
Can. J. Math., Vol. XXXVIII, No. 3, 1986, pp. 666-671 

THE DIRICHLET PROBLEM ON THE HEISENBERG 
GROUP III: HARMONIC MEASURE OF A CERTAIN 

HALF-SPACE 

BERNARD GAVEAU AND JACQUES VAUTHIER 

0. Introduction. In this short note we give an explicit computation of 
the harmonic measure of a half space x > 0 in the 3-dimensional 
Heisenberg group in terms of a degenerate hypergeometric function. A 
probabilistic argument reduces the whole problem to a Hermite-type 
equation on a half line, that we can solve in terms of the function 
G(l/4, 1/2; x2). 

A preliminary attempt to compute this kernel was done in [1] p. 107 
and, cited by Huber [4]. Unfortunately a small mistake was made in 
[1] and the problem was still open until now. The first author is very 
grateful to Prof. Huber for having pointed out the weak argument of [1]. 
Since that time, other harmonic measures and even Green functions have 
been explicitly computed (see [2] ). 

1. Notations, a) As usual, H3 is the Heisenberg group of dimension 3 
with the coordinates g = (z, /) e C X R, z = x + iy and the product 
law 

(1) (z, t) • (z', /') = (z + z', t + f + 2 Im zz'). 

The left invariant vector fields are 

X = — -I- 2y—, Y = — — 2x—, T = — 
dx dt dy dt dt 

and the subelliptic laplacian is 

ç\2 ç\2 ç\2 ç\2 ç\2 

(2) A = X2 + Y2 = A , + —, + 4 y — - 4 x — + 4\z\2—2 

dx2 dy2 dxdt dydt dt2 

(see [1] ) 
b) the diffusion process starting time s = 0 from g = 0 with generator 

- A is 
2 

(3) gjs) = (xjis) -f iYJs), 2 j \ (YdX - XdY)) 
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where X, Y are independent brownian notions and the last term is a 
stochastic integral. 

The diffusion process starting from g = (z , / ) at time s = 0 is just 

(4) g° • ga(s) = (x° + Xa(s) + i(y° + Ya(s) ), 

t° + 2 J* (YdX - XdY) + 2y°X(s) - 2jc°y(» ) 

(see also [1] for details). 

2. The harmonic measure of x > 0. Let D be the half space x > 0. We 
want to solve the Dirichlet problem 

» V--. 0 o n D 
on dD = {x = 0}. 

Now, it is obvious that no point on 3D is characteristic for the operator 
A, so that each point on dD is very regular in the senseof Bony ( [3] ) and 
also regular in the usual sense of stochastic processes ( [1], [3] ). If g° is a 
point in D, the solution of (5) is given by 

(6) /(g°) = E(<p(g° • gJS) ) 

where the expectation is the expectation in the probability space of (3) and 
S is the first exit time from D of g • gw(^). 

We shall prove that (6) has an explicit expression 

(7) /(g°) = fdD k(g°, g)<p(g)dydt 
/dD 

is a 
harmonic measure of g° in D. 
where k(g , g) is a certain kernel defined on D X dD which is called the 

3. The Fourier transform of the kernel k. Because g is in D, x is 
positive. Now S is exactly the first time such that 

(8) x° + X(S) - 0 

and we have to compute the law of the process at the boundary, which is, 
using (4) 

(9) (y° + Y(S), t° + 2 j Q (YdX - XdY) + 2y°X(S) - 2x°Y(S) 

But X(S) = -x° and 

jl YdX = -Jl XdY + X(S)Y(S) 

= ~ J0 XdY - x°Y(S) 
so that (9) is 
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(10) ly° + Y(S), t° - 2y°x° - 4 JQ XdY - 4x°Y(S)J. 

