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ON MAXIMAL ORDERS OF DIVISION QUATERNION

ALGEBRAS OVER THE RATIONAL NUMBER FIELD

WITH CERTAIN OPTIMAL EMBEDDINGS

TOMOYOSHI IBUKIYAMA

In this paper, we shall give explicit Z-basis of certain maximal orders

of definite quaternion algebras over the rational number field Q (See

Theorems below). We shall also give some remarks on symmetric maximal

orders in Ponomarev [9] and Hashimoto [6] (Proposition 4.3). More precise

contents are as follows. Let D be a division quaternion algebra over Q.

Let T be the type number of D, that is, the number of the isomorphism

classes, or equivalently, the number of conjugacy classes by Dx, of maximal

orders of D. The explicit formula for T is well known (Eichler [5]), and

T = 1 if D is indefinite, but T > 1 in general if D is definite. Let m =

Pi ' '' Pt be the product of all finite ramified primes pt for D/Q. We shall

give explicit Z-basis of any maximal orders (up to isomorphism) which

contain an element with the minimal polynomial x2 + m. We shall also

give the number of the isomorphism classes of such maximal orders (Corol-

lary 2.12). When m is a prime, this number has been given by Deuring [3].

Now, we shall state our Theorems. Choose a prime integer q such that

( 1 ) (—QIPΪ) = — 1 for Pi I m such that pt Φ 2 , and

( 2 ) q ΞΞ 3 mod 8 .

(Such q exists by virtue of Dirichlet's theorem of primes in arithmetic

progression.) Then, D can be written explicitly as D = Q + Qa + Qβ +

Qaβ, where a2 = — m, β2 = —q, and aβ = —βa. By (1) and (2) we have

(—mjq) = 1. Choose a rational integer r such that

( 3 ) r2 + m ΞΞ 0 mod q .

Put
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O(q, r) = Z
q

Then, this is a maximal order of Z), which is essentially the same maximal

order given in Albert [1] (See also [8]). Besides, when m = 3 mod 4, we

choose a rational integer rr such that

( 4) r'2 + m = 0 mod 4<? .

Put

θ = Z + Z-i i^- + Z/3 + Z ( r ' + a)β .
2 2g

Then, this is also a maximal order of D. Note that the isomorphism

class of O(q, r) or O'(q, rf) depends on q, but does not depend on r or r\

We fix r or r', once and for all, for each q satisfying (1) and (2), and

denote these orders briefly by O(q) or O'(q), respectively. We also assume

that m = 3 mod 4 when we write O'(q).

THEOREM 3. Assume that a maximal order O of D has an element

with the minimal polynomial x2 + m. Then, there exists a prime integer q

satisfying (1) and (2) such that either O = O(q) or O = O'(q).

This is an easy corollary to the more precise theorems below. To

explain Theorems 1, 2 below, we introduce a notion of optimal embeddings,

following Eichler. Let K be a quadratic subfield of D> and o be an order

of K. Let O be a maximal order of D. We say that o is an optimal

subring of O when O Π K = o. For example, Z + Za (resp. Z + Z(l + α)/2)

is an optimal subring of O(q) (resp. O\q)). Conversely, we have

THEOREM 1. Assume that a maximal order O of D has an optimal

subring ίsomorphίc to Z + Z^—m. Then, O is isomorphίc to O(q) for some

integer q satisfying (1) and (2).

When m = 3 mod 4, we also have

THEOREM 2. Assume that a maximal order O of D has an optimal

subring ίsomorphίc to Z + Z(l + / — τn)/2. T/iera, O is isomorphic to O\q)

for some prime integer q satisfying (1) and (2).

Now, when m is a prime p = 1 mod 4, certain maximal orders of

D ®Q Q(VΊ^) which are called symmetric maximal orders have been defined,
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related to the theory of quadratic forms (cf. Ponomarev [9], Hashimoto [6]).

Some numerical examples of such orders have been given in Hashimoto

[7]. In this paper, we shall also give explicit basis of any symmetric

maximal orders (up to isomorphism) which contain a fourth root of unity

(Proposition 4.3), as a corollary to above Theorems.

Remark. Assume that m i s a prime integer p. Then, by combining

the results by Deuring [2] with Theorem 3 above, one obtains an explicit

basis of the endomorphism ring of any super singular elliptic curve whose

j-invariant belongs to the finite prime field Fp.

