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Abstract

We develop and demonstrate a computationally cheap framework to identify optimal experiments for Bayesian
inference of physics-based models. We develop the metrics (i) to identify optimal experiments to infer the unknown
parameters of a physics-based model, (ii) to identify optimal sensor placements for parameter inference, and (iii) to
identify optimal experiments to perform Bayesian model selection. We demonstrate the framework on thermo-
acoustic instability, which is an industrially relevant problem in aerospace propulsion, where experiments can be
prohibitively expensive. By using an existing densely sampled dataset, we identify the most informative experiments
and use them to train the physics-based model. The remaining data are used for validation. We show that, although
approximate, the proposed framework can significantly reduce the number of experiments required to perform the
three inference tasks we have studied. For example, we show that for task (i), we can achieve an acceptable model fit
using just 2.5% of the data that were originally collected.

Impact Statement

Data-driven methods are becoming increasingly popular in many disciplines of engineering. In some applica-
tions, however, experimental data can be extremely expensive to collect, making data-driven methods costly to
apply. We demonstrate a method that reduces the amount of data required for one data-driven method: Bayesian
inference.

1. Introduction

Bayesian inference has proven to be a powerful data-driven approach for many problems in science and
engineering. It allows noisy and sparse experimental data to be assimilated into qualitatively accurate
physics-based models, rendering the model quantitatively accurate while quantifying the uncertainties in
themodel and data. In their review ofmachine learning in fluid dynamics, Brunton et al. (2020) argue that,
for fluid mechanics problems, Bayesian inference may be superior to other machine learning techniques
because of its robustness, but that it is hampered by the cost of the thousands of model evaluations
required to evaluate the posterior distribution. This is true of typical sampling methods such as Markov
Chain Monte Carlo, which can require hundreds of thousands of model evaluations to calculate the
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posterior. Recent work has, however, demonstrated sampling-free methods for variational data assimi-
lation (Mons and Zaki, 2021; Buchta et al., 2022) and approximate Bayesian inference (MacKay, 2003;
Isaac et al., 2015; Juniper and Yoko, 2022; Kontogiannis et al., 2022; Yoko and Juniper, 2024). These
methods reduce the required model evaluations, making Bayesian inference feasible for computationally
expensive models. Furthermore, the resulting model is interpretable, and tends to extrapolate better than
physics-agnostic machine learning solutions.

In addition to parameter inference and uncertainty quantification, the Bayesian framework provides
quantitative metrics to rank and compare candidate models. This is particularly useful when there are
several plausible models, but no clear reason to prefer one over another. The Bayesian framework
naturally enforces Occam’s razor to select the simplest model that is capable of describing the data,
for given measurement error and given priors (Jeffreys, 1973; Juniper and Yoko, 2022; Yoko and
Juniper, 2024).

An outstanding problem is the cost of collecting data to infer the model parameters or discriminate
between candidate models. In many cases, experimental data are expensive to collect, so we need to
minimize the number of experiments required for parameter inference and model comparison. Similarly,
sensors can be expensive, so we need to find the optimal sensor placement to obtain as much information
as possible from the available sensors.

Approaches to optimal experimental design have been established by Fedorov (1972) in the frequentist
framework, and Lindley (1956) in the Bayesian framework. Lindley’s approach involves designing a
utility function that describes the objective of the experiment, and then maximizing the utility over all
possible experiments. This approach has been used to identify optimal experiments for parameter
inference in a range of problems in physics and engineering (Ryan, 2003; Loredo, 2004; Huan and
Marzouk, 2013). Many of these studies, however, have struggled with the computational cost of
evaluating the utility function, which requires solving a high-dimensional double integral. The integral
is typically evaluated using Monte Carlo integration, which requires many thousands of model evalu-
ations. This makes the computational cost of performing Bayesian experimental design prohibitive.

Similarly, previous studies have attempted to apply Bayesian optimal sensor placement to problems in
physics and engineering (Verma et al., 2019; Ercan and Papadimitriou, 2023). These studies have also
relied on Monte Carlo integration to evaluate the utility function, which the authors note to be extremely
computationally expensive. A method of approximating the utility function integral was introduced by
Papadimitriou and Papadimitriou (2015), but it relies on an ad hoc decision about the correlation between
sensors to avoid sensor clustering. Bidar et al. (2024) describe a methodology for optimal sensor
placement that does not rely on calculating a utility function. Instead, Bidar et al. (2024) place sensors
where the variance in a chosen predicted variable is largest. Like the work of Papadimitriou and
Papadimitriou (2015), this requires an ad hoc method to avoid sensor clustering. Additionally, for
multivariate problems, a second ad hoc decision must be made regarding which predicted variable should
guide the sensor placement.

In this paper, we will demonstrate that the utility function can be evaluated cheaply with our adjoint-
accelerated Bayesian inference framework. Similarly, we will show that the optimal sensor placement
problem can be solved efficiently and without any ad hoc decisions. This framework is approximate, but
we will demonstrate that it is still able to significantly reduce experimental costs. While the framework is
general and has broad applicability, wewill demonstrate it on examples from thermoacoustics.We choose
thermoacoustics experiments because they are challenging to model, industrially relevant, and expensive
to perform at large scale.

1.1. Thermoacoustic oscillations

Thermoacoustic oscillations occur in combustors when acoustic oscillations perturb the flame, causing
heat release rate oscillations some time later. If these heat release rate oscillations coincide sufficiently
with acoustic pressure oscillations, then the acoustic energy increases. This can lead to large amplitude
oscillations which can degrade performance or cause structural damage. The phenomenon is challenging
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to model because it is extremely sensitive to small changes (Juniper and Sujith, 2018). As a result, model
predictions are similarly sensitive to small changes in the model parameters, the values of which are not
known a priori (Juniper, 2018).

Thermoacoustic oscillations are often discovered late in the design process, when the first full-scale
prototype is tested (Mongia et al., 2003). Once discovered, a solution is typically devised through trial-
and-error. An extreme example of this occurred during the development of the F1, the main engine for the
first stage of the Saturn V rocket. This required about 2000 full scale tests to remove thermoacoustic
instability, costing around 2 billion U.S. dollars in the 1960s (Oefelein and Yang, 1993).

Thermoacoustics is therefore an ideal application for Bayesian inference and Bayesian optimal
experiment design. We have previously used Bayesian inference to generate quantitatively accurate
models of simple thermoacoustic systems (Juniper andYoko, 2022; Yoko and Juniper, 2024) using a large
amount of experimental data. In this paper, we revisit the dataset in Juniper and Yoko (2022) in order to
assess how much data are strictly needed to achieve acceptable accuracy when performing several
inference tasks.

2. Thermoacoustic problem description

In this paper, we demonstrate Bayesian optimal experiment design on a canonical thermoacoustic system,
the hot wire Rijke tube. This is the simplest system that exhibits thermoacoustic oscillations, making it an
ideal first test case for demonstrating this experiment designmethodology. The system is cheap to operate,
allowing us to collect a densely sampled dataset that can be used to validate the optimal experiment design
methodology. It is also simple enough that we can gain valuable insight into how our experiment design
methodology works. We now present the main features of the experimental rig and the physics-based
model. Further details can be found in Juniper and Yoko (2022).

2.1. Experimental rig

The experimental rig is shown in Figure 1. It consists of a vertically mounted steel tube with a length of
1 m, inner diameter of 47.4 mm, and wall thickness of 1.7 mm. Both ends of the tube are open to ambient
conditions. An electric heating element, shown in detail in Figure 2, ismounted on two support prongs and
inserted into the bottom of the tube. The support prongs are attached to an electrically driven traverse so
that the heater position can be controlled. The heater is connected to a programmable power supply that is
set up to deliver a constant power output. We can therefore study how the thermoacoustic behavior
changes with changes in (i) the heater position, and (ii) the heater power.

We record the acoustic pressure using eight probemicrophones distributed along the length of the tube.
The microphones are distributed with 0.1 m spacing, starting at 0.25 m from the bottom of the tube. For a

Loudspeaker

Tube

Heater on traverse

Heater support prongs

Probe microphones (x8)

L

Xh

Figure 1. Diagram of the Rijke tube, rotated for convenience.
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given combination of heater position and heater power, we use a loudspeaker to force the system near its
fundamental frequency. We then terminate the forcing and record the pressure time series as the
oscillations decay. From this signal, we extract (i) the decay rate, (ii) the natural frequency of oscillations,
and (iii) the Fourier-decomposed pressure at each of the microphones, measured relative to a reference
microphone. The reference microphone is chosen to be the microphone 0.75 m from the bottom of
the tube.

2.2. Thermoacoustic network model

The thermoacoustic oscillations are modeled using a 1D thermoacoustic network model (Dowling and
Stow, 2003; Juniper, 2018). The rig is divided intoN acoustic elements in which forward traveling waves,
f t� x=cð Þ, and backward traveling waves, g t� x=cð Þ, propagate. In a given element, the strength of these
waves is considered to be constant. The acoustic pressure in the ith element is p0i = f i + gi, and the acoustic
velocity is u0i = f i�gið Þ= ρcð Þ, where ρ is the local mean density and c is the local sound speed.

