THE DIRICHLET PROBLEM ON THE HEISENBERG GROUP III: HARMONIC MEASURE OF A CERTAIN HALF-SPACE

BERNARD GAVEAU AND JACQUES VAUTHIER

0. Introduction. In this short note we give an explicit computation of the harmonic measure of a half space $x>0$ in the 3 -dimensional Heisenberg group in terms of a degenerate hypergeometric function. A probabilistic argument reduces the whole problem to a Hermite-type equation on a half line, that we can solve in terms of the function $G\left(1 / 4,1 / 2 ; x^{2}\right)$.

A preliminary attempt to compute this kernel was done in [1] p. 107 and, cited by Huber [4]. Unfortunately a small mistake was made in [1] and the problem was still open until now. The first author is very grateful to Prof. Huber for having pointed out the weak argument of [1]. Since that time, other harmonic measures and even Green functions have been explicitly computed (see [2]).

1. Notations. a) As usual, H_{3} is the Heisenberg group of dimension 3 with the coordinates $g=(z, t) \in \mathbf{C} \times \mathbf{R}, z=x+i y$ and the product law

$$
\begin{equation*}
(z, t) \cdot\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im} z \bar{z}^{\prime}\right) \tag{1}
\end{equation*}
$$

The left invariant vector fields are

$$
X=\frac{\partial}{\partial x}+2 y \frac{\partial}{\partial t}, \quad Y=\frac{\partial}{\partial y}-2 x \frac{\partial}{\partial t}, \quad T=\frac{\partial}{\partial t}
$$

and the subelliptic laplacian is

$$
\begin{equation*}
\Delta=X^{2}+Y^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+4 y \frac{\partial^{2}}{\partial x \partial t}-4 x \frac{\partial^{2}}{\partial y \partial t}+4|z|^{2} \frac{\partial^{2}}{\partial t^{2}} \tag{2}
\end{equation*}
$$

(see [1])
b) the diffusion process starting time $s=0$ from $g=0$ with generator $\frac{1}{2} \Delta$ is

$$
\begin{equation*}
g_{\omega}(s)=\left(X_{\omega}(s)+i Y_{\omega}(s), \quad 2 \int_{0}^{s}(Y d X-X d Y)\right) \tag{3}
\end{equation*}
$$

[^0]where X, Y are independent brownian notions and the last term is a stochastic integral.

The diffusion process starting from $g^{0}=\left(z^{0}, t^{0}\right)$ at time $s=0$ is just

$$
\begin{align*}
& g^{0} \cdot g_{\omega}(s)=\left(x^{0}+X_{\omega}(s)+i\left(y^{0}+Y_{\omega}(s)\right)\right. \tag{4}\\
& \left.\quad t^{0}+2 \int_{0}^{s}(Y d X-X d Y)+2 y^{0} X(s)-2 x^{0} Y(s)\right)
\end{align*}
$$

(see also [1] for details).
2. The harmonic measure of $x>0$. Let D be the half space $x>0$. We want to solve the Dirichlet problem

$$
\begin{cases}\Delta f=0 & \text { on } D \tag{5}\\ f=\varphi & \text { on } \partial D=\{x=0\}\end{cases}
$$

Now, it is obvious that no point on ∂D is characteristic for the operator Δ, so that each point on ∂D is very regular in the senseof Bony ([3]) and also regular in the usual sense of stochastic processes ([1], [3]). If g^{0} is a point in D, the solution of (5) is given by
(6) $\quad f\left(g^{0}\right)=E\left(\varphi\left(g^{0} \cdot g_{\omega}(S)\right)\right.$
where the expectation is the expectation in the probability space of (3) and S is the first exit time from D of $g^{0} \cdot g_{\omega}(s)$.

We shall prove that (6) has an explicit expression
(7) $f\left(g^{0}\right)=\int_{\partial D} k\left(g^{0}, g\right) \varphi(g) d y d t$
where $k\left(g^{0}, g\right)$ is a certain kernel defined on $D \times \partial D$ which is called the harmonic measure of g^{0} in D.
3. The Fourier transform of the kernel k. Because g^{0} is in D, x^{0} is positive. Now S is exactly the first time such that

$$
\begin{equation*}
x^{0}+X(S)=0 \tag{8}
\end{equation*}
$$

and we have to compute the law of the process at the boundary, which is, using (4)

$$
\begin{equation*}
\left(y^{0}+Y(S), t^{0}+2 \int_{0}^{S}(Y d X-X d Y)+2 y^{0} X(S)-2 x^{0} Y(S)\right) \tag{9}
\end{equation*}
$$