Remark. Shimizu [11] has constructed some examples of new forms

with respect to GL(2) by using certain maximal orders of definite quater-

nion algebras. In Theorem 2 of his paper, he assumed that such maximal

orders (with prime discriminant p) are of the form O(q), or of some anal-

ogous form. By virtue of our Theorem 3, we can replace the condition by

more intrinsic assumption that the maximal orders in question have an

element whose minimal polynomial is x2 + p.

Now, we outline the content of each section. After some preliminaries

in § 1, we count up the isomorphism classes of maximal orders of the

form O(q) or O;(q) (for various q and fixed m) in § 2. The dependence of

the isomorphism classes of O(q) or O'(q) on q will be also given ideal-

theoretically there. In § 3, by using some arithmetic of quaternion algebra

by Eichler [5], we show that O(q) or O'(q) exhaust all the isomorphism

classes of the maximal orders in question, and complete the proofs of the

theorems. In § 4, we see the relation between the above formulation and

the Chevalley-Hasse-Noether parametrization, and also give a result on

symmetric maximal orders.

§ 1. Preliminaries

Let D be a definite quaternion algebra over Q with discriminant m.

Let q be a prime integer satisfying (1) and (2) in the introduction. Take

a and β as in the introduction. Sometimes, we denote them by aq and

βq to clarify their dependence on q. Though we have assumed that D is

definite, the following Lemmas 1.1 and 1.2 are also valid even when D is

indefinite if we replace g or m by ~q or — m, respectively, in the state-

ments. First we have;

LEMMA 1.1. D is isomorphic to D(q) = Q + Qaq + Qβq + Qaqβq.
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Proof. This is easily shown by classfield theory, and the proof will

be omitted here. q.e.d.

Let q and qf be different primes satisfying (1) and (2). By Skolem-

Noether's theorem, there exists an isomorphism of D(q) to D(q') which

sends aq to aq>. We fix such an isomorphism throughout the paper and

identify aq with aq>, which will be denoted briefly by a.

LEMMA 1.2. O(q) is a maximal order of D. If m = 3 mod 4, O\q) is

also a maximal order of D.

Proof. It is easy to see that O(q) and O'(q) contain Z + Za + Zβq +

Zaβq. So O(q) and O\q) contains a basis of D. So we have only to show

that O(q) and O'(q) are subrings of D and that the discriminant of them

are equal to m2Z. This can be shown by routine calculation, which we

omit here. q.e.d.

Let O be any maximal order of D. Denote by e the half of the car-

dinality of the group O x of the units of O. In the remainder of this

section, we gather some easy arithmetics on O(q) and O'(q) with e > 1.

which will be used in § 2. When m = 2 or 3, we have T = 1 (Eichler [4]),

and Theorem 1 to 3 are obvious. From now on, we assume that m^5.

Then β = 1,2, or 3, and O x is isomorphic to {±1}, {±1, ±</~=Γΐ}, or

{±1, ± ( — l±v^3)/2}, respectively (Eichler, loc. cit.,). As well known,

Q(V — 1) can be embedded in D if and only if pi = 3 mod 4 or pt = 2 for

all Pι\m. Q(V—3) can be embedded in D if and only if pt = 2 mod 3 or

p^ = 3 for all j ^ | m.

(1.3) The isomorphism class of O with e = 2 is at most unique. This

is also true for maximal orders with e = 3. (Eichler, loc. cit.)

LEMMA 1.4. Assume that m^>5. Then, e = 2 /or O(g) (resp. O'ίς)) £/

only if there exist x,yeZsuch that x2 + my2 = q (resp. x2 + my2 = 4q).

Proof. First, assume that there exists an element γ e O(q) such that

n (γ) = 1 and tr (γ) = 0, where n (γ) or tr (γ) means reduced norm or trace

of γ, respectively. Put γ = a + 6(1 + β)/2 + c<*(l + β)/2 + d(r + a)β/q,

where α, b,c,de Z. Then we have c2 ̂  4/m <; 4/5, so we have c — 0. Then

n(f) = 1 and tr (f) = 0 imply that (—aq + dr)2 + d2m = g. The converse

is obvious. As for O'(q), the proof is virtually the same, and will be

omitted here. q.e.d.
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LEMMA 1.5. Assume that m >̂ 5. Then, e = 3 for O(q) if and only if

there exist integers x, y such that x2 + Amy2 = 3g. We have e ψ 3 /or απ ĵ

O\q).