The complex wave amplitudes in adjacent acoustic elements are related through jump conditions for
the momentum and energy equations (Juniper, 2018). The jump conditions account for features of the rig
that modify the wave amplitudes, such as the visco-thermal dissipation in the boundary layer, the drag and
blockage of the heating element, and the fluctuating heat release rate of the heater. The wave reflection at
either end of the tube is modeled with complex reflection coefficients. When modeling these jump
conditions and boundary conditions, we introducemodel parameters, the values of which are not known a
priori. As a result, the models tend to be qualitatively accurate, but not quantitatively accurate. We
therefore use Bayesian inference to (i) infer the most probable parameter values from data, and
(ii) compare several candidate models for the jump conditions, and select the most likely model, given
the data.

3. Bayesian inference framework

Our Bayesian inference framework is described in detail for general problems inMacKay (2003) andwith
a focus on thermoacoustics in Yoko and Juniper (2024). Applying Bayesian inference to physical
problems requires three components: (i) a physical system from which experimental data are collected,
(ii) a physics-based model that can predict the outcome of the experiments, and (iii) an inference
framework. Here, we describe each component in turn and introduce the terminology and notation
required for the following sections.

t

h

(a) (b) (c)

d

dw

dp

d i
Figure 2. (a) Top view, (b) side view, and (c) isometric view of the heater, which consists of two identical
concentric annular ceramic plates, each wound with nichrome wire. It is held in place by two threaded
support prongs. The dimensions are d = 47mm, di = 31:6mm, dw = 0:6mm, t = 5mm, h= 5mm, and
dp = 3mm. The power is supplied to the nichrome wire by two fabric-insulated copper wires (not shown),

which each have diameter 4mm.
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3.1. Physical system

We consider the task of gathering data by performing experiments on a physical system. The system has a
set of design parameters that we control to change the system behavior:

zi =M xið Þ+N 0,Ceð Þ, (1)

where z is the vector of observed variables,M is the measurement operator, and x is the vector of design
parameters. The observations are corrupted by experimental error, which we assume to be normally
distributed with zero mean and covariance Ce. We therefore only consider the random component of
experimental error. Systematic experimental error can be combined with structural error in the model,
which can be quantified a posteriori (Yoko and Juniper, 2024).We perform a set ofN experiments and use
the subscript i= 1,2,…,Nf g to denote the index of the experiment.

For the Rijke tube described in Section 2.1, the vector of design parameters, x, consists of (i) the
position of the heater inside the tube, and (ii) the power delivered to the heater. Themeasurement vector, z,
contains eight complex numbers: the eigenvalue, whose real part is the decay rate and imaginary part is the
natural frequency, and the Fourier-decomposed pressure of seven microphones, measured relative to the
reference microphone.

3.2. Physics-based model

We develop several plausible physics-based models that predict the outcome of the experiments:

si,j =Hj xi,að Þ, (2)

where s are the model predictions, H is the candidate physics-based model, x is the vector of design
parameters, and a is a vector of unknownmodel parameters. We considerM candidate models and use the
subscript j = 1,2,…,Mf g to denote the index of the candidate model. In the inference framework, we
begin by assuming that the model is correct, meaning that we do not explicitly add a term for model error.
We expect that, for some set of parameters, aMP, the model predictions, s, will match the experimental
observations, z, for all possible design parameters, x, within the measurement uncertainty.

For the thermoacoustic network model of the Rijke tube described in Section 2.2, the unknown
parameters arise from the sub-models for the visco-thermal dissipation from the boundary layer and the
heating element, the reflection coefficients at the ends of the tube, and the fluctuating heat release rate of
the heater. We do not know the values of these parameters a priori, and we must often select between
several plausible sub-models for each of the physical mechanisms. We address the first problem using
Bayesian parameter inference and uncertainty quantification, and the second with Bayesian model
comparison.

3.3. Adjoint-accelerated Bayesian inference

3.3.1. Parameter inference
For each candidate model, Hj, we use the experimental observations to infer the most probable
parameters, aMP. We begin by assigning a prior probability distribution over the vector of unknown
parameters, which we choose to be Gaussian distributed. This prior allows us to incorporate any
knowledge we might have about the parameters, while also encoding our confidence in this prior
knowledge. We then perform N experiments to collect the data, D = z1, ::,zNf g. We assimilate the data
by performing a Bayesian update on the parameter values:

p ajD,Hj
� �

=
p Dja,Hj
� �

p ajHj
� �

p DjHj
� � : (3)

The left-hand side of equation (3), called the posterior, is the probability density of the parameters, given
the experimental data and the model. In general, the posterior cannot be evaluated analytically, and
numerical computation typically requires millions of model evaluations. This is computationally
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expensive, even for simple models. At the parameter inference stage, however, we are only interested in
finding the most probable parameters, which are those that maximize the posterior. We therefore avoid
constructing the full posterior, and instead use an optimization algorithm to find its peak. This is often
called the “maximum a posteriori” (MAP) estimate of the parameter values.

The denominator of the right-hand side of equation (3) does not depend on the parameters. We can
therefore find the most probable parameters by maximizing the product p Dja,Hj

� �
p ajHj
� �

. Recalling
that the experimental uncertainty is assumed to be Gaussian distributed, the distribution p Dja,Hj

� �
is a

Gaussian distribution over the data, for a given set of parameters. We also choose the prior distribution,
p ajHj
� �

, to be Gaussian distributed over the parameters. Under these conditions, we can transform the
optimization problem into a quadratic optimization problem by defining the cost function, J , to be the
negative log of the numerator of equation (3):

J =
1
2

XN
i= 1

si að Þ� zið ÞTCe
�1 si að Þ� zið Þ+ a�ap

� �T
Ca

�1 a�ap
� �

+Ki

n o
, (4)

where ap is the vector of prior parameter values,Ca is the covariance matrix describing the uncertainty in
the prior, andK is a constant from the Gaussian pre-exponential factors, which has no impact on the most
probable parameters, aMP.

We can solve the optimization problem with the fewest model evaluations by using gradient-based
optimization. This requires that we calculate ∂J =∂a, which we see from equation (4) requires the model
parameter sensitivities, ∂s=∂a.We obtain these using first-order adjoint methods.1 The adjoint method is
a technique for calculating the gradient of a function with respect to many parameters, with a
computational cost that is independent of the number of parameters (Giles and Pierce, 2000; Luchini
and Bottaro, 2014). The optimization problem can, of course, be solved with any minimization
algorithm. However, we will see in the subsequent sections that we will also need the parameter
sensitivities for uncertainty quantification, model selection and optimal experiment design. Therefore,
it makes sense to use the parameter sensitivities to solve the optimization problemwith the fewestmodel
evaluations.

The parameter inference process is illustrated in Figure 3 for a simple systemwith a single parameter, a,
and a single observable variable, z. In Figure 3(a), we show the marginal probability distributions of the
prior, p að Þ, and the data, p zð Þ. The prior and data are independent, so we construct the joint distribution,
p a,zð Þ by multiplying the two marginals. In Figure 3(b), we overlay the model predictions, s, for various
values of a. Marginalizing along the model predictions yields the true posterior, p ajzð Þ. This is
possible for a cheapmodel with a single parameter, but exact marginalization quickly becomes intractable
as the number of parameters increases. In Figure 3(c), we plot the cost function, J , which is the negative
log of the unnormalized posterior. We show the three steps of gradient-based optimization that are
required to find the local minimum, which corresponds to the most probable parameters, aMP.

3.3.2. Uncertainty quantification
Once we have found the most probable parameter values by minimizing equation (4), we estimate the
uncertainty in these parameter values using Laplace’smethod (Jeffreys, 1973;MacKay, 2003; Juniper and
Yoko, 2022). This method approximates the posterior as a Gaussian distribution with amean of aMP, and a
covariance given by the Hessian of the cost function:

CMP
a

�1 ≈
∂
2J

∂al∂am
=
XN
i = 1

Ca
�1 + JTi C

�1
e Ji + s að Þ�zið ÞTC�1

e H
� �

, (5)

where the summation is over the N experimental configurations at which data were collected, which are
labeled with the index i, Ji = J aMP,xið Þ is the Jacobian matrix containing the parameter sensitivities of the

1 Other methods for obtaining the parameter sensitivities, such as automatic differentiation, are also suitable.
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model predictions, ∂sk=∂al, and Hi =H aMP,xið Þ is the rank three tensor containing the second-order
sensitivities, ∂2sk=∂al∂am. We obtain J using first-order adjoint methods, and H using second-order
adjoint methods.

