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REMARKS ON CERTAIN METAPLECTIC GROUPS

HENG SUN

ABSTRACT. We study metaplectic coverings of the adelized group of a split con-
nected reductive group G over a number field F. Assume its derived group G’ is a
simply connected simple Chevalley group. The purpose is to provide some naturally
defined sections for the coverings with good properties which might be helpful when
we carry some explicit calculations in the theory of automorphic forms on metaplectic
groups. Specificaly, we

1. construct metaplectic coverings of G(A) from those of G/(A);

2. for any non-archimedean place v, show the section for a covering of G(F)
constructed from a Steinberg section is an isomorphism, both algebraically and
topologically in an open subgroup of G(Fy);

3. define aglobal section which isa product of local sections on amaximal torus, a
unipotent subgroup and a set of representativesfor the Weyl group.

1. Coveringsof simple groupsover alocal fields. SupposeF isafield of charac-
teristic 0 and G is a connected, simply connected, simple Chevalley group. We also use
G to denote the group of the rational points. Fix a maximal split torusH in G, together
with the root system X relativeto H and aset of simpleroots 2. Eachroot A\ determinesa
homomorphismn,: F — G whoseimageisaunipotent subgroup. Then G is generated by
the collection of symbols{n,(x) : A € Z,x € F} subject to the following conditions[7]:

(A) ny(X) isadditivein x.
(B) If xand 6 arerootsand A\ +6 # O, then

D [nA(X)- n«S(Y)] = [T niasis(GiX'y?)
where the ¢;; are certain integers. The product is over &l positive integersi and
such that i\ +jé isaroot arranged in any fixed order.
(B") Denotew, (x) = ny(X)n_ (—x~H)n, () for x € F* then
2 Wy, ()M (Y)Wa (—X) = Ny (—x2y).
(C) Denoteh,(x) = wy,(X)w, (—1) for x € F*, then h, (X) is multiplicative in x.
Suppose 1 is an abelian group, we consider the following central extension
11— py— GLHG— 1
By [7], Gis generated by symbols{n,(x) : A € Z,x € F} subject to the conditions (A),
(B) (or (B') if therank of Gisequal to 1) and a set of relations

€) TT(hs, )by, (v, Oayi) ™) = 1
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where the product is over afinite set {\;} of rootsin some order and
Wi (X) = MOy (XYM, i (x) = Wy ()W) (—2).

We chooseasection ¢: G — G asfollows. Denote by N (resp. N’) the subgroup of G
(resp. G) generated by {n,(x) : A > 0,x € F} (resp. {ny(x) : A > 0.x € F}). Sincethe
restriction of the projection p on N’ is an isomorphism onto N, we define 3 on N by
4 8N =(pl)

Fix an ordering in Zo. Then every element of H can be uniquely written as T hy(x,)
(A € Zgand x,, € F*) inthe fixed ordering. Define
©) 3(TTh () = TTha(x).

Denote by H the subgroup of G generated by {hy(x) : A € Z.x € F*}. Denote by
Jz(H) the the normalizer of H in G. Then Ng(H)/H =~ Yg(H)/H which we denote
by W. Choose a system of representatives {w(r) : 7 € W} (resp. {w(r) : 7 € W}) in
Ys(H)/H (resp. Ng(H)) for W asfollows. If A € Zo, denote by 7, the simple reflection
relative to A. Any € W can be written as aproduct [T, 7, where A; € 2o and misthe
length £(7) of 7. Define

m

wir) = [ w, (@) (resp. () = f[lVT/A.(l))-

They are well-defined [3, p. 44]. Define

(6) 3(W(r)) = W(r).

We then define the section on G according to the Bruhat decomposition

) g(nhwr') = 3(n)s(h)s(w)s(n’) vn,n" € N,h € H,w=w(r),7 € W.

Remark that 3 does not depend on the particular Bruhat decomposition.
Denote by o the 2-cocycle associated with the section 3. For A € %, the subgroup
G, generated by {n,(x), n_,(X) : x € F} isisomorphic to SL(2). The function

c(xy) = (). ha(¥)) = hy ) (y)hy (xy) ™

on F* x F* is a Steinberg cocycle [5, Section 8]. According to [5, p. 198], the value
of ¢ on G, can be calculated explicitly. Every element in G, is uniquely of the form
01(u, ) = ny(Wh, (1), u € k, t € k* or of the form gz(u. t, v) = ny (U)w, ()N, (V), U, v € Kk,

t € k*. Wethen have
r _[o(-t.—t)1 ifw=—(v+u)=0
o(G2(: V). (U, 1, V)) = {ci(tvrl, w)~lc, (tw L t') ifw#O;
(8) o(g2(u.t.v). g1 (U 1)) = cy(t.tY);
o(gu(u.1). (U, t',V)) = ey (L. t);
o(gu(u.t). g1 (U. 1)) = cy(t. 1).
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_ Recall that if furthermore )\ isalong root, then ¢, uniquely determines the extension
G.

