t = 0 or k is a finite field).

As in the case of Theorem 3.5, in the case that (p) c J*, we have the uniqueness
of the corresponding ^/-path algebra and quiver of a finite dimensional algebra. That
is, we have the following statement.

THEOREM 4.4. Assume that A is a finite dimensional k-algebra. Let A/r(A) =
©f=i Aj, where each A, is a simple algebra. If there is a quiver A and a generalized
path algebra k(A, &) with a set of simple algebras 38 = {Bt, ..., Bq} and a set p
of relations such that A = k(A, £§, p) with J'& c {p) C J\for some t and 7A the
ideal in k(A,&) generated by all elements in k{A\, 38), then A is the quiver of A
and p = q such that A-, = B, for i — ],..., p after re indexing.

This theorem can be proved in the same way as Theorem 3.5: we only need
to replace .2/-path-type tensor algebra and .E -̂path with ^/-path-type pseudo tensor
algebra and ^"-pseudo path respectively.

By Fact 2.6, an j2/-path-type tensor algebra or an ^/-path algebra can be covered
respectively by £/-path-type pseudo tensor algebra or jzZ-pseudo path algebra. Thus
we can also state a Generalized Gabriel's Theorem With 2-Nilpotent Radical for
^/-pseudo path algebras. As a corollary of Theorem 4.2, one has the following.

PROPOSITION 4.5. Assume that A is a finite dimensional k-algebra with 2-nilpotent
radical r = r(A) and A/r can be lifted. Then

A = PSEk(A,tf,p) with J2 C(p) C J2 + JDker<p
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where A is the quiver of A, p is a set of relations on PSEk(A, g/) and cp is defined
as in Proposition 2.9.

PROOF. We have the composition of surjective homomorphisms:

PSEk(A,g/) -4 k(A, tf) S-X A.

Then A = PSEk(A, .<?/)/ker {f<pi), where ker (f<pi) = r](ker(f<p)).

By Theorem 4.2, 7 : c ker (ftp) c 7: + 7n ker£. Thus,

r1 (72) c r1 (ker (/£)) c r1 (72) + r1 (7n ker^).

But. since r ' ( 7 ) = J, it follows thatr ' (72) = J2 and r ' ( 7 n k e r ^ ) = 7 nker^.
Thus we get

J2 C ker(flpi) c i ; + inker^o.

By Proposition 2.12(ii), there is a set p of relations on PSEk(&. &/) such that
ker (f<pi) — (p>. Then

A = PSEk(&.j2/)/ker(f$t) = PSEk(A.jz?)/{p) = PSEk(A^,p)

and 72 C (p) C J2 + J nker<p. D

So far, in Section 3 and this section, we have established isomorphisms between
an algebra and its ^-pseudo path algebra or ^-path algebra with relations (see
Theorem 3.2 and Proposition 4.5) in the cases where this algebra is left Artinian
with splitting over its radical or moreover, is finite-dimensional with 2-nilpotent
radical. However, it seems to be difficult to discuss the same question for an arbitrary
algebra. Our question is whether it would be possible to characterize an arbitrary
finite-dimensional algebra which is split over its radical through the combination
of the two methods for a left Artinian algebra with splitting over its radical and a
finite-dimensional algebra with 2-nilpotent radical.

In fact, for such a finite-dimensional algebra A, we can start from B = A/r2

where r — r(A) is the radical of A. Consider r(A/r2) = r/r2. denoted by T. Then
T2 = r21r2 = 0. By Lemma 4. l(ii). there is a surjective homomorphism of algebras
/ : T((A/r)/(r/r2). r/r2) - • A/r2.

But we have (A/r2)/(r/r2) = A/r, so

is a surjective homomorphism of algebras.
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On the other hand, according to the method in Section 3, in order to obtain the cor-
responding Gabriel Theorem for this A, the key is to find an algebra homomorphism a
corresponding to / in Lemma 3.1. Therefore, this problem may be regarded as the
problem of finding a surjective homomorphism of algebras a such that the following
diagram commutes

T(A/r,r/r2)

0,

where n denotes the natural homomorphism. If such an a exists, the generalized
Gabriel Theorem should hold for this finite-dimensional algebra A.
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