The accuracy of this approximation depends on the functional dependence between the model
predictions and the parameters. This is shown graphically in Figure 4 for three univariate systems. In
Figure 4(a), the model is linear in the parameters. Marginalizing a Gaussian joint distribution along any
intersecting line produces a Gaussian posterior, so Laplace’s method is exact. In Figure 4(b), the model is
weakly nonlinear in the parameters. The true posterior is skewed, but the Gaussian approximation is still

z
a

p(a,z)

p(a)

p(
z)

p(a|z)

s = (a)z
a

p(a,z)

p(a)

p(
z)

z

aMP

p(a,z)

p(a)

p(
z)

p(a|z)

s = (a)

(a) (b) (c)

a

Figure 3. Illustration of parameter inference on a simple univariate system. (a) The marginal probability
distributions of the prior and data, p að Þ and p zð Þ, as well as their joint distribution, p a,zð Þ are plotted on

axes of parameter value, a, vs. observation outcome, z. (b) The model, H, imposes a functional
relationship between the parameters, a, and the predictions, s. Marginalizing along themodel predictions
yields the true posterior, p ajzð Þ. This is computationally intractable for even moderately large parameter
spaces. (c) Instead of evaluating the full posterior, we use gradient-based optimization to find its peak.

This yields the most probable parameters, aMP.

z

aMP

p(a,z)

p(a)

p(
z)

p(a|z)
p(a|z)L

p(a|z)

z

aMP

p(a,z)

p(a)

p(
z)

p(a|z)L

p(a|z)

z

aMP

p(a,z)

p(a)

p(
z)

p(a|z)L
(a) (b) (c)

s = (a) s = (a) s = (a)

a a a

Figure 4. Illustration of uncertainty quantification for three univariate systems, comparing the true
posterior, p ajzð Þ to the approximate posterior from Laplace’s method, p ajzð ÞL. (a) The model is linear in
the parameters, so the true posterior is Gaussian and Laplace’s method is exact. (b) The model is weakly

nonlinear in the parameters, the true posterior is slightly skewed, but Laplace’s method yields a
reasonable approximation. (c) The model is strongly nonlinear in the parameters, the posterior is multi-

modal and Laplace’s method underestimates the uncertainty.
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reasonable. This panel also shows a geometric interpretation of Laplace’s method: the approximate
posterior is given by linearizing the model around aMP, and marginalizing the joint distribution along the
linearized model. In Figure 4(c), the model is strongly nonlinear in the parameters, so the true posterior is
multi-modal and the main peak is highly skewed. In this case, the gradient-based optimization algorithm
will only find a single local minimum, which will depend on the choice of initial condition for the
optimization. This can be avoided by reducing the extent of the nonlinearity captured by the joint
distribution by (i) shrinking the joint distribution by providing more precise prior information or more
precise experimental data, or (ii) re-parameterizing the model to reduce the strength of the nonlinearity
(MacKay, 2003, Chapter 27).

In many cases, this approximation will be justifiable, given the substantial reduction in computational
cost compared to samplingmethods, which are the only viable alternative for constructing the posterior. In
previous work, we compared the computational cost of our framework to two sampling approaches (Yoko
and Juniper, 2024). The comparison was done on a computationally cheap thermoacoustic network
model, similar to the one used in this study. Applying our framework to this model, we can compute the
posterior probability of five unknown parameters in under 5 s on a single core on a laptop. The same
inference problem takes 35 CPU hours running on a workstation when solved with Markov Chain Monte
Carlo, and 22 CPU hours when solved with Hamiltonian Monte Carlo.

3.3.3. Uncertainty propagation
We have quantified the uncertainty in the parameter values, but we are also interested in how the
parametric uncertainty affects the model predictions. We quantify the prediction uncertainty by propa-
gating the parameter uncertainty through the model. This is done cheaply by linearizing the model around
aMP and propagating the uncertainties through the linear model:

Csi = J
T
i CaJi, (6)

whereCsi is the covariance matrix describing the uncertainty in the model predictions at si =Hj xi,aMPð Þ.
The marginal uncertainty of each predicted variable is given by the diagonal elements ofCsi, because the
prediction uncertainties are Gaussian.

3.3.4. Model comparison
In many cases, we are faced with a set of candidate models and are required to identify which model is the
best. In the Bayesian framework, we can compare candidate models by calculating the posterior
probability of each model, given the data:

p HjjD
� �

∝ p DjHj
� �

p Hj
� �

: (7)

The first factor on the right-hand side of equation (7) is the denominator of equation (3), which is referred
to as themarginal likelihood (ML). The second factor is the prior probability that we assign to eachmodel.
If we have no reason to prefer one model over another, we assign equal prior probabilities to all models
and rank them according to their ML. The ML is calculated by integrating the numerator of equation (3)
over parameter space. For a Gaussian posterior, this integral is approximated as

p DjHið Þ≈ p DjaMP,Hið Þ× p aMPjHið Þ CMP
a

�� ��1=2: (8)

TheML can be broken down into two components, which provide insight into themodel comparison. The
first factor on the right-hand side of equation (8) is referred to as the best fit likelihood (BFL), which is a
measure of how well the model fits the data. The second factor, called the Occam factor (OF), penalizes
the model based on its complexity, where the complexity is measured by how precisely the parameter
values must be tuned for the model to fit the data to within the experimental uncertainty. A model with a
large BFL fits the data well, and vice-versa. A model with a large OF has low parametric complexity, and
is unlikely to over-fit the data. Conversely, amodelwith a small OF is likely to over-fit the data. Therefore,
the model with the largest ML is the simplest model that is capable of describing the data, for given
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measurement error and given priors. The Bayesian model comparison framework therefore naturally
enforces Occam’s razor to select the best model.

4. Bayesian optimal experiment design

The framework described in Section 3 allows the modeler to benefit from the work of the experimen-
talist by using experimental observations to improve the accuracy of physics-based models. We now
extend this framework to enable the modeler to inform the experimental design process in order to
minimize the experimental cost. In doing so, we show that, when applying a Bayesian framework to
physics-based problems, there is a strongmutually beneficial relationship between experimentation and
modeling.

There are a number of ways in which the modeler could inform the experiment design. In this
study, we answer three specific questions an experimentalist may face: (i) which experimental design
and operating point would provide the maximum information about the unknown parameters,
(ii) where should the sensors be placed to provide the maximum information about the unknown
parameters, and (iii) which experimental design would maximize the discrimination between candi-
date models?

Each of these questions can be answered by using metrics from information theory to quantify the
information content of a candidate experiment. We follow the general approach proposed by Lindley
(1956), which has been applied to many other optimal experiment design studies (Ryan, 2003; Loredo,
2004; Huan andMarzouk, 2013; Verma et al., 2019). For each of the experimental questions listed above,
we define a suitable information-based utility function, u x,z,að Þ.We then calculate the expected utility by
integrating over all possible realizations of the parameters and data:

U xð Þ=
Z
Z

Z
A
u x,z,að Þp ajx,zð Þp zjxð Þdadz, (9)

where U xð Þ is the expected utility, u x,z,að Þ is the utility function, and Z and A are the support of p zjxð Þ
and p ajx,zð Þ, respectively, that is, the set of z and a that can occur with nonzero probability.

Previous studies have faced difficulties with the cost of computing the expected utility within their
inference frameworks, which typically requires Monte Carlo integration over high-dimensional
spaces (Ryan, 2003; Loredo, 2004; Huan and Marzouk, 2013; Verma et al., 2019). We will show
that in the adjoint-accelerated Bayesian inference framework, the expected utility can be computed
cheaply.

4.1. Optimal design for parameter inference

We consider the situation where we have collected and assimilated a set of data Di = z1, ::,zif g, where i
could be zero.2We want to knowwhich experiment to perform next in order to gain maximal information
about the unknown parameters. In this case, a suitable utility function is the information content of the
next experiment, whichwe can calculate as the change in Shannon entropy between the prior and posterior
parameter distributions (Lindley, 1956). The Shannon entropy of a probability distribution is defined as

Si = �
Z
A
P ajDið Þ log2 p ajDið Þð Þda, (10)

where Si is the Shannon entropy of the parameter probability distribution after the ith experiment has been
assimilated.3 The utility function, u, which we have chosen to be the information content of experiment
i+ 1, is therefore,

2When i = 0, we have not yet collected any data, so D is an empty set and p ajDð Þ is the prior, p að Þ.
3 For the purpose of optimal experiment design, the choice of the logarithm base is arbitrary. We have chosen to work with base

2 logarithms, which provide information in units of bits, where one bit of information halves the uncertainty in the parameters.
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u x,z,að Þ =ΔSi + 1 = Si�Si + 1

= �
Z
A
P ajDið Þ log2 p ajDið Þð Þda+

Z
A
P aj Di,zi + 1f gð Þ log2 p aj Di,zi + 1f gð Þð Þda: (11)

We note that the utility function involves integration over a, so it is no longer a function of the unknown
parameters, that is, for this choice of utility function, u a,x,zð Þ= u x,zð Þ. The expected utility therefore
simplifies to

U =

Z
Z

Z
A
u x,zð Þp ajx,zð Þp zjxð Þdadz

=

Z
Z
u x,zð Þp zjxð Þdz:

(12)

To evaluate the remaining integral, we once again exploit Laplace’s method, recalling that the probability
distribution over the parameters is always Gaussian in our framework. The difference in Shannon entropy
between two Gaussians is given by

u x,zð Þ=ΔSi + 1 = 1
2
log2

Ca
�1

�� ��
i + 1

Ca
�1

�� ��
i

 !
(13)

from which we see that maximizing the information gained about the parameters is equivalent to finding
the maximum reduction in parameter uncertainty. Recall that, from Laplace’s approximation in equation
(5), assimilating the measurement zi + 1 updates the parameter uncertainty according to

Ca
�1

� �
i + 1 ≈ Ca

�1
� �

i + J
T
i+ 1Ce

�1Ji + 1 + s að Þi + 1� zi + 1
� �T

Ce
�1Hi + 1, (14)

where the model predictions, s að Þi + 1, Jacobian, Ji+ 1, and Hessian,Hi + 1, are evaluated with the previous
most probable parameters, ai, and with the candidate experiment design parameters, xi + 1.