In the rest of section, we assume F is ap-adic field and the abelian group p is given
the discrete topology. The central extensions discussedin the sequel are topological. We
first observe the following simple lemma.

LEMMA 1. Suppose G is a locally compact totally disconnected group and Gisa
central extension of G by a discrete abelian group .. Assumethat for any open subgroup
R, [R, R] contains a neighborhood of 1. Then there is an open subgroup U of G together
with a section 3y: G — G, suchthat 3y isan isomorphismon U, both algebraically and
topologically. Furthermore, thereis an open subgroup V of U such that 3y |y isuniquely
deter mined by the above property.

PROCOF. The existence of such 3y follows from [6, Theorem 2 e4]. Choose an open
subgroup V C [U, U]. The uniqueness of 5y|v follows from the fact that 3y|y is a
homomorphism. ]

Now we return to the simple group G over the p-adic field F. Denote by © thering
of intergers in F and by w a fixed generator of the prime ideal in . Denote by U;
the subgroup of G generated by {n,(x) : x € @O, A € =}. Then U;, i > 0 form a
system of neighborhoods of 1 and the assumptions in Lemma 1 are satisfied. Denote
K = G(D) = Uy.

LEMMA 2. Thereis an open subgroup U of G such that 3 is an isomorphismon U,
both algebraically and topologically. Furthermore, $(U) isnormal in K.

ProoF. Choose a U = Uy and 3y asin Lemma 1. Define a section &’ as follows.
First, 3 = 3 on N and H. Second, fix at € W and hence w = w(r). Denote by N, the
subgroup of N generated by {n,(x) : A > 0,7()\) < 0,x € F}. Since U N NHW(7)N # ()
[8, p. 127, Theorem 23], definefor u = n.hw(r)n € U, n, e N,,h€ H,n € N,

9) §'(uw) = &'(h)~*s'(n,) s (U)s'(n) .

Observe that p(é’(u. W)) = w and 3’(u,w) is continuous in u for u € U N NHw(7)N
[5, p. 200] and hence must be constant. Define 3'(w) = 3’(u, w), u € U. By the Bruhat
decomposition, we can define the section 3’ on G by

8'(nhw(n)n) = s(n,)s(h)s'(w(r))s(n). Vr e W.n, eN..he H.neN.

Itiseasy to seethat 3’ = 3y on U, so 3’ satisfiesthe first property in this lemma.

We show &’ = &. It is enough to show &'(w(r)) = 3(w(r)), for any 7 € W. If 7 is
a reflection relative to a simple root A, a straightforward calculation by (8) shows that
3 isan isomorphism in a neighborhood hence must equal 2’ there by the uniquenessin
Lemma 1. It then follows &' (w; (1)) = $(w (1)). Now we show ¢'(w(r)) = ¢(w(r)) by
induction on ((r). Supposethisistrue for £(r) = k — 1. If w(r) = h~tnuny, for h € H,
n.m; € N, u € U, then $(w(r)) = $(h)"*Mysy(u)n;, Ny Nz € N'. We consider 7 - 7, and
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assume ((r7,) = k. Supposenisthe order of the group of all roots of unity in F. Choose
anx € —F*" closeto 0. Observethat for any h € H, A € Z, hy(—x)3(h) = ¢(hy(—x)h).
By applying the relationsin [3, Lemme 5.2.] we get
3(W(r)) Wy, (1) é’,(w(r))ﬁAk(—x‘l)‘erAk(—x‘l)rT_Ak(x)rTAk(—x‘l)
= g (=X D) tNas (w(r) ) P, (09, (=X
hrng (=X 1) s (8(h) sy (U2, (O, (—X )
5(Phyuy(—x 1) Pasu (WAL, (07s.