Proof. The proof is virtually the same as in Lemma 1.4, and will be

omitted here. q.e.d.

We shall interpret Lemmas 1.4 and 1.5 ideal-theoretically. Let 7(2)

be the group of fractional ideals of QW-^rή) which is prime to 2, P(2) be

the group of principal ideals in 7(2). Put Pz(2) = {fee 7(2); i r e Q t / ^ ) ,

K ~ a mod 2 for some a e Z}, where mod means the multiplicative con-

gruence. Let q be a prime which satisfies (1) and (2) as before. Then q

unramifies and splits for Q(y' — m)jQ because ( — m/q) = 1. So we write

the prime ideal decomposition of qZ as (q) = qqy where q Φ q and ~ denotes

the complex conjugation. By Lemma 1.4, we easily have;

COROLLARY 1.6. We have e = 2 for O(q) (resp. Of(q)) if and only if

q e Pz(2) if m==3 mod 4, q e P(2) if m = 2 mod 4 (rβsp. q e P(2)).

Next, we assume that Q(V — S) can be embedded in D. Then we can

write a prime ideal decomposition of 3Z in QW—~m)lQ as pp, though it

may be that p — p. Then by Lemma 1.5, we easily have;

COROLLARY 1.7. We have e = 3 for O(q) if and only if pq or pq belongs

to Pz(2).

Next, we have;

LEMMA 1.8. Assume that m Ξ 3 mod 4. Then O(q) is isomorphic to

O'(qf) if and only if e = 2 for both O(q) and O\qf).

Proof. If O(q) is isomorphic to O\q;), O(q) must have an element γ

such that tr (γ) = 1 and n(γ) = (1 + m)/4. Put ^ = a + b(l + β)/2 +

ca(l + β)/2 + d(r + a)β/q, w h e r e a, b,c,de Z. We h a v e c2 <1. If c = 0,

we have (6g + 2c?r)2 + d2m = mq. We can put bq + 2dr — my, where y

e Z. Then by Lemma 1.4, e = 2 for O(g). If c2 = 1, we have 6g + 2dr

= 0. Then & e 2Z, which contradicts the assumption that tr (γ) = 1. The-

refore the condition is necessary. The sufficiency is obvious by (1,3).

q.e.d.
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§ 2 The isomorphism classes of the maximal orders O(q) and O'(q)

From now on, we assume that m ^> 5, till the end of this paper. Let

q and qf be different primes which satisfy (1) and (2). In this section, we

establish the conditions for O(q) s O(qf) or O'(q) ~ O'(q'). Then we count

up the isomorphism classes of such maximal orders. As before, we put

(q) = qq and (q') = q'q'.

PROPOSITION 2.1. Notations being as above, 0{q) (resp. O'(q)) is iso-

morphίc to O(q') (resp. O'(q')) if and only if qq' e Pz(2) (resp. qq' e P(2)) for

a suitable choice of q.

Remark 2.2. We note that qq' belongs to Pz(2) (resp. P(2)) if and

only if we have x2 + Amy2 = qq' (resp. x2 + my2 = 4qq') for some x,yeZ.

Proof of Proposition 2.1. We divide the proof into three cases.

Case I. Assume that e = 2 for O(q) (resp. Of(q)). Then by virtue of

(1.3) and Corollary 1.6, the assertion is obvious.

Case II. Assume that e = 3 for O(q). Then O(q) s O(q') if and only

if e = 3 also for O(q'). Notations being as in Corollary 1.7, choose q so

that pq e Pz(2). Then pq' e Pz(2) if and only if qq' e P*(2). By virtue of

Corollary 1.7, the assertion is obvious.

Case III. Assume that e = 1 for O(g). First, assume that O(q) is

isomorphic to O(q').

Let 0 be an isomorphism of O(qf) to O(g). Since n(a) = m, αrO^) is

the unique ideal of O(q) whose reduced norm is equal to m. Then ±a

are the only elements of O(q) with reduced norm m, and we have φ(ά) =

±a. Now put ^((1 + βq,)/2) = a + 6(1 + ft)/2 + cα(l + βq)/2 + d(r + a)βjq,

where α, 6, c, d e Z . We have φ(a)φ(βq,) = —φ(βq<)φ(a), so we have c = 0.