Fromequations (13) and (14),we can see that the choiceofwhich experiment to performnext is dependent
on the outcome of that experiment, zi + 1, as one might expect. However, the data-dependence only occurs in
the second-order term in equation (14), which is exactly zero for models that are linear in the parameters, and
is often small compared to the first-order term for nonlinear models.4We therefore proceed with a first-order
approximation, in which the posterior covariance is independent of the experimental outcome:

Ca
�1

� �
i + 1 ≈ Ca

�1
� �

i + J
T
i + 1Ce

�1Ji+ 1: (15)

If the second-order sensitivities are found to be non-negligible for a model of interest, we may still be able
to neglect the data-dependent term on the grounds that the discrepancy, s að Þi + 1� zi + 1

� �
, will become

small as the model is updated with more data. In this case, we expect that the initial experiments may not
be optimal, but that the chosen experiments will become optimal as more experiments are assimilated and
the discrepancy decreases. In many cases, this may be an acceptable sacrifice for the computational cost
savings of the proposed approach.

By neglecting the data-dependent term, the utility function becomes independent of z, and we are able
to plan the subsequent experiment using only the model and its adjoint:

U =ΔSi + 1 =
1
2
log2

Ca
�1

� �
i + J

T
i + 1Ce

�1Ji + 1
�� ��

Ca
�1

� �
i

�� ��
 !

: (16)

We follow a greedy sequential experiment design process, where we iteratively (i) use equation (16) to
identify the most informative experiment, (ii) perform that experiment to collect the data, zi + 1,
(iii) minimize equation (4) to find ai + 1, and (iv) solve equation (5) to find Cað Þi + 1.

4We have used second-order adjoint methods to confirm that this assumption is valid for the thermoacoustic models of interest in
this study.
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To assist with interpretation of equation (16), we consider the special case of a system with univariate
design and observable variables (multiple unknown parameters are still permitted). Under these condi-
tions, the Jacobian, J, reduces to a column vector, j, and the measurement covariance, Ce, reduces to the
variance, Ve. The quantity JTCe

�1J in the numerator of equation (16) reduces to V�1
e jT j, which is a rank-

one perturbation of the inverse covariance matrix Ca
�1. Using the identities for rank-one perturbations,

equation (16) reduces to

U =
1
2
log2 1+V�1

e jTi + 1Caiji + 1
� �

: (17)

This recovers the result that MacKay (1992) arrived at for scalar interpolation problems: to maximize
information gain we must (i) maximize V�1

e , which is to say that we learn the most when we make precise
observations, or (ii) maximize jTCaj, which is the posterior variance of themodel predictions, as shown in
equation (6). This produces the intuitive result that we learn themost about the unknown parameters when
we perform experiments with the design parameters at which our model is most uncertain. This is similar
to the optimal sampling approach commonly used in training Gaussian processes, where the acquisition
function is chosen to be the variance in the Gaussian process prediction (Huang et al., 2006; Sengupta and
Juniper, 2022).

While this aids with interpretation, MacKay’s result is not directly applicable to multivariate systems,
unless an ad hoc decision is made about which variable’s uncertainty should drive the decision of which
experiment to perform next. This is avoided in our framework by maximizing the change in Shannon
entropy, which automatically balances the information gained from each observed variable based on how
sensitive it is to the unknown parameters.

4.2. Optimal sensor placement for parameter inference

We now consider the case where one or more of the observed variables, z, are spatially varying and are
observed with point measurement sensors. We would like to know where to place the sensors in order to
gain as much information as possible about the unknown parameters. We may have an existing rig with a
fixed number of sensors, and we would like to know where to place the sensors to gain maximal
information. Alternatively, we may be designing a new rig, for which we already have a qualitative
model, and we would like to know (i) how many sensors we need to buy, and (ii) where we should make
provision for instrument access.

To answer these questions, we add the sensor locations to the vector of design parameters, x, and find
the design parameters that maximize the change in Shannon entropy in the sameway as in Section 4.1.We
place the sensors sequentially, with each sensor location selected to provide maximum information based
on (i) the model and (ii) the information from the existing sensor layout.

This process naturally accounts for the local reduction in information in the vicinity of existing sensors,
with the correlation length determined by the model sensitivity. This removes the need to define ad hoc
methods to avoid sensor clustering, as done in previous studies on sparse sensor placement (Papadimitriou
and Papadimitriou, 2015; Bidar et al., 2024).

4.3. Optimal design for model comparison

Finally, we consider the case where we are trying to identify the best model from a set of candidate models
Hj, j = 1,2…,Mf g. We assume that we have already performed the optimal experiments to learn the
unknown parameters of each model. We nowwant to identify the optimal experiment design, xi + 1, which
maximizes the discrimination between the candidate models.

At the (as yet undetermined) experiment design xi+ 1, each candidate model will make a slightly
different prediction, si + 1,j, with slightly different uncertainty, Csð Þi + 1,j. Before we make the next
observation, zi + 1, each model encodes a belief that the data will occur with a probability distribution
given by a Gaussian centered around the model prediction:
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Pj = p zi + 1jHj
� �

=N μj,Cj
� �

,

μj = si + 1,j =Hj xi + 1,ai,j
� �

,

Cj = Csð Þj +Ce,

(18)

whereCs is the prediction uncertainty, which is calculated using equation (6), and we have introduced the
shorthand Pj = p zi + 1jHj

� �
to simplify the subsequent notation. This is illustrated for two candidate

models in Figure 5.
In order to maximally discriminate between the models, we want to choose xi+ 1 such that the

distributions Pj, where j = 1,2,…,Mf g, are as dissimilar as possible. In this way, the models that make
poor predictions receive themaximumpenaltywhen the data arrive.We therefore choose our utility function
to be a measure of dissimilarity between the distributions. A commonmeasure for the dissimilarity between
two distributions is the directed Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951):

DKL PjkPk
� �

=

Z
Z
Pj log2

Pj

Pk

� �
dz, (19)

which measures how unexpected the measurement, zi+ 1, would be if we usedHk as our model whenHj

was the better model. This is a suitable measure for our experimental goals, but it only compares two
distributions, and wewould like to compare multiple models at once. In order to measure the dissimilarity
between M distributions, we use the average divergence (Sgarro, 1981) as our utility function:

u=
1

M M�1ð Þ
XM
j = 1

XM
k = 1

DKL PjkPk
� �

, (20)

which computes the mean directed KL divergence between all pairs of models. The inner summation
measures the average rate at which our confidence in each of the models goes to zero if Hj is the best
model. The outer summation averages these rates while proposing each model as the best model. By
maximizing this quantity, we find the experiment design for which themeasurement would surprise us the
most, thereby reducing our confidence in the largest number of bad models at once.

As before, evaluating the expected utility requires the solution of multiple high-dimensional integrals.
Substituting Gaussian distributions for Pj and Pk, and following a similar analysis to Section 4.1, we find
that the expected utility reduces to

U =
1

2M M�1ð Þ
XM
j = 1

XM
k = 1

log2
∣Cj∣
∣Ck∣

� �
�d + tr C�1

k Cj
� �

+ μj�μk
� �T

C�1
k μj�μk
� �� �

, (21)

where d is the number of observed variables. We once again find that the integrals, which typically make
optimal experiment design expensive, become trivial within our framework. We are therefore able to

x

xi+1

s

s

(a) (b)

Figure 5. (a) At each candidate experiment design, xi + 1, the two candidate models make slightly different
predictions, with different uncertainties. (b) Each model encodes a belief that the next data point will fall

within the distribution p zi + 1jHj
� �

.
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identify optimal experiments using only themodel and its adjoint, and follow a greedy selection process as
in the previous sections.