In the above expressions, n3, N; and ns are certain elementsin N’. Since sy (U)N_,, (X) €
3u(U), we conclude $(W(r)w,, (1)) = ¢'(W(r)w,,(1)). This complete the proof of the

first assertion.
For the second assertion, observe that for any k € K, the section &(k)3 (k- *uk)s(k)~*
is also ahomomorphism on U, hence must equal $ by the uniqueness. ]

2. Coveringsof certain reductivegroupsover local field. SupposeF isafield of
characteristic 0 and p is an abelian group. Suppose G is a connected reductive group
split over F whose derived group G’ = [G, G] is asimply connected simple Chevalley
group. Here we denote [g. h] = ghg=*h~?, g.h € G and denote by [G, G] the subgroup
of G generated by {[g.h] : g,h € G}. We also use G to denote the group of rational
points of G. Fix maximal split tori H and Sof G’ and G respectively suchthat S=H x T
for asubtorus T of S It is not hard to show that

LEMMA 3. Thegroup G isisomorphic to the semi-direct product G’ x T asalgebraic
groups, with G’ normal in G. n

To discuss coverings of G, we first make the following definition. We call the data
(G, T. «) an admissible couple of extensionsif

1. G isacentral extension of G’ by 1 with the projection py: G’ — G';

2. Tisacentra extensionof T by y;

3. aisanaction of T on G’ such that
(100 a®)(©) =¢ VteT.cep po(at)(@) =tro(@t™". VteT.geG.

The above action « givesrise to an action of TonG by the requirement that . acts on
G trivially. B

Given an admissible couple of extensions(G', T, «), we can construct a central exten-
sion G of G by y asfollows. Definethe semi-direct product G’ x T relative to the action
a. Themultiplication isgiven by (g1, t1)(92. t2) = (Gaer(t1)(g2): tatz), for (gi. t)) € G’ T,
i =1, 2. Thegroup 1 isacentral subgroupof G’ x T viathemap ¢ — (£, ¢71), V€ € p. It
isthenimmediate that the quotient group (G’ x 'F) /wisacentral extensionof Tx G’ = G.

Conversely, suppose G is a central extension of G by u. Restrictions give central
extensions G’ and T of G’ and T by 11 respectively. Define an action « of T on G’ by
a(t)(g) = sr(t)gsr(t) L, wheret € T,g € G’ and ¢t isasection T — T. Then (T. G, @)
is an admissible couple of extensions.
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Two admissible couplesof extensions(G'. T o) and (G, 'j' () aresaidto bg equivaent
if there are equivalences of group extensions ¢o: G’ — G’ and ¢1: T — T such that
do(a()(@)) = B(t)(¢0(Q)). It is routine to show the following lemma.

LEMMA 4. There is a one to one correspondence between the set of equivalence
classesof central extensions G of G by 1 and the set of equivalence classes of admissible
couples (G', T, «) given by the following two inverse maps:

®: G — (G. T. conjugationin G);
o LG T.a) — (G xT)/pu. .

Now fix a central extension G of G by 1. Suppose (G, T, @) isthe associated admis-
sible couple of extensionsasin the abovelemma. Define the section 3 for the extension
G by (4), (5), (6), (7). Fix asection 37 for the extension T. Define a section é on G by
(11) 3(at) = so(@)7(), geG.teT.

Denote by ¢ the two cocycle associated with 5. We haveforanyge G, te T

(12) a()(g) = s(tgt™Hoa(t. 9)-

Then o being agroup actionimpliesthat for any 9. 91,0, € G, t, 11,6, € T,
(13) o(titz, 9) = o(ty, togt; Doz, 9);

(14) o(t, 192)0(01. G) = o(t. G)o(t. g2)o(tgat . tgat™);

(15) o(gitr, Got2) = o(gh, Gty MYo(ty, t2)o(ts Go)-

Denote by e, the character on T such that a(t)(n(x)) = Ny (e (£)x).

LEMMA 5. Suppose i isfinite. Fix a positiveroot A. For anyt € T, x € F*,

(16) ot.m@) =1,
(17) ot wa() = 1;
(18) o(th() = c(xe®)

PrROOF. By our construction of 39, o(g,n) = o(n.g) = 1foranyn € Nandg € G. A
straightforward calculation by (8) shows that

o (tw, 0L twy (— 1)t o (s (0. Wi (= 1)) = e (ke ea(t)

Applying (14), we get for any simpleroot A, any X,y € F*,

(19) o(t.m(x+y)) = o(t.m(9)o(t. n(y))

(20) o(t.ny(x+Yy)) = o(t.n_5(¥))o(t. n_x(¥))

(21) o(twy(®)) = o(t.m(29)o(t.n_y(—xh)

(22) o(t. () = ot m@x — 2))o(t,n_y (—x T+ D))e, (x ex®)
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Theidentity (19) impliesthat o(t. n, (X)) = oft. nA(x/n))n = 1 which is (16). Similarly,
(20) implies o(t.n_,(x)) = 1. Identities (21) and (22) give (17) and (18) respectively.

