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ESTIMATION OF LD50 BY MOVING AVERAGES

BY B. M. BENNETT
School of Medicine, University of Washington

1. Introduction and summary. Methods of graduation of a series of observations
by means of moving averages were discussed by Sheppard (1914), and subsequently
by SherrifF (1920) and a number of other writers. These methods based on least
squares or weighted least squares solutions differ from actuarial or summation
methods. Thompson (1947) has proposed that the method of moving averages be
considered a ' basic' one in the estimation of the median effective dose (LD 50) of
bioassay data. On the basis of an empirical study of the data of Topley and Wilson
he recommended in particular the use of a three-term moving average. In a recent
paper, Finney (1950) has discussed the efficiency of Thompson's moving average
method generally.

In this paper, I investigate further the possible uses of moving average estimates
in situations where unequal numbers of observations are taken at successive dose
levels. The efficiency of such estimates is discussed with reference to several logit
or probit distributions of tolerance or threshold in the symmetric case. The use of
the arc-sine transformation in combination with moving average methods is also
discussed.

2. Method of moving averages. We consider a series of (2m +1) observations

taken at equally spaced points (e.g. in time)

t= -m , . . . , -1 ,0 ,1 , . . . ,m

respectively. A series of unequal weights

nt (t = 0,±l,...,±m)

is associated with the observations. According to the method of moving averages
curves are fitted by weighted least squares and then the central value of the series
represented by the corresponding computed value of the curve. Thus we determine
a polynomial of degree p,

u(t) = bo + btt+ ... +bpt», (2-1)
m

which minimizes 2 nl(ut — b0 — b1t—...—bpt
v)2. (2-2)

t=-m

The central value w(0) = b0 will then be the ' smoothed' value corresponding to «a,
From (2-2) the normal equations are:

(LPnt) K + (ZP+hit) bx+ ...+ (Zti+*>nt) bp = 2<S ««, (2-3)

fori = 0,1, ...,p. Solving for b0, we have
m

bo= 2 ctut,
t
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where ct is the ratio of the determinants
fl,

tnt

1Pnt

(2W()

(Sitnf)

(St>%)

(Ltnt)
(S«S)

(S^+S)

(Zfti,)

... (s^+X)

(S^W()
... (Z«"n,)
... (S^+^)

... (Zt*vnt)

(2-4)

which may be evaluated then for values of m, nt; here S = S •

In practice, then, the moving averages may be obtained by successively applying
the values «_„,..., c_x, c0, cx,..., cm to the original series of observations. The deter-
minants in (2-4) may be further simplified, but since I shall restrict the polynomials
(2-1) to linear ones (p = 1) this will not be done at this time.

Case (i). As the simplest possible special case consider first a moving average
based on three successive points. In this case for p = 1, TO = 1,

u.

n. (2-5)

where — = -I (- •— I is the harmonic mean of the two extreme weights »_,, n,.
»o 2\n-i ni/

We note that if the weights nt = n, b0 reduces to the arithmetic mean of the three
successive terms.

Case (ii). If p = 1, m = 2, a moving average based on five successive points, since

c, = ntP&n, - t(Ztn()]ID,

or b0 = {»_2( -
Jn_1 + 3»x + 8n2) «_2

+n_1(2n_2 + 2% + 6»2) u_1

+ n1(6n_2 + 2n_1 + 2n2) ux

(2-6)

where D = sum of coefficients of the u's. If the weights are all equal, (2-6) reduces
to the arithmetic mean as before.

In view of the fact that the differences between the successive coefficients (in
parentheses) of the u's are constant = (n1 — n_1) + 2(n2—n_2) in (2-6), b0 reduces to

- 2po)uo+n1(l - 3po)u1+n2(l-4po)u2

_2 + n_x+n0 + nx+n2 - po{n_x + 2n0 + 3nx + 4»2)
(2-7)
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where p0 = —} ——-—^——=?-. In this form the five-term moving average may
( n + an + 8n)

be most easily computed.
The use of these moving averages will be restricted to odd numbers of terms

(TO = 1,2), i.e. three- and five-term weighted moving averages. If the observations
are equally weighted, then the appropriate coefficients ct (t = 0, + 1,..., ±m) are
available for various values of p (cf. Kendall, 1946; Sherriff, 1920).

When the t's are unequally spaced, e.g. in the case of three terms u_x, uo,u1+s

over the points t = — 1,0,1 + 8 (8 > 0), the corresponding weighted least squares
solution is

b ^
0 » % + n « 1 + , ( 2 + 8f + n0n1+3{ 1 + 8)2

l+S

which reduces to (2-5) in case 8=0. If the interval consists of the points

instead, then the weights in (2-8) become interchanged.
3. Applications to biological assay. One of the statistical problems of biological

assay may be typically described as follows. A certain substance (e.g. a drug) is
administered to different series of animals at a number of different levels or concen-
trations d{ (i = 1, ...,k). At each level is observed the number, or rather the
proportion pt, of the animals in which a characteristic effect (e.g. death) was noted.
On the basis of the observed proportions pt it is required to estimate the median
dose (i.e. LD 50), or tha,t dose estimated to produce the characteristic effect in 50 %
of the animals.