To gain further insight into the expected utility, we consider the case of comparing two candidate
models with univariate design and observable variables. Under these conditions, equation (21) reduces to
the symmetric KL divergence between a pair of univariate Gaussians:

u=
1
2

1
V1

+
1
V2

� �
μ1�μ2ð Þ2 + V1�V2ð Þ2

V1V2

( )
, (22)

where μj and Vj are the expected value and variance of the distributions p zi + 1jHj
� �

. As in Section 4.1, we
recover the result MacKay (1992) arrived at for scalar interpolation problems: to maximize the discrim-
ination between models we must (i) gather data where the model predictions maximally disagree,
measured relative to the confidence in their predictions, and (ii) gather data where the confidence in
the models is maximally different. The first result serves to maximize the best-fit-likelihood reward on the
model which fits the new data point better. The second result, which is perhaps less intuitive than the first,
serves to maximize the Occam penalty on the model with more parametric flexibility.

5. Results

We demonstrate the three applications of Bayesian experiment design described in Sections 4.1–4.3 by
applying them to the electrically heated Rijke tube. We have already collected a densely sampled dataset
from this system, which we have previously used for Bayesian parameter inference and model compari-
son (Juniper and Yoko, 2022).

For each of the experimental questions posed in Section 4, we demonstrate Bayesian experiment
design by recursively selecting the optimal experiment from the densely sampled set. This allows us to
compare the model predictions to the full dataset of both observed and unobserved data. The unobserved
data act as a validation set, which is hidden from the model and the assimilation process. This allows us to
demonstrate that in each case we can achieve our experimental goals using only a few well-chosen
experimental observations.

In the original dataset (Juniper and Yoko, 2022), we perform experiments with the rig in four
conditions. First, we study the empty tube so that we can infer the model parameters for (i) the end
reflection coefficients, and (ii) the strength of the visco-thermal dissipation of the boundary layer on the
tube walls. Second, we traverse the heater support prongs through the tube with the heater removed. From
this data, we infer the model parameters for the strength of the visco-thermal dissipation in the boundary
layer on the heater prongs. Third, we traverse the cold heater through the tube to infer the model
parameters for the strength of the visco-thermal dissipation of the heater. Finally, we traverse the heater
through the tube and sweep through several heater powers to infer the model parameters for (i) the
fluctuating heat release rate models, and (ii) how the visco-thermal dissipation changes with heater power.
At each of these four stages, we assume that the parameters inferred at the previous stages remain constant,
and so we fix them in the model.

5.1. Optimal design for parameter inference

We first demonstrate the optimal experiment design framework on the simple sub-problem of inferring the
visco-thermal dissipation of the cold heating element using as few experimental observations as possible.
We then apply the method to the more complex problem of inferring the model parameters for the case
when the heater is switched on.

5.1.1. Assimilating heater dissipation from cold experiments
When traversing the cold heater through the tube, the vector of design parameters, x, contains only the
position of the heater within the tube. Themeasurement vector, z, contains the complex eigenvalue whose
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real part is the growth rate and imaginary part is the natural frequency of oscillations. We assimilate this
data into a model with two complex parameters, a, which are used to model the strength of (i) the viscous
dissipation, and (ii) the thermal dissipation of the heating element. In this section, we assume that we have
already performed and assimilated the optimal experiments to infer the reflection coefficients, and the
strength of the visco-thermal dissipation on the tube walls and heater support prongs.

In Figure 6(a.i), (a.ii), we compare the predictions of the prior model to the experimental data, which
has not yet been assimilated. As expected, the prior model performs poorly, because the prior parameter
values are inaccurate. However, we have specified correspondingly large uncertainties in the prior
parameters, so the model predictions have appropriately large error bars, which extend beyond the limits
of the y-axis.

Figure 6(a.iii) shows the potential information gain from an experiment performed at each heater
position, as estimated using equation (16). This reveals that the most information can be gained by
collecting data at the ends of the tube. This is an intuitive result because it places the heater near the point

(a.i)

(a.ii)

(a.iii)

(b.i)

(b.ii)

(b.iii)

(c.i)

(c.ii)

(c.iii)

(d.i)

(d.ii)

(d.iii)

Experiment ±2 sd Model ±2 sd Assimilated experiments

Figure 6. Three steps of active data selection comparing experimental data to model predictions after
assimilating: (a) no data, (b) the first datapoint with maximum information content, and (c) the second
datapoint with maximum information content. For each step, we show (i) growth rate, zr, (ii) angular
frequency, zi, and (iii) information content, ΔS, plotted against heater position, Xh. For comparison, we
also show (d) the result from assimilating the two experiments with minimum information content.
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ofmaximum acoustic velocity fluctuations, and thereforemaximumviscous dissipation. Furthermore, the
acoustic pressure (and therefore temperature) fluctuations approach zero at the boundaries, so we expect
the thermal dissipation to approach zero there. With this experiment, we can therefore easily infer the
parameters controlling viscous dissipation without being influenced by effects of thermal dissipation.

Because themodel is symmetric inXh with respect to the unknown parameters,5 the information gain at
Xh = 0:05 and Xh = 0:95 is equal, so either experiment is a viable candidate experiment. We arbitrarily
choose to assimilate the measurement taken at Xh = 0:05, which updates the parameter probability
distribution. The new model predictions are plotted in Figure 6(b.i), (b.ii). We see that, near the
assimilated data point, the model is now accurate and the uncertainty has collapsed to the uncertainty
in the data. Away from the assimilated data point, however, the model predictions deviate from the data
and the uncertainty increases. We also see that, because the symmetry of the problem is encoded in our
physics-based model, we have also learned about the system response when the heater is placed at the
opposite end of the tube.

Looking at the expected information gain in Figure 6(b.iii), we see that we do not expect to learn much
more by conducting another experiment near the ends of the tube. However, there is still information to be
gained from an experiment conducted at the center of the tube. This experiment places the heater in the
acoustic pressure (and therefore temperature) anti-node and velocity node, making thermal dissipation
maximum and viscous dissipation zero. With this experiment, we easily infer the parameters controlling
thermal dissipation, in the absence of viscous dissipation.

We assimilate themeasurement taken atXh = 0:5 and plot the newmodel predictions in Figure 6(c.i), (c.ii).
This shows that, after assimilating just these two data points, the model matches the experimental data for all
heater positions, and themodel uncertainty is now similar in magnitude to themeasurement uncertainty at all
heater positions. The expected information gain, the bold red line in Figure 6(c.iii), is now relatively flat and
close to zero at all heater positions. This shows that no experimentwill be substantiallymore informative than
any other, and there is therefore little information to be gained by assimilating more data. We have therefore
gained all meaningful information about the unknown parameters using just two carefully chosen experi-
mental observations. Although a skilled experimentalist may be able to identify the most informative
experiments from physical insight alone, this becomes more difficult when assimilating data into more
complex models containing more physical mechanisms and more model parameters.

An expected value of two parameters can, of course, be obtained from any two observations. Their
posterior variances, however, depend strongly onwhich two observations are selected. To demonstrate this,
we assimilate the two data points with the lowest information content, as plotted in Figure 6(d.i)–(d.iii).
The results clearly show that assimilating these two points only achieves local accuracy and local certainty in
the model predictions.

As a final demonstration of the effectiveness of this approach, we sequentially assimilate all the
available data, and record the information gained as each experiment is assimilated. Figure 7(a) shows the
Shannon entropy plotted against the number of experiments assimilated, while Figure 7(b) shows the
change in Shannon entropy against the number of experiments assimilated. We compare the rate of
information gain achieved by 1,000 random experiment designs to the limit cases in which we recursively
select the most informative and least informative experiments.

We see fromFigure 7(a) that assimilating the best available experiment at each step causes the Shannon
entropy to reduce rapidly with the first two observations, that is, we quickly become confident in the most
probable value of the unknown parameters. After the second experiment is assimilated, the model
uncertainty reduces below the experimental uncertainty, and further experiments are relatively unin-
formative. By contrast, assimilating the worst experiments results in a gradual reduction in uncertainty.
These limit cases bound the rate of information gain achieved by the 1,000 random experiment designs,
indicating that our methodology is likely optimal in this case. If experiments are designed randomly, at

5 The heater dissipation has equal effect on either side of the tube centerline. Themodel predictions themselves are not symmetric,
because the heater prongs break the symmetry (as Xh increases, the length of prong inserted into the tube increases). The model
parameters for the visco-thermal dissipation of the prongs are inferred prior to conducting the heater traverse experiments.
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least seven experiments are needed to be 95% confident that youwill gain the same amount of information
as the two optimal experiments.

This is reinforced by Figure 7(b), which shows that by assimilating the best experiments we gain
significant information from the first two observations, and negligible information thereafter. By
comparison, when we assimilate the worst experiments we gain significant information from the first
observation, and then a small but not negligible amount of information throughout the remainder of the
dataset. We see that the information gained by assimilating the worst experiments tends to oscillate
between a small information gain, followed by a negligible information gain. This is because once an
experiment is assimilated, its symmetric pair becomes the next least informative experiment, and carries
almost no new information. If experiments are designed randomly, it is likely that most of the information
will be gained within the first seven experiments, following which it is unlikely that further information
will be gained.