We compute the characteristic function of (10), namely 

J>-(11) < % U ; T , , T ) = E e x p / U ( / + Y(S)) 

+ <• 
2y»x° 

J 0 
XdY - 4x"Y(S) )}] 

= exp /(iy/u + r(f 2A°) ) 

X E exp/Wi? - 4X°T)Y(S) ~ 4T foXdY}\ 
It is clear that on the other hand 

(12) <D(gu; -°; T], T) = / M*0' " / W ( ^ + Tr). 
/3Z) £(gu; * * y rfyjf. 

Now, to compute (11), we remark that S is a random variable 
indépendant of Y, and in the expectation in (11), we can integrate out Y: 
in fact the expectation in (11) is given by 

• [exp i j l (-ArX(s) + TJ - 4xur)J7(i) 

and because of the exponential martingal of Mc Kean [6] and because S 
and X(S) are certain variables with respect to Y, this is exactly: 

Ux°, r, 7,) ^ i ? [ e x p ( - i J I (-4rX(s) + V - 4x°r)2ds)] 

so that 

(13) 0(g°; T], T) = exp / ( ^ ° + r(/° - 2y°x°) ) 

X ^ [ e x p ( - ^ j l (4T(X(S) + x°) - tfds)]. 

Now the expectation on the right hand side of (13) is an expectation on 
the brownian motion X(s) + x° starting at s = 0 from x , until its exit 
time of the right half line R + at time S. Call now u the solution of the 
Dirichlet problem 

(14) 

\d2u 
2 — 2fS"{x + a) u = 0 on [— x0, +oo[ 

2dx 
w( + oo) = 0 
u(~xo) = l 

where 
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(15) 2£2 = 8T2, a = - — . 
4T 

We have then the well known lemma: 

LEMMA. We have 

(16) ftx0, T, i,) = n(0) 

(which comes from [5] ). 

The only point is to solve (14). Call x' = x + a, u(x) = v(x'); then we 
have 

(17) 

1 d2v Q 2 V / 2 . -2 - 2/?Vzv = 0 on [ -JC 0 + a, +oo[ 
2JJC' 

v ( - * 0 + a) = 1 
v( + a) = 0. 

Now we compare the differential equation with the Hermite equation 

dy 
(i8) ±y - 2X] 

dxx 

If we write 

z = y exp 

we obtain 

dx. 
+ Ivy = 0. 

H) 
d2z ? 

—2 + z(2*> + 1 - x\) = 0. 

Writing Xj = 6xf this is transformed in 

d2z 

dx ,2 e2z(2v + l - 0V2) 0 

which can be compared to (17) if we write 

1 
v = e m. 

But (18) has two solutions given in terms of the degenerate hypergeo-
metric G 

(H*o 1/2 

00 and 
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i 

a M 
e 'G\-, - , -xi) ~ eX]x\ 

(see [7] ). 
So the corresponding z are 

2 

-1/2 

-(-f)4H) 
exp(+f)G(??-^) 4̂ 2 

and we can only retain the first one because we look for a solution 
vanishing at infinity. 

We then obtain 

u(x) = V(JC') = z ( v
/ 2 p x ' ) 

= e x p ( - | j 8 | * ' 2 ) G ( ^ ; 2|/}|x'2) 

and because we want that u(—x0) = 1, we obtain 

exp(-|y8| (x + « ) 2 ) G Q , ^ ; 2|£| (x + a ) 2 ) 

exp(-|i8| (x0 - af)Gy- 1; 2|j8| (x0 - a ) 2 ) 
14 2 

Because of (16) and (15) we then get 

(19) Ux°, T, T,) = 

e x p ( -X) c ( l ,L jL) 
V 8 |T | / \ 4 2 4 | T | / 

exp(-2M(x0 + ^)>(ll;2M(,0 + ^ ) 2 ) 

Now because of (12), (13) and (19) we obtain by taking the inverse 
Fourier transform 

(20) * ( / ; y, t) = ^ / e x p [ - / ( ^ + rt - r&" - r(/} - 2 y V ) ) ] 
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