As tr ((1 + j8β,)/2) = 1 and n((l + j8β,)/2) = (1 + ^0/4, we have 2a + b = 1

and 1/4 + (6/2 + drlq)2q + d2mjq = (1 + gO/4. Then we have (6g + 2dr)2

+ 4d2m = qq', which is the condition we want by virtue of Remark 2.2.

Conversely, assume that x2 + 4y2m = qq' for some x, y e Z. We have x2 +

Amy1 = x2 — 4 r y — (x — 2ry)(x + 2ry) mod q. Changing the sign of y if

necessary, we get x = 2ry mod g. Put d — y and 6 = (x — 2ry)jq. Then

6 is an odd integer, because x is odd. Now, denote by ψ the Q linear

map of D to D such that
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(2.3) Ψ(a) = εa

Ψ(βq>) = bβq + 2d(r + a)βjq
ψ(aβq.) = φ{a)φ(βq) ,

where ε = 1 or — 1. It is easy to see that ψ is an algebra automorphism

of Zλ We shall show that ψ induces an isomorphism of O(qf) to O(q), if

we choose ε suitably. We have only to show that ψ(O(q')) C O(q) for a

suitable choice of ε. Put ωx = 1, α>2 = (1 + /5g)/2, ω3 = a(l + βq)/2, ω4 =

(r + <x)βjq. By direct calculations, we have;

βq,)/2) - (1 - δ)/2 + 6ω2 + dω, ,

1) + 2d(r2 + /

(2.4) + ε((b - l)g + 2rd)ωj2 ,

Ψ((^r + ct)βM = ~(bq{r> - εr) - 2dε(m +

+ (2bq(rf - εr) - 4dε(m + r2))ωjqqf

+ (2r'd + ε(bq + 2rd))ωjq' .

We show that we can choose ε so that the coefficients of ωu , ω4 of the

right hand side of the above equalities are integral. As b is odd, so

(1 — 6)/2 € Z. By (3) in the introduction, we have (r2 + m)/q e Z. So we
have bq(rf — εr) — 2dε(m + r2) = 0 mod g. By the definition of b and d,

we have (&<? + 2dr)2 + Amd2 = gg7. Then 6g + 2dr = 2dr or — 2dr mod g7.

We put ε = l or ε = — 1 respectively. Then we have bq(r' — εr) —

2dε(m + r2) = bq(r' - εr) + 2dε{r' + εr)(rf + εr) = (r' - εr)(bq + 2dr + 2dr'ε)

= 0 mod g;. Then we have proved the assertion for O(q). As for O'(q)

with e = 1, the proof is virtually the same, which will be omitted here.

q.e.d.

We note that the assumption q ^ q' was used only to show that the

coefficients of the right hand side of (2.4) are integers. Let A be the

cardinarity of the automorphism group of O(q) or O'(q). We can obtain

A for O(q) or O'{q) when e = 1 by modifying the proof of Proposition 2.1

for q = q'. That is, we have;

PROPOSITION 2.5. Assume that e = 1 for O(q) (resp. O'{q)). Then A

= 4 £/ q2 e Pz(2) (resp. q2 e P(2)), cmd A = 2 otherwise.

Proof. Here we give the proof only for O(q), because the proof for
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O'(q) is virtually the same. As we have shown in the proof of Proposi-

tion 2.1, we can correspond an automorphism of 0(q) to integers x, y such

that x2 + 4my2 = q2. If q2 g Pz(2), all solutions of this equation are (±q, 0).

Then we have (b, d) = ( ± 1 , 0) in (2.3). We have bq(r - εr) - 2dε(m + r2)

= ±q(r — εr) = 0 mod q2 if and only if ε = 1. So there are only two auto-

morphisms of O(q). If q2 e Pz(2), we can put q2 = (x + 2y^—m) by virtue

of Remark 2.2. Then, the solutions of the diophantine equation x2 + 4my2

= g2 are (±x, ±y) and (±g, 0). By the condition x = 2ry modg, only

two of (±x, ±y), say (x, y) and (—x, — y), are appropriate. Then we have

(b, d) = ±((x - 2ry)/q,y) in (2.3). Then, we have ε(bq + 2dr) + 2dr =

±(xε + 2ry) = 0 mod g if and only if ε = — 1. If ε = — 1, bq(r — εr) —

2dε(m + r2) = 2bqr + 2d(m + r2) = ((6g + 2dr)2 + 4md2 - 62^2)/2d = (1 -

b2)q2/2d = 0 mod g2, because g/fd. Then A = 4 in this case. q.e.d.