It isimmediate by the above lemma that
o(@n) =on,g)=1 VneN.geG.

PROPOSITION 1. Denoteby L(G'. 1) the subgroup of H(G', 1) consisting of elements
corresponding to hilinear Seinberg cocycles. Thereis an injective homomor phism

(23) ®: H?(G, p) — H3(G, p) x HA(T, 1)

whose image contains L(G', i) x H3(T, ).

PrOOF. Lemma4 givesthe map @ in the proposition. Once wefix central extensions
T and G/, the action of T on G’ is uniquely determined by (12), (14) and Lemma 5. So
@ isinjective.

We now show the image of @ contains L(G, 1) x H?(T. ). This is equivalent to
constructing a group action « of T on G’ satisfying (10) if we are given a covering G/
whose corresponding Steinberg cocycleis bilinear.

Define the action o of T on N{ = {n\(X) : A € Z.x € F} in the obvious way:
a(t)(M(9)) =M (ex(t)x). SinceN,, A € I, generate G', we can extend ar to T x G if the
relations (A), (B), (B), (C) and (3) still hold after we replace each ny (x), by ny (e A(t)x),
A € Z, x € F. We then need to check (10). All the above can be seen by straightforward
calculations. ]

We remark that Lemma 5 and hence Proposition 1 are still true even if p isinfinite.
However, we do not need it in the following discussion.

In the rest of this section we suppose F is a completion of a number field containing
the group i, of al n-th roots of unity. Then G becomesatopological group. Itisnot hard
to seethat in Lemmad4, ® and ®~* send topological extensionsto topological extensions,
so Proposition 1 is true for topological extensions. By [5, Theorem 3.1], a topological
Steinberg cocycle on F valued in agroup of roots of unity in F is always bilinear. So we
have

CorOLLARY 1. Suppose F is a p-adic field containing the group yn of n-th roots of
unity. Thereis one and only one central extension G of G by i such that its restrictions
to G’ and T are the given central extensions G’ and T respectively, both by jin.

Denote by K the subgroup of G generated by G'(©) and T(L). Then K is amaximal
compact subgroup of G. Suppose G is atopological covering of G.

COROLLARY 2. Thereisa section s1: T — T such that the section & defined by (11)
is an isomor phism on an open subgroup U, both algebraically and topologically. Fur-
thermore, 3(U) isnormal in K.
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PROOF. By Lemma 1, there is an open subgroup U of G and a section 3y:U — U
which is also a homomorphism. Extend 8y |ty to asection 8t on T. It is then not hard
to seethat 31 satisfies all the propertiesin the corollary. ]

Itfollowsfromtheabovecorollary that for any open normal subgroup V of K contained
inU, 3(V) isnormal inK.

3. Global metaplecticgroups. Supposep isafiniteabeliangroupand Fisanumber
field. Denote by A the ring of adeles over F. Suppose G is a connected reductive group
split over F whose derived group G’ is a connected, simply connected simple Chevalley
group. Asin Section 2, denote by S = H x T the maximal split torus in G and write
G = G’ x T. We consider metaplectic coverings G(A) of G(A) by .. By definition, they
are central extensions of G(A) by . which split over G(F).

If Lisasubgroup of G(A) wedenoteby L theinversei mage under thenatural projection
(3(/—\) — G(A). By [4, 1.1.2. Remark], the following properties on the covering G(A) are
satisfied:

1. For any non-archimedeanplacev, thereis an open subgroup U, where the covering

G(F,) splits.

2. For amost al placesv, the above U, can be chosen to be K,,.

We then can choose a section s1: T(A) — T(A) with the following property. Denote
31y = 87|7(r,). Thefollowing two conditions must be satisfied:

1. For any non-archimedean place v, there is an open subgroup U+, of T(F,) on

which 3+, is an isomorphism both algebraically and topologically;

2. For almost all placesv, the above Ut is T(Ly);

3. Themap 37|r(r) is ahomomorphism.

The existence of such 3 isobvious.

Denote by V afinite set of places containing all archimedean ones such that for any
v ¢V, the residue classfield of F, has at least four elements and v isrelatively prime to
the order of the group of al roots of unity in F. By [5, Lemma11.3], forany v ¢ V, G
splits over G'(Oy). Since [