Although the essential mathematical solutions to the problems of estimation of
the LD50 from quantal response data have been available for some time under the
assumption of a fundamental distribution of tolerance or threshold, nevertheless
there still appears to be some need for further study of simple interpolation methods
of estimation (cf. Armitage & Allen, 1950; Finney, 1950).

In the present paper I propose to investigate some specific applications of .the
methods of moving averages (as discussed in § 2) to the problem of estimating the
LD 50. Suppose then that pi (i = 1,..., k) represents the proportion of the animals
in which the specified effect was noted at the ith dose level dt. In particular the
'weights' nt of §2 will coincide with the number of animals tested at the successive
dose levels. Also we shall assume that the doses are equally spaced (e.g. on a log
scale), i.e. dr+x = dx + rd (r = 1, ...,k—l), d being the constant dose interval.

According to (2-5), then, when there are four or more dose levels (k > 4) we shall
use as the smoothed value of pt (i = 2,..., k— 1) the three-term moving average
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for i = 2,...,k— 1, with corresponding doses

,>

(* = 2,...,fc-l). (3-2)

If now two successive proportions p'itPi+i are such that p\ < 0*5 <p'i+1 then the
estimated value of log LD 50 will be

as determined by linear interpolation. The approximate variance of (3-3) may be
written as

a%,. £ d2. variance i 0 ; (3-4)
(Pi+i-Pi)

where f represents the sample fraction y—. ~y.
(Pi+i-Pd

If n'f (i = 2, ...,k— 1) are the corresponding moving averages of the true pro-
babilities nt (i = 1, ...,fe) of the number of animals killed, i.e.

then
^ ^ (0-5-njy

and noting that

K:)
i)» (0-5

' (3-5)

n.: - i

and also

the approximate variance is

H1 ~ T' '( 1 - r')<rp,p,+l + T'*O%,J (3-6)

if we denote the fraction r' = y—.——^.
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For the corresponding sample estimate s^ of (3-6) we substitute in (3-6) the values

i'i>i*i+i»/and the (unbiased) estimates of crh. = sL. in terms of sp, = — - ^ , i . e .
n* — l

The expressions (3-6) or (3-7) may be further simplified to give the coefficients of
the respective terms in 77̂ (1 — nj or pt(l —pt).

When the n / s are all equal (= n) then (3-6) reduces to

<t =
 d* (1 - T)**^ 1 - n^) + nt( 1 - nt) + ni+1( 1 - ni+1) + Thri+2{ 1 - ni+2)

which coincides with the expression given by Thompson (1947).
4. Use of five-term weighted moving average. The five-term weighted moving

average suggested by (2-7) is defined as the sequence {pi} (i — 3 , . . . , k — 2) for k ̂  6,
where

S ni+t{l-(t + 2)Pi}pi+t

pl=±=l (4-1)
2

<=-2

and ft = ( ^ + 1 ~ "*-l)
o

+ 2 ( % +^ ~ W 7 a ) . The estimate of logLD50 may then be
( - »f _x + 3ni+1 + 8ni+2)

obtained by Unear interpolation to be

whenever pi < 0*5 < p " i + 1 . The approximate variance of m" is given by

o%i- = —n ir~ [(1 —T")2O%-. + 2T"{\— Tl>)cr
p-.p.. +r"2ap.. ], (4*3)

where T" = ^ -^ , n^ being the expression (4*1) evaluated for ni+t instead of p i + t

and 2
y\ n- (1

5. Relative efficiency of three- andfive-term weighted moving averages. Finney(1950)
has investigated in some detail the question of the bias and relative efficiency of
Thompson's methods in the estimation of the LD50 with moving averages of
varying spans. His results provide approximate bounds for the corresponding
weighted moving averages with the same spans. The following brief numerical
investigation, undertaken before Finney's results became available to the author,
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was designed to compare the (approximate) variances of estimates (3<3), (4*2) for
several theoretical bioassay experiments. A series of four different tolerance or
threshold distributions each based on the logistic (cf., for example, Armitage &
Allen, 1950) were employed, a total of eight symmetrically placed doses being
used. Table 1 indicates the true proportions (= TTJ at each of the successive dose
levels. As indicative of a typical bioassay experiment the column (= »f), or the
numbers of animals tested at each of the dose levels (= dt), was obtained from a table
of random numbers in the interval 10-20.

Table 1. True proportions (= nj
Series

Dose ( = d()

- 3 - 5
- 2 - 5
- 1 - 5
- 0 - 5

0-5
1-5
2-5
3-5

n.