But $X(S)=-x^{0}$ and

$$
\begin{aligned}
\int_{0}^{S} Y d X & =-\int_{0}^{S} X d Y+X(S) Y(S) \\
& =-\int_{0}^{S} X d Y-x^{0} Y(S)
\end{aligned}
$$

so that (9) is

$$
\begin{equation*}
\left(y^{0}+Y(S), t^{0}-2 y^{0} x^{0}-4 \int_{0}^{S} X d Y-4 x^{0} Y(S)\right) \tag{10}
\end{equation*}
$$

We compute the characteristic function of (10), namely

$$
\begin{align*}
\Phi\left(g^{0} ; \eta, \tau\right) & =E\left[\operatorname { e x p } i \left\{\eta\left(y^{0}+Y(S)\right)\right.\right. \tag{11}\\
& \left.\left.+\tau\left(t^{0}-2 y^{0} x^{0}-4 \int_{0}^{S} X d Y-4 x^{0} Y(S)\right)\right\}\right] \\
& =\exp i\left(\eta y^{0}+\tau\left(t^{0}-2 y^{0} x^{0}\right)\right) \\
& \times E\left[\exp i\left\{\left(\eta-4 x^{0} \tau\right) Y(S)-4 \tau \int_{0}^{S} X d Y\right\}\right]
\end{align*}
$$

It is clear that on the other hand

$$
\begin{equation*}
\Phi\left(g^{0} ; \eta, \tau\right)=\int_{\partial D} k\left(g^{0} ; y, t\right) e^{i(\eta y+\tau t)} d y d t \tag{12}
\end{equation*}
$$

Now, to compute (11), we remark that S is a random variable independant of Y, and in the expectation in (11), we can integrate out Y : in fact the expectation in (11) is given by

$$
E\left[\exp i \int_{0}^{S}\left(-4 \tau X(s)+\eta-4 x^{0} \tau\right) d Y(s)\right]
$$

and because of the exponential martingal of Mc Kean [6] and because S and $X(S)$ are certain variables with respect to Y, this is exactly:

$$
\psi\left(x^{0}, \tau, \eta\right) \equiv E\left[\exp \left(-\frac{1}{2} \int_{0}^{S}\left(-4 \tau X(s)+\eta-4 x^{0} \tau\right)^{2} d s\right)\right]
$$

so that

$$
\begin{align*}
\Phi\left(g^{0} ; \eta, \tau\right) & =\exp i\left(\eta y^{0}+\tau\left(t^{0}-2 y^{0} x^{0}\right)\right) \tag{13}\\
& \times E\left[\exp \left(-\frac{1}{2} \int_{0}^{S}\left(4 \tau\left(X(s)+x^{0}\right)-\eta\right)^{2} d s\right)\right] .
\end{align*}
$$

Now the expectation on the right hand side of (13) is an expectation on the brownian motion $X(s)+x^{0}$ starting at $s=0$ from x^{0}, until its exit time of the right half line \mathbf{R}^{+}at time S. Call now u the solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\frac{1}{2} \frac{d^{2} u}{d x^{2}}-2 \beta^{2}(x+\alpha)^{2} u=0 \text { on }\left[-x_{0},+\infty[\right. \tag{14}\\
u(+\infty)=0 \\
u\left(-x_{0}\right)=1
\end{array}\right.
$$

where

$$
\begin{equation*}
2 \beta^{2}=8 \tau^{2}, \quad \alpha=-\frac{\eta}{4 \tau} . \tag{15}
\end{equation*}
$$

We have then the well known lemma:
Lemma. We have
(16) $\psi\left(x^{0}, \tau, \eta\right)=u(0)$
(which comes from [5]).
The only point is to solve (14). Call $x^{\prime}=x+\alpha, u(x)=v\left(x^{\prime}\right)$; then we have

$$
\left\{\begin{array}{l}
\frac{1}{2} \frac{d^{2} v}{d x^{\prime 2}}-2 \beta^{2} x^{\prime 2} v=0 \text { on }\left[-x_{0}+\alpha,+\infty[\right. \tag{17}\\
v\left(-x_{0}+\alpha\right)=1 \\
v(+\alpha)=0
\end{array}\right.
$$

Now we compare the differential equation with the Hermite equation
(18) $\frac{d^{2} y}{d x_{1}^{2}}-2 x_{1} \frac{d y}{d x_{1}}+2 \nu y=0$.