In Figure 7(b) we also compare the information gain estimated using equation (16) against the actual
information gain, which is calculated from the Shannon entropy after the experiment is assimilated. We
see that the values are almost indistinguishable, so in this case there is no penalty from neglecting the data-
dependent term in equation (5), because the second-order parameter sensitivities are indeed small.

5.1.2. Assimilating a heat release rate model from hot experiments
We apply the same approach to experiments with the heater turned on. In this case, the design parameter
vector, x, includes the heater position and heater power, while the measurement vector, z, contains the
complex eigenvalue. The model includes three complex parameters, a, one of which models the
fluctuating heat release rate at the heater, and the remaining two model how the heater’s visco-thermal
dissipation changes with heater power.

In Figure 8(a.i), (a.ii), we compare the predictions of the prior model to the experimental data, which
have not been assimilated yet. Once again, we see that the prior model performs poorly, because the prior
parameter values are inaccurate, but that the model predictions have appropriately large error bars.

Figure 8(a.iii) shows the potential information gain for each experiment, as estimated using equation
(16). We see that we can gain the most information by performing experiments at higher heater powers.
This is to be expected, because the three unknown parameters model effects that are linear in heater power,
so they are most easily observed at high heater powers. We also see that the information gain peaks at
heater positions that produce the strongest thermoacoustic effect (where the magnitude of the product of
acoustic pressure and velocity is maximum). By contrast, placing the heater at the acoustic velocity node
(near the center of the tube) yields very little information. This is because both the thermoacoustic effect
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Figure 7. Comparison of learning rate for three experiment design strategies: (blue) sequentially
performing the most informative experiments, (orange) sequentially performing the least informative
experiments, (gray) 1,000 instances of sequentially performing random experiments. Plot (a) shows
how the Shannon entropy of the parameter probability distribution decreases as additional experiments
are assimilated. Plot (b) shows the information gained from each experiment, which is given by the
change in Shannon entropy. We show the information gain estimated before the data are assimilated

using equation (16) (+), as well as the actual achieved information gain, calculated after the
experiment is assimilated (�).
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and the viscous dissipation are zero at the velocity node, so an experiment performed here only provides
information about the variation of thermal dissipation with heater power.

We assimilate the best experiment and plot the results in Figure 8(b.i), (b.ii). We see, once again, that
the model becomes locally accurate and certain, and that the accuracy and certainty reduce with distance
from the assimilated experiment. Unlike in Section 5.1.1, the symmetry of the underlying physics is
broken by the steady and fluctuating heat release from the heater. As a result, making an observation with
the heater placed at one end of the tube no longer tells us the behavior of the system when the heater is
placed at the other end of the tube. However, we see thatmaking an observation at the highest heater power
has also provided information about the system’s behavior at lower heater powers. Themodel has become

(a.i)

(a.ii)

(a.iii)

Experiment ±2 sd Model ±2 sd Assimilated experiments

(b.i)

(b.ii)

(b.iii)

(c.i)

(c.ii)

(c.iii)

(d.i)

(d.ii)

(d.iii)

Figure 8.Four steps of active data selection for assimilating data from experiments with the heater active.
We compare experimental data to model predictions after assimilating: (a) no data, and (b–d) the first,
second, and third observation with maximum information content. For each step, we show (i) growth rate,
zr, (ii) angular frequency, zi, and (iii) information content, ΔS, plotted against heater position, Xh, and

heater power, Qh.
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confident in its predictions about the system behavior when the heater is in the same position, but
operating at lower power outputs.

We see from Figure 8(b.iii) that the first observation reduces the information we expect to gain from
subsequent experiments performed at nearby heater positions, at all heater powers. An experiment
performed near the downstream end of the tube now carries slightly less information than it did before
the first observation was made. This implies that, while the physics is not fully symmetrical, some of the
phenomenamay be, and sowe have gained information about the behavior of the system on one end of the
tube through an observation at the other end.

The model predictions after assimilating the second most informative experiment are shown in
Figure 8(c.i), (c.ii). The second observation causes a more widespread collapse in uncertainty, although
the model is still significantly more certain at heater positions where observations have been made. The
uncertainty is not below experimental uncertainty for all candidate design parameters, so we expect we
could still learn more through additional observations.

This is confirmed through Figure 8(c.iii), which shows that the expected information gain has reduced
for all heater positions and heater powers. However, there is still more information to be gained from a
further experiment performed at the downstream end of the tube (near Xh = 1), at the highest heater power.

Assimilating the third most informative experiment yields the model predictions shown in Figure 8
(d.i), (d.ii). The model is now accurate at all pairs of design parameters, regardless of whether the data
were assimilated. Furthermore, the model uncertainty is below experimental uncertainty everywhere.

We see from Figure 8(d.iii) that the final plot of expected information gain is relatively flat, so there is
no clear candidate for further experiments. Furthermore, the magnitude of expected information gain is
small for all further experiments, so there is little value in performing further experiments for the purpose
of parameter inference. In the initial dataset, we collected data at 120 operating points, but we now see that
three carefully selected operating points are sufficient, which is just 2.5% of the full dataset.

While the chosen experiments are somewhat intuitive, even a skilled experimentalist might struggle to
select the three optimal experiments in this case. Even though the model remains relatively simple, the
task of selecting optimal experiments for learning the values of multiple parameters with coupled effects
becomes increasingly challenging as the number of parameters increases.

We now contrast the learning rate achieved by 1,000 random experiment designs against recursively
selecting the best and worst experiments, shown in Figure 9. Figure 9(a) shows that selecting the best
experiments leads to a rapid reduction of Shannon entropy, corresponding to a rapid learning of the
parameter values. By comparison, selecting the worst experiments leads to a very gradual reduction in
Shannon entropy, corresponding to gradual learning of the parameter values. Most strikingly, we see that
selecting the worst experiments begins by using a set of experiments which carry no information at all.
These correspond to the experiments performed with zero heater power, which naturally provide no
information about (i) the thermoacoustic effect, or (ii) how the heater visco-thermal dissipation changes
with heater power.

If the experiments are chosen randomly, the learning rate falls between that achieved by selecting the
best or worst experiments. In contrast to Figure 7, we see that the random designs are not tightly bounded
by the best andworst designs.6 This is because the larger experimental design spacemakes it considerably
less likely that very good or very bad experiments will be selected at random. This is still a relatively small
design space, with only two design variables. For more complex problems, it will become increasingly
difficult to choose good experiments through either physical insight or random chance.

Figure 9(b) shows that the three best experiments provide significant information gain, following
which we gain little information from the subsequent experiments. Selecting the worst experiments yields
a small information gain throughout the dataset, apart from the first few cold experiments, which provide

6 There are 9.7 × 1034 unique experiment designs containing 60 of the 120 experiments. Our sample of 1,000 random designs only
explores a fraction of these, so the less probable outcomes are not seen.
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zero information. If the experiments are chosen randomly, at least 36 experiments are needed to be 95%
confident that you will gain the same amount of information as the three optimal experiments.

Comparing the estimated and achieved information gains, we see that the first best observation
provided more information than expected. The under-prediction is due to the neglected data-dependent
term in equation (5), which is small but not negligible in this case. After assimilating just one observation,
however, the data-discrepancy reduces such that the data-dependent term becomes negligible for
subsequent observations.

5.2. Optimal sensor placement for parameter inference

We now demonstrate the application of optimal sensor placement to our thermoacoustic rig. Specifically,
we search for the optimal sensor placement to determine the characteristics of the empty tube. In this case,
the design parameter vector, x, contains the sensor locations, while the measurement vector, z, contains
the eigenvalue and the complex pressure at the sensor locations. There are three unknown parameters, a:
two complex parameters corresponding to the upstream and downstream reflection coefficients, and a
third real parameter corresponding to the strength of the visco-thermal dissipation.

In Section 5.1, we assimilated only growth rate and natural frequency data. In this case, however, the
growth rate and natural frequency data does not provide enough information to infer unique values for all
five parameters. Instead, we learn a range of parameter sets that can describe the data acceptably well. In
some cases, this may reduce the accuracy of the model when extrapolating to unseen configurations. To
disentangle these parameters, we need to addmore information, which comes from our observations of the
complex pressure at multiple points along the length of the tube. The data are collected with a redundant
array of microphones, allowing us to demonstrate optimal sensor placement by assimilating only data
from the most informative microphones, and identifying which microphones are redundant.

As will be seen shortly, for this demonstration we need precise measurements of the phase of the
pressure eigenmode. The microphone array used to collect the data could not, however, be phase-
calibrated to the accuracy that would be required for this demonstration. We must therefore artificially
phase-calibrate the microphones using the model output as ground truth. This effectively renders this
demonstration a partially synthetic experiment.