Next, we count up the isomorphism classes of O(q) and O'(q). Let

F be the genus field of Q(v/-Γ^)> that is, the maximal unramified abelian

extension of Q(^—m) which is abelian over Q. Put εt — (—l)^*-1)/2 if

pt\m, Pi Φ 2, and put εt = (—ly™-2^ if p. =2,2\m. It is well known that

F = Q(ViA> , V^A) if rn = 2, 3 mod4, and F
if m = 1 mod 4. Let Lo (resp. L) be the classifield over Q(V~m) which

corresponds with P(2) (resp. Pz(2)). As P(2) 3 Pz(2), we have LZ) L0Z) F.

We also note that L and Lo are Galois extensions of Q. The Galois group

Gal(L0/Q) (resp. Gal (L/Q)) is generated by Gal (LJQ(^^m)) (resp.

Gal(L/Q(V — rn)) and the complex conjugation p. For an element a of

Gal (Lo/QίV—w)) or Gal (L/QW—m)), we have pσp = σ~\ Especially, the

conjugacy class in Gal (LJQ(A/—TΠ)) (resp. Gal (L/Q(V — m)) which contains

an element σ e Gal (LJQ(^-m)) (resp. Gal (L/Q(*/—m)) is {σ, σ"1}, though

it may be that a = σ"1. Let g be a prime which satisfies (1) and (2). Let

ζ8 be a primitive eighth root of unity. Then, any τ e Gal (L(ζ8)/Q) (resp.

Gal (L0(ζ8)IQ)) in the Frobenius conjugacy class of q in L(ζ8) (resp. L0(ζ8))

satisfies,

β gv rlβ<VϋFϊ) ^ i d i f Pi\m, ptφ2 and ε, = 1

= id if Pi I m, pt Φ 2 and εt = — 1 ,

(2.7) τ|Q(ζ8) = r0 , where Q° - C2

(Here τ\* means the restriction of τ to *.) In fact, (2.6) is equivalent to

(1) and (2.7) to (2). Let g' be a prime different from g which satisfies (1)
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and (2). Denote the Frobenius conjugacy classes of q (resp. q') in

Gal (LJQ) or Gal (L/Q) by {σ, σ"1} (resp. {*', a''1}). Then the condition in

Proposition 2.1 is equivalent to say that {σ, σ"1} = {σ', σ'""1}. In other words,

the Frobenius conjugacy class of q in L/Q (resp. LJQ) determines the iso-

morphism class of O(q) (resp. O'(q)). Conversely, let c be a conjugacy

class in Gal (LjQ) (resp. Gal (LJQ)) such that every element σ ec satisfies

(2.6) and

( r e s P

Then every element of c can be uniquely lifted up to an element τ of

Gal (L(ζs)lQ) (resp. Gal (L0(ζβ)/Q) so that τ satisfies (2.6) and (2.7). These

lifted elements also form a conjugacy class c' in Gal (L(ζ8)/Q) (resp.

Gal (L0(ζ8)/Q)). By virtue of Chebotarev's density theorem, there exists a

prime integer q Φ 2, q\m, such that the Frobenius conjugacy class of q

in L(ζ8) (resp. L0(ζ8)) is c'. Summing up, we have;

COROLLARY 2.10. The isomorphism classes of O(q) (resp. O'(q)) cor-

respond bίjectίvely with the pairs {σ, σ'1} of elements of Gal (L/Q) (resp.

Gal (LJQ)) which satisfy (2.6) and (2.8) (resp. (2.6) and (2.9)).

To count up the isomorphism classes of O(q) or O'(q) more precisely,

we need next

LEMMA 2.11. We have L Π Q(ζ8) = Q and Lo Π Q(ζ8) = Q if m ΞΞ 3

mod 4, L Π Q(Cβ) = Q(V~=:Ϊ) if m = 1 mod 4, and L Π Q(ζ*) = Q(ζ8) i/ m =

2 mod 4.