12
11
18
14
15
10
12
16

r

0-100
0-172
0-280
0-422
0-578
0-720
0-838
0-900

2

0-200
0-270
0-355
0-450
0-550
0-645
0-730
0-800

3

0-300
0-353
0-410
0-470
0-530
0-590
0-647
0-700

4

0-400
0-430
0-455
0-485
0-515
0-545
0-570
0-600

Slope — 0-3140 0-1980 0-1211 0-0580

Table 2. Comparison of variances
3-term moving 3-term ' 5-term

average weighted weighted
Series Logit (Thompson) Rel. eff. average Rel. eff. average Rel. eff.

1 0-139 0-215 65 0-207 67 0^55 89
2 0-286 0-516 55 0-502 57 0-364 79
3 0-691 1-34 52 1-29 53 0-933 74
4 2-81 5-72 49 5-59 50 4-04 70

In Table 2 are given the approximate variance for the logLD50 as estimated
from the three- and five-term weighted moving averages. In the column 'Relative
efficiency' (%) these are compared with the corresponding 'exact' logit variance.
Since each of these estimates is essentially a ratio estimate, their respective variances
correspond to the same order of approximation.

It is to be noted that the relative efficiency of the estimate from a weighted
three-term moving average is slightly greater than the corresponding unweighted
average of Thompson, i.e. from the sequence {pf} {i = 2,..., k— 1) where

P? = MPi-i+Pi+Pi+i) (» = 2,. . . ,*-l). (5-1)
The approximate variance of the estimate of LD 50 obtained by linear inter-

polation from the sequence p* is given by Thompson (1947).
From the Table 2 above, it appears that for this typical series of experiments the

range of efficiency for the three-term weighted moving average is 50-67 %, and
for the five-term average 70-89 %.

In order to investigate further the effect of the sample size nt upon the relative
efficiency of the three-term moving average in particular, a further series of bioassay
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experiments was used, the fundamental distribution of threshold or tolerance being
the integrated normal or probit (0-10 < ^ ^ 0-90). Table 3 indicates the results of
these experiments.

Table 3. Relative efficiency (%)
Weighted

3-term moving 3-term moving
Number ( = nt) average average

5-10 64 58
20-30 61 60

6. Use of the angular transformation. The arc-sine transformation has been sug-
gested by Rnudsen & Curtis (1947) as an alternative to the probit or logit method in
order to utilize the property that the variances resulting from this transformation
are approximately constant. Thus if pt (i = .1, ...,£) are the individual sample
proportions and nt the numbers on which they are based, the transformation:
yi = sin"1 ijpt is such that <r2(. = c2/^, where

= 0-25, if y in radians,
= 821, if y in degrees.)

It is of interest to combine the arc-sine transformation with the method of moving
averages in order to estimate the LD 50. Thus if, for example, we denote by y\ the
three-term weighted moving average

(-1)
c2

it may be verified that a^ = — . (6-3)

If two successive values y\, y'i+1 of the series y'%,..., y'k_x, are such that yj < \u < y'i+1

then the estimated value of log LD 50 will be

The approximate variance of the estimate (6-4) may be written as

where di = sin"1 ^7^,

<rl. =

__ \'H 'H+V

\ nii \ ni+i)
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•d-'i is the weighted average of the #/s corresponding to (6-2), and v is the fraction

7. Discussion. In this article, I have presented in detail some of the possibilities
of improving the estimates of the LD50 by moving averages as originally proposed
by Thompson, for situations where unequal numbers of animals are tested at a
number of equally spaced doses (or log doses). In particular, only three- and five-
term weighted moving averages are considered. The sequence {p't} of three-term
averages, as defined by (3-1) in case four or more dose levels are involved, results
in an interpolation estimate of LD 50 which appears from several numerical studies
to be slightly more efficient generally than the unweighted three-term moving
average (5-1) of Thompson. An increase in the efficiency of the weighted moving
average may be expected when the numbers of animals vary considerably at the
different levels. Similar results are obtained on the efficiency of the estimation of
the LD50 by means of a five-term weighted moving average, though such averages
are rather more difficult to compute in view of the nature of the coefficients or
weights involved (equation 4-1).

It is of interest to consider the method of moving averages in combination with
the arc-sine transformation in order to utilize the variance stabilizing property of
this transformation. Equation (6-2) defines a three-term moving average sequence
{yl} in terms of the transformed percentages. The corresponding estimate of the
LD50 is then obtained by linear interpolation.

This study has been restricted to a consideration of weighted moving averages
with odd spans in only the simplest nontrivial cases (spans of 3 and 5). Further
work might certainly be done on the efficiency of such estimates in the case of dose-
effect relationships other than the integrated normal or logit distributions. •

I wish to acknowledge the assistance of Mr Henry Peterson in the computation
of Tables 2 and 3.
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