Figure 10(a.i), (a.ii) shows the model predictions of the pressure eigenmode, after the growth rate and
natural frequency data have been assimilated. We see that assimilating the growth rate and frequency
allow us to estimate the unknown parameters well enough to produce reasonable predictions about the
pressure eigenmode. However, the uncertainty in the pressure predictions is large because we have not yet
gained enough information about the parameter values. The posterior joint distributions between each pair
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Figure 9. Comparison of learning rate for three experiment design strategies: (blue) sequentially
performing the most informative experiments, (orange) sequentially performing the least informative
experiments, (gray) 1,000 instances of sequentially performing random experiments. Plot (a) shows how
the Shannon entropy of the parameter probability distribution decreases as additional data are assimi-
lated. Plot (b) shows the information gained from each experiment, which is quantified from the change in
Shannon entropy before and after the data were assimilated. We show the information gain estimated
before the data are assimilated, using equation (16) (+), as well as the actual achieved information gain,

calculated after the data are assimilated (�).

Data-Centric Engineering e17-19

https://doi.org/10.1017/dce.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.16


of parameters are shown in Figure 11(a), from which we see that there is a strong correlation between the
values of ∣Ru∣ and ∣Rd∣, and between ∠Ru and ∠Rd.

Figure 10(a.iii) shows the information that is expected to be gained from a microphone placed at any
position along the length of the tube. The locations where microphone data are available are marked with
circles. This reveals that there is no microphone installed in the optimal location. Fortunately, however,
the best available microphone carries only slightly less information than a microphone placed at the
optimal location.

We assimilate the data from the best available microphone and plot the new model predictions in
Figure 10(b.i), (b.ii). We see from Figure 10(b.i) that the real component of pressure is now well

(a.i)

(a.ii)

(a.iii)

(b.i)

(b.ii)

(b.iii)

(c.i)

(c.ii)

(c.iii)

Measurement±2 sd Model ±2 sd Assimilated measurements Reference mic

Figure 10. Three stages of optimal sensor placement: (a) reference mic only, (b) one additional mic, and
(c) two additional mics. Figures show (i) the real component of the pressure, Re Pð Þ, vs. axial position in
the tube, X, (ii) the imaginary component of pressure, Im Pð Þ, and (iii) the expected information gain, ΔS,
from a microphone placed at any axial position. Predictions are plotted as solid lines, with uncertainties
indicated with shaded regions. Available microphone data are plotted in teal in (i, ii), and as open circles

in (iii). Assimilated microphone data are colored with the appropriate shade of red.

Figure 11. Posterior joint probability distributions after three stages of optimal sensor placement:
(a) reference mic only, (b) one additional mic, and (c) two additional mics. The joint distribution between
pairs of parameters is indicated in each frame using contours of one, two, and three standard deviations
from the mean. The parameters are the absolute value and angle of the upstream, Ru and downstream
reflection coefficients,Rd, and the boundary layer dissipation strength, η. The axes are labeled with the ±3

standard deviation bounds.
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defined, with error bars that aren’t distinguishable on the scale of the plot. Adding a secondmicrophone
allows us to identify a unique pair of values for ∠Ru and ∠Rd , collapsing the uncertainty in the
prediction of Re Pð Þ. This is reflected in Figure 11(b), where we see that the correlation between ∠Ru

and∠Rd has been removed. The uncertainty in themodel’s predictions of the imaginary part of pressure,
shown in Figure 10(b.ii), has also reduced significantly. However, there is still a three-way correlation
between ∣Ru∣, ∣Rd∣, and η, seen in Figure 11(b), which requires more information to further reduce the
uncertainty.We see from Figure 10(b.iii) that we expect to gain further information from a sensor placed
near the downstream end of the tube.

After assimilating the data from the third microphone, the uncertainty in the pressure eigenmode
prediction reduces below experimental uncertainty throughout the domain, as seen in Figure 10(c.i), (c.ii).
We therefore see that, out of the array of eight microphones installed in the rig, five were redundant.
Furthermore, the installed microphone locations were not optimal, andmore information could have been
gained if the upstream microphone had been installed closer to the upstream boundary.

We see from Figure 11(c) that using the information from the three best microphones results in a
posterior parameter distribution with predominantly uncorrelated parameter values. In other words, we
have inferred unique parameter values with small error bars using the minimum number of sensors.

In Figure 12, we show how the prediction uncertainty reduces as microphones are sequentially
placed. Figure 12(a) shows the pressure predictions in Figure 12(a.i), (a.ii), and expected information
gain in Figure 12(a.iii) as the data from each of the microphones are assimilated in best-to-worst order.
Figure 12(b) shows the same process when the microphone data are assimilated in worst-to-best order.
We see that assimilating the best microphone data first causes a rapid collapse in uncertainty as the first
two additional microphones are added, following which the remaining microphones add negligible
information. In comparison, adding the microphones in reverse order leads to a gradual reduction in
uncertainty.

This is reinforced by Figure 13 which shows (a) the Shannon entropy and (b) the change in Shannon
entropy as data from each subsequent microphone are assimilated. Alongwith selecting the best andworst

Model ±2 sd Reference micAssimilated measurements

(a.i)

(a.ii)

(a.iii)

(b.i)

(b.ii)

(b.iii)

Figure 12. Comparison between sequentially assimilating all available mic data. At each step, we select
the (a) best and (b) worst microphones. Figures show (i) the real component of the pressure, Re Pð Þ,

vs. axial position in the tube, X, (ii) the imaginary component of pressure, Im Pð Þ, and (iii) the expected
information gain, ΔS, from a microphone placed at any axial position. Predictions are plotted as solid

lines, with uncertainties indicated with shaded regions. Uncertainties after assimilating only the
referencemic are shaded in blue. Uncertainties after assimilating additional mics are colored with shades

of red from dark (fewest additional measurements) to light (most additional measurements).
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microphone positions, we also show the results from 1,000 random sequential sensor placements.
Figure 13(a) shows that assimilating the best microphone data first reduces the Shannon entropy more
rapidly than assimilating the worst microphone data first, and placing the sensors randomly falls between
these two cases. Figure 13(b) confirms that the two best additional microphones provide significant
amount of information, following which the subsequent microphones provide negligible information. In
comparison, when assimilating the worst microphones first, the first additional microphone provides a
significant amount of information, following which each subsequent microphone contributes a small, but
not negligible, amount of information.

5.3. Optimal design for model comparison

We now consider the third task of identifying the experiment designs that allow us to most easily
discriminate between multiple candidate models. We demonstrate this using the hot data previously
described in Section 5.1.2. We introduce two additional models for the purpose of comparison with the
baselinemodel, whichwas trained in Section 5.1.2. The first additional model, whichwe label model A, is
a physics-based model with additional parameters that allow the heater feedback to vary with heater
position. There is no physical basis for this, so we expect the model comparison to favor the baseline
model. The second additional model, which we label model B, is a polynomial surface with the minimum
degree capable of describing the data. This model disregards the physics entirely, so we once again expect
the baseline model to be favored. The baseline model has 6 unknown parameters, model A has
14 unknown parameters, and model B has 16 unknown parameters.

We begin by assimilating a small subset of the experiments to estimate the parameters of each of the
models so that the models make similar predictions, making model comparison nontrivial. We select the
optimal experiments for learning eachmodel’s parameters using the process described in Section 4.1, then
combine these optimal experiments and train all three models on the same set of initial experiments. We
see in Figure 14 that the predictions of both model A and model B are comparable to the baseline model’s
predictions. Thismakes it difficult to identify the best model by inspection.Wewould like to use Bayesian
model comparison to identify the best model, so we sequentially identify and assimilate additional
experiments that maximize the discrimination between the candidate models. For clarity, we demonstrate
this by separately comparing model A to the baseline model, and B to the baseline model. The utility
function defined in Section 4.3 can, however, be used to identify the optimal experiments for distin-
guishing between arbitrarily many models at once.

Figure 13.Comparison of learning rate for three sensor placement strategies: (blue) sequentially placing
the sensors in the best locations, (orange) sequentially placing the sensors in the worst locations, (gray)
1,000 instances of sequentially placing the sensors in random locations. Plot (a) shows how the Shannon
entropy of the parameter probability distribution decreases as additional mic data are assimilated. Plot
(b) shows the information gained from each microphone, which is quantified from the change in Shannon
entropy before and after themic data were assimilated.We show the information gain estimated before the
data are assimilated, using equation (16) (+), as well as the actual achieved information gain, calculated

after the data are assimilated (�).
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We sequentially assimilate each experiment in the dataset, selecting both the best and worst experi-
ments for model comparison. The results are shown in Figure 15(a) for comparing model A against the
baseline model, and in Figure 15(b) for comparing model B against the baseline model. We see from
Figure 15(a.i) that model A is only slightly less probable than the baseline, while Figure 15(b.i) shows that
model B is substantially less probable than the baseline.