Proof. This is an easy exercise of the classfield theory, and the proof

will be omitted here. q.e.d.

Now let d (resp. d0) be the number of elements σ of Gal

(resp. Gal (LJQ(f=m))) such that σ2 = 1 and that σ satisfies (2.6) and (2.8)

(resp. (2.6) and (2.9)). For any integer d such that d = 0 or 1 mod 4, we

denote by h(d) the class number of the quadratic order whose discriminant

is d. Then we have;

COROLLARY 2.12. The number of isomorphism classes of O(q) (resp.

Of(q)) is equal to h^Am)^ + δ/2 (resp. Λ(-m)/2£ + δo/2)9 where t is the

number of the prime divisors of m.
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Proof. Let σ be an element of Gal (L/Q) (resp. Gal(L0/Q)) which

satisfies (2.6) and (2.8) (resp. (2.9)). By Corollary 2.10 and Lemma 2.11,

the isomorphism classes of O(q) (resp. O'(q)) correspond bijectively with

the conjugacy classes in σ Gal {LjF) (resp. a Gal (Lo/F)) if m = 1 or 3 mod 4

(resp. m ΞΞ 3 mod 4) and those in σ Gal (LjFiV^Λ)) if m ΞΞ 2 mod 4. We

have [F; Q ί V 3 ^ ) ] = 24"1 if m = 3 mod 4, = 2f if m = 1 mod 4, and

[ F ( Λ / ^ 1 ) ; QίV^11^)] = 2* if m = 2mod4. As well known, A(-16/n) =

2h(—4tm). Then the assertion is easily shown by direct calculation, q.e.d.

Remark 2.13. If we take m to be a prime p >̂ 5, we can show that

d = do = l i f / ? Ξ 3 mod 4 and £ = 0 if p ~ 1 mod 4 by direct calculation.

If p = 1 mod 4, O(#) is never isomorphic to O'(q'). If p = 3 mod 4, e = 2

for O(q) (resp. O'(g)) if and only if q fully decomposes in L (resp. Lo) over

Q. Then by Lemma 1.8 and Corollary 2.12, we have (h(-p) + /ι(-4p))/2

isomorphism classes of maximal orders which contains an element whose

reduced norm is p. (Here we put h(—p) = 0 if p ΞΞ 1 mod 4.) As Deuring

has shown in his paper [3], this is equal to the number of isomorphism

classes of such maximal orders. Then, in this case, Theorems 1, 2, and 3

are obvious. To obtain Theorems 1, 2, and 3 in general without his

results, we need some arithmetic of quaternion algebra which is due to

Eichler, which will be reviewed in the next section.

Remark 2.14. It is not hard to show that F (resp. F(V — 1)) is the

maximal (2, , 2) extension of QW~m) in L if m ^ 2 mod 4 (resp. m =

2 mod 4).

§ 3. Completion of the proofs of Theorems

First, we review some results which is due to Eichler [5], and then,

apply them to complete the proofs of Theorems 1, 2, and 3. Here, we

mainly follow the formulation of Shimizu [10] p. 178-179. Let O be a

maximal order of D, K be a quadratic subfield of D, and o be an order

of K. Let {o/p} be the Eichler symbol:

{ojp} = 1, if p divides the conductor of o ,

= (K/p) (Legendre symbol), otherwise .

Put l(o) = ΠPI™ 0- ~" {°IP}) Then, there exists a maximal order of D which

contains o optimally, if and only if l(o) Φ 0. Let ψ be an embedding of

K into D. We say that ψ is an optimal embedding of o to O when ψ(ό)
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is an optimal subring of O. Two optimal embeddings ψj and ψ2 of o to

O are said to be equivalent if there exists a unit γ e O x such that ψ^/c)

= phWr"1 ^ o r a ^ xεK Let O1? , Oτ be a complete set of representa-

tives of the isomorphism classes of maximal orders of D. Let gt be the

number of the equivalence classes of optimal embeddings of o to Ot, and

Hi be the number of the two sided ideal classes of Ot. Then, the fol-

lowing equality has been known:

(3.1) Σ8iHi = Ko)h(o)9
ί = l

where h(o) is the class number of o (Eichler and Shimizu, loc. cit.). Now,

we apply the above equality to our case. Put o = Z + Za and d = Z +

Z(l + α)/2. Let H(q) (resp. H'(q)) be the number of the two sided ideal

classes of O(q) (resp. O'(q)), g(q) (resp. g'(q)) be the number of the equi-

valence classes of optimal embeddings of o (resp. o') to O(q) (resp. O'(q))9

A(q) (resp. A'(g)) be the cardinality of the group of ring automorphisms

of O(q) (resp. Of(q)), and e(q) (resp. e'(q)) be the one half of the cardinality

of the unit group O(q)x (resp. O/(g)x). Then, we have

LEMMA 3.2. The numbers g(q), g'(q), A(q), A'(q\ H(q), and Hr(q) are

given as follows:

g(q) A(q) H(q)

2

2

1

2

2

2

2

2

2

4

4

8

6

12

A\q)

2

4

2<-i

2'-*

2«-i

2t-i

H'(q)

2'-1

2- 1

i/ e(g) = 1

ί/ e(g) = 1

if e(q) = 2

i/ e(q) = 2

£/ e(g) = 3

i/ e(<7) = 3

if e'(q) = 1

if e'(q) = 1

and

and

and

and

and

and

and

and

ci2 i P (2)

c\2ePz(2)

2\m

2 m

Z\m

S\m

q2gP(2)

q2eP(2)

1 4 2'~ι if e'(q) = 2 (and 2\m)

where t is the number of the finite prime divisors of the discriminant of D,

and q is any prime ideal of Qi^^^rn) which divides q.

Proof. When e(q) or e\q) is equal to one, the value A(q) or A\q) is

https://doi.org/10.1017/S002776300002016X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300002016X


192 TOMOYOSHI IBUKIYAMA

given in Proposition 2.7. It is also easy to see that there are only two

optimal embeddings ψt and ψ2 of o to O(q), or of to O\q), where ψx{a) =

a and ψ2(<*) = —<*• So, g(q) or £'(#) = 2, since ψj is not equivalent to ψ2.

Then, H(q) or H'(q) is given by the well known equality H(q) = 2te(q)/A(q),

or Hf(q) = 2ίe'(#)/A'(g) (Eichler [5]). The assertions for the other cases

has been well known (Eichler [4], [5]) and is easy to see. q.e.d.

COROLLARY 3.3. We have the following equalities:

g(q)H(q) = 2? if q2 6 Pz(2) ,

= 2 " ifq*ePz(2),

= 2ί~1 i / q 2 e P ( 2 ) .

Proof. When e(g) = 1 or ef(q) == 1, this is obvious. When e(g) or e'^)

- 2, we have always q 2eP z(2) by Corollary 1.6, since [P(2):PZ(2)] = 2 if

m = 2 mod 4. When e(q) = 3, we have q2 e Pz(2) if and only if 31 m by

virtue of Corollary 1.7 (Note that we have assumed that m >̂ 5). q.e.d.

Proof of Theorems 1, 2, and 3. It is easy to see that l(o) = 1, l(of) = 1,

Λ(o) = M-4/n), and Λ(o') = Λ(-m). Let {O^,), , O(gn)} (resp. {^(eO, ,

O ĝO}) be a complete set of representatives of the isomorphism classes of

maximal orders of the form O(q) (resp. O'(q)) for some primes q satisfying

(1) and (2). Then, to prove the theorems, we have only to show that

and ± g\^H\q[) = h{-m) ,±
by virtue of the equality (3.1). But as we have seen in Corollary 2.12,

there are δ (resp. £0) isomorphism classes of O(q) (resp. O'(qf)) such that

q 2eP z(2) (resp. P(2)), and (h(-4m) - 2t"1ί)/2t (resp. (h(~m) - 2t'1δάl2t)

isomorphism classes of O(q) (resp. O\q)) such that q2 g Pz(2) (resp. P(2)).

So, the assertions are obvious. q.e.d.