If we write

$$
z=y \exp \left(-\frac{x_{1}^{2}}{2}\right)
$$

we obtain

$$
\frac{d^{2} z}{d x_{1}^{2}}+z\left(2 v+1-x_{1}^{2}\right)=0
$$

Writing $x_{1}=\theta x^{\prime}$ this is transformed in

$$
\frac{d^{2} z}{d x^{\prime 2}}+\theta^{2} z\left(2 \nu+1-\theta^{2} x^{\prime 2}\right)=0
$$

which can be compared to (17) if we write

$$
v=-\frac{1}{2}, \quad \theta=+\sqrt{2|\beta|}
$$

But (18) has two solutions given in terms of the degenerate hypergeometric G

$$
G\left(\frac{1}{4}, \frac{1}{2}, x_{1}^{2}\right) \sim x_{1}^{1 / 2}
$$

if $x_{1} \rightarrow \infty$ and

$$
e^{x_{1}^{2}} G\left(\frac{1}{4}, \frac{1}{2},-x_{1}^{2}\right) \sim e^{x_{1}^{2}} x_{1}^{-1 / 2}
$$

(see [7]).
So the corresponding z are

$$
\begin{aligned}
& \exp \left(-\frac{x_{1}^{2}}{2}\right) G\left(\frac{1}{4}, \frac{1}{2},+x_{1}^{2}\right) \\
& \exp \left(+\frac{x_{1}^{2}}{2}\right) G\left(\frac{1}{4}, \frac{1}{2},-x_{1}^{2}\right)
\end{aligned}
$$

and we can only retain the first one because we look for a solution vanishing at infinity.

We then obtain

$$
\begin{aligned}
u(x) & =v\left(x^{\prime}\right)=z\left(\sqrt{2|\beta|} x^{\prime}\right) \\
& =\exp \left(-|\beta| x^{\prime 2}\right) G\left(\frac{1}{4}, \frac{1}{2} ; 2|\beta| x^{\prime 2}\right)
\end{aligned}
$$

and because we want that $u\left(-x_{0}\right)=1$, we obtain

$$
u(x)=\frac{\exp \left(-|\beta|(x+\alpha)^{2}\right) G\left(\frac{1}{4}, \frac{1}{2} ; 2|\beta|(x+\alpha)^{2}\right)}{\exp \left(-|\beta|\left(x_{0}-\alpha\right)^{2}\right) G\left(\frac{1}{4}, \frac{1}{2} ; 2|\beta|\left(x_{0}-\alpha\right)^{2}\right)}
$$

Because of (16) and (15) we then get

$$
\begin{equation*}
\psi\left(x^{0}, \tau, \eta\right)=\frac{\exp \left(-\frac{\eta^{2}}{8|\tau|}\right) G\left(\frac{1}{4}, \frac{1}{2} ; \frac{\eta^{2}}{4|\tau|}\right)}{\exp \left(-2|\tau|\left(x_{0}+\frac{\eta}{4 \tau}\right)^{2}\right) G\left(\frac{1}{4}, \frac{1}{2} ; 2|\tau|\left(x_{0}+\frac{\eta}{4 \tau}\right)^{2}\right)} \tag{19}
\end{equation*}
$$

Now because of (12), (13) and (19) we obtain by taking the inverse Fourier transform

$$
\begin{align*}
k\left(y^{0} ; y, t\right) & =\frac{1}{(2 \pi)^{2}} \int \exp \left[-i\left(\eta y+\tau t-\eta y^{0}-\tau\left(t^{0}-2 y^{0} x^{0}\right)\right)\right] \tag{20}\\
& \times \psi\left(x^{0}, \tau, \eta\right) d \tau d \eta
\end{align*}
$$

References

1. B. Gaveau, Principe de moindre action, propagation de la chaleur et éstimées sous-elliptiques sur certains groupes nilpotents, Acta Mathematica 139 (1977), 95-153.
2. B. Gaveau, P. Greiner and J. Vauthier, Polynômes harmoniques et problème de Dirichlet de la boule du groupe d'Heisenberg en présence de symétrie radiale, Bulletin des Sciences Mathématiques 108 (1984), 337-354.
3. B. Gaveau and J. Vauthier, The Dirichlet problem on the Heisenberg group II, to appear in Can. J. Math.
4. H. Hueber, The Poisson space of the Koranyi ball, Mathematische Annalen 268 (1984), 223-232.
5. M. Kac, Proc. $2^{\text {nd }}$ symposium on probability and statistics (1950).
6. H. P. Mc Kean, Stochastic integrals (Acad. Press, 1969).
7. A. Nikiforov and V. Onvarov, Elements de la théorie des fonctions spéciales (1976).

Université Paris VI, Paris, France

[^0]: Received March 13, 1984