Comparing the BFLs between model A and the baseline model, shown in Figure 15(a.ii), we see that
they are essentially identical. This tells us that both models fit the data equally well, which is evident in
Figure 14(a). This should be expected because model A is identical to the baseline model but has
additional unnecessary parameters. The penalty of these additional parameters is seen by comparing the
OFs in Figure 15(a.iii), which shows that model A has a very small OF (very negative log(OF)). The
smaller OF penalizes model A, resulting in a smaller ML.

Asmentioned in Section 4.3, when choosing optimal experiments to discriminate between twomodels,
we choose experiments where (i) the model predictions maximally disagree, and (ii) the model uncer-
tainties maximally disagree. Choice (i) results in a penalty in the BFL of the model with the poorer fit of
the new data point, and choice (ii) results in a penalty in the OF on the more flexible model. With the
predictions of model A being almost identical to those of the baseline model, we cannot rely on the first
criteria. Instead, each experiment is selected based on how much it would increase the Occam penalty on
the more complex model. We see this in Figure 15(a.iii), which shows that the log(OF) of model A
decreases rapidly at first, and gradually plateaus as the experiments with high discriminatory information
are used up. As a result, we see from Figure 15(a.iv) that, when selecting the best experiments, the ML
ratio increases rapidly at first and then plateaus. By comparison, selecting the worst experiments leads to a
more gradual increase in model discrimination. For the most part, random experiment designs fall
between the best and worst designs. In the region of 30–60 experiments, however, some random
experiment designs increase the discrimination more than our optimal design methodology. We note,
however, that this is a particularly challenging case because the models are very similar, and the majority
of the discriminatory evidence is provided by initial set of experiments that are identified for parameter
inference.

(a.i)

(a.ii)

(b.i)

(b.ii)

Baseline model ±2 sd Model A/B ±2 sd Assimilated measurements

Figure 14. Predictions produced by three candidate models. We compare (i) growth rate, zr , and
(ii) angular frequency, zi predictions produced by the baseline model (blue) against those produced by
(a) model A (red) and (b) model B (red). The initial experiments selected to train the models are shown

with orange markers.
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Comparing the BFLs between model B and the baseline model, shown in Figure 15(b.ii), we see that
model B is increasingly penalized as more data are added. This is because the polynomial model cannot
describe the data as well as the physics-based baselinemodel. Similarly, Figure 15(b.iii) shows that theOF
penalty of model B becomes increasingly negative as more data are added, because model B is the more
complexmodel. In this case, the algorithmmust select between penalizing the model based on its fit to the
data, or penalizing the model based on its complexity. Figure 15(b.ii), (biii) shows that both of these
penalties increase rapidly at first and then plateau, indicating that the algorithm is able to select the
experiments that maximize the discrimination from both penalties. As a result, we see from Figure 15
(b.iv) that, when selecting the best experiments, the ML ratio increases rapidly at first and then plateaus.
By comparison, selecting the worst experiments leads to a more gradual increase in model discrimination,
with most of the discriminatory information added by the later experiments. In this case, all 1,000 random
experiment designs fall between the best and worst designs. Similarly to Figure 9, we see that the random
designs are not tightly bounded by the best and worst designs, indicating that it is unlikely that very good
(or bad) experiments will be selected at random.

6. Note on application

In the current study, we have demonstrated experiment designs that have strictly adhered to the optimal
design approach. We note, however, that this approach tends to select experiment designs that are
concentrated at the extremes of the parameter space (see Figures 8 and 14). Our experience has shown
that training models on a narrow portion of the parameter space can lead to systematic errors going
undiscovered. As a result, a strict implementation of this approach may not be appropriate for models that
have not been tested on densely sampled datasets to eliminate systematic or structural error in the data or

0 20 40 60 80 100
30

35

-500

0

-500

0

-60

-40

2000

4000

-4000

-2000

0

-4000

-2000

0

(b.i)

(b.ii)

(b.iii)

(b.iv)

(a.i)

(a.ii)

(a.iii)

(a.iv)

-200

-100

Random exp.Baseline Model A/B Best exp. Worst exp.

Figure 15. Four model comparison metrics are plotted against the number of experiments assimilated.
Themetrics are (i) the log marginal likelihood, log MLð Þ, (ii) the log best fit likelihood, log (BFL), (iii) the
log Occam factor, log OFð Þ, and (iv) the log of the ratio of marginal likelihoods between two models,
log MLRð Þ. In panel (a), we compare the baseline model (dark red) to model A (light red), and in panel (b),
we compare the baseline model (dark red) to model B (light red). In (i–iii), we only show the results
produced by selecting the best experiment at each step. In (iv), we show the results produced by

recursively selecting (blue) the best experiments, (orange) the worst experiments, and (gray) random
experiments. A positive log MLRð Þ means that the baseline model is preferred.
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model. One potential approach to resolve this issue is to add an extra term to the utility function that
encourages the selection of experiments in regions of the parameter space that have not yet been explored.
With this modification, the algorithm will initially select experiments with high information content, and
then gradually switch to exploring the parameter space. This is conceptually similar to optimal sampling
strategies that are commonly used in Bayesian optimization with Gaussian processes (Sengupta and
Juniper, 2022).

The current study has also demonstrated optimal experiment design for parameter inference by
selecting the single best experiment at each iteration. In the greedy selection process, we iteratively
(i) use equation (16) to identify the most informative experiment, (ii) perform that experiment to collect
the data, zi + 1, (iii) minimize equation (4) to find ai + 1, and (iv) solve equation (5) to calculate Cað Þi + 1. In
practical situations, it may be better to identify and conduct a batch of promising experiments before
assimilating the data and identifying the next batch. This is also possible using the approach described in
this paper if we iteratively (i) use equation (16) to identify the most informative experiment, (ii) use
equation (15) to approximate Cað Þi + 1, (iii) repeat steps (i) and (ii) until a batch of n approximately optimal
experiments have been identified, (iv) perform the n experiments to collect the data D = zi + 1, ::,zi + nf g,
(v) minimize equation (4) to find ai+ n, and (vi) solve equation (5) to calculate Cað Þi + n. In the early stages
of parameter inference, not all experiments in the batches will be optimal because (i) the first-order
approximation errors will accumulate, and (ii) all experiments in the batch are selected based on the
current knowledge of the parameters, which may be inaccurate. However, as more data are collected, the
second-order term will vanish, the parameter values will converge to the posterior, and the batches will
become closer to optimal.

Finally, this paper has not addressed the task of selecting a stopping criterion, which is a case-
dependent problem that cannot be prescribed in general. In some cases, it may be sensible to continue
collecting data or placing sensors until a budget is exhausted, while in others, it may be sensible to
continue until the model uncertainty or expected information gain falls below a threshold. One could also
monitor the convergence of the parameters, and continue collecting data until the change in the parameter
values drops below a threshold.

7. Conclusion

In this paper, we have developed a computationally efficient framework for Bayesian optimal experiment
design. We have considered three specific questions an experimentalist may face. These are (i) which
experiments would provide the maximum information about the unknown parameters of a model,
(ii) where should the sensors be placed to provide maximum information about the unknown parameters,
and (iii) which experiments would maximize the discrimination between candidate models?

The framework relies on approximate Bayesian inference, accelerated by adjointmethods. This greatly
reduces the computational cost when compared with sampling methods such as Markov Chain Monte
Carlo, but assumes that the posterior probability distributions are approximately Gaussian. This assump-
tion mainly impacts the estimation of parameter uncertainty, and can be verified a posteriori.

We have demonstrated this framework on thermoacoustic oscillations, an industrially relevant problem
which affects the development of aerospace engines. The testing of these engines is expensive, so there is a
large financial incentive to minimize the number of experiments conducted. We have shown that, in a lab
rig which displays thermoacoustic oscillations, we can significantly reduce the number of experiments
required to perform Bayesian inference by (i) performing fewer experiments and (ii) using fewer sensors.

While other studies have found that Bayesian experiment design is too computationally expensive, we
have shown that this can be overcome within the adjoint-accelerated Bayesian inference framework, as
long as the posterior probability distributions are approximately Gaussian. We have also shown that the
framework can be applied to a real-world problemwith real experimental data, whereasmost other studies
have demonstrated their methodologies using synthetic data which is free of systematic error.

The framework is general and can be applied to a wide range of problems, provided there is (i) a source
of data, (ii) a physics-based model, and (iii) an adjoint of the model. Adjoint or automatically
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differentiated codes are readily available in the field of fluid mechanics because they have been widely
used for shape optimization. This work is a further example of the utility of adjoint codes or automatically
differentiated codes.

In the future, we aim to apply this framework to more complex problems in thermoacoustics, such as
industrial gas turbine test rigs. There is scope to apply this methodology to a wide range of other problems
in fluid mechanics, structural mechanics, control, and other fields.
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