Remark 3.4. We can calculate the trace of the Brandt matrix B0(m)

with weight 0 by using Lemma 3.2, that is, tr B0(m) = (h( — m) + h(—Am))l2,

where we put h(—m) = 0 if m =£ 3 mod 4. Of course, this conicides with

the special case of the trace formula by Eichler [5].
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§4. Relation to Chevalley-Hasse-Noether parametrization and
further remarks

Let if be a quadratic subfield of D, and o be an order of K. Let O

be a maximal order of D which contains o optimally. By Chevalley, Hasse,

and Noether, any maximal order of D which contains o optimally is iso-

morphic to aOa"1 for some o ideal α. In this section, we show

PROPOSITION 4.1. Notations being as before, Let a be an integral ideal

of o — Z + Za which is prime to two. Put q = Zq + Z(r + a). Then, we

have an isomorphism: aθ(q,r)a~ι ^ O(q',rf), for any qf satisfying (1) and

(2) which is the norm of some prime ideal qf e qά2Pz(2) (resp. q' e qa2P(o)),

if m ^Ξ 3 mod 4 (resp. m Ξ 3 mod 4). Here, P(o) is the principal ideal group

of o.

PROPOSITION 4.2. Assume that m = 3 mod 4. Put q — Zq + Z(r + α)/2.

Let a be an integral ideal of o — Z + Z(l + α)/2. ϊ%erc, we have an iso-

morphism: aθf(q, r)^1 = O'(q\ rf) for any qr satisfying (1) and (2) which

is the norm of a prime ideal qf e qά2P(o).

Proof of Proposition 4.2. By definition, O'(q, r) = o + q/3/g. Then, we

have aθ\q, r)a~ι — o + aά'^β/q = o + a2qβ/qa, where α — iV(α). By virtue

of Theorem 2, there are g7 and rr such that αO^g, r)<x~ι = O^g7, r ;). Denote

by ^ the image of βq, in αO^g, r)α~1 by this isomorphism. Then, we have

aβf = —β'a, since Z + Z(l + a)/2 is the unique optimal subring of

aθ;(q, r)a~x which is isomorphic to Z + Z(l + a) 12. So, βf belongs to

a2βqlaq. Put β' = rcβ, where A: 6 a2qlaq. As iV^O = qf, we have iV(yc) = qr\q

and N(aqκ) — a2qq\ But αg/c 6 α2q, so there is an ideal qf of Z + Z(l + α)/2

such that (αgΛ:) = a2qqf and iV(qO = g'. So, by Proposition 2.1, the proof

is completed. q.e.d.

Proof of Proposition 4.1. First, assume that m =£ 3 mod 4. We have

O(g, r) c (o/2) + qa2β/2qa. In this case, optimal subrings of aθ(q, r)a~l

which are isomorphic to o may not be unique. But we can take an iso-

morphism aθ(q, r)a~ι = O(q\ r') such that the image of o is o. Let βr be

the image of βq, of this isomorphism, as before. So we have βf e qa2β/2qa.

Put K = aqβ;β~\ Then, ΛΓ(/c) = a2qq; e Z and tr (A:) 6 Z, since K e qα2/2 C

(Z + Zα)/2. So, we have A: e Z + Z<̂ . By the assumption that a is prime

to 2, there is an integral ideal q' such that (A:) = qq;α2 and N(q') = gr.

Now, we show that (K) e Pz(2) We have
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(1 + 00/2 e aθ(q, r)a~x , so (aq + κβ)/2q e aa~1O(q, r)a C O(q, r) .

Then, putting tc = c + dor, we have

(aq + Λ;/3)/2g = (αg - c + dr)/2g + (c - dr)(l + 0)/2g + d(r + ά)β/2q .

So, we have 21 c? and (A:) e Pz(2)- When m = 3 mod 4, the proof is virtually

the same and we omit it here. q.e.d.

Next, let p be a prime integer such that p = 1 mod 4. Let D be a

definite quaternion algebra with discriminant p. Put B = Z) ®Q Q(V P~) Let

σ be a non trivial automorphism of Q(Vp~) Lift it to J3 by putting

(a® b)σ — a®b\ Following Ponomarev [9], a maximal order (3 of JB is

called symmetric, if Oσ = 0. Then we have

PROPOSITION 4.3. Let ό be a symmetric maximal order of B which

contains a primitive fourth root of unity. Then, there exists a prime integer

q, satisfying (1), (2), such that

0 S o + o(l + β)/2 + oa(l + β)β^/T + o(r +

where o — Z + Z(l + ^~p~)/2, r is any integer such that p + r2 = 0 mod g,

r = 0 modp, and a, β, are as before.

Proof. This is an easy corollary of our Theorem 1 by virtue of

Ponomarev [9] and Hashimoto [7], q.e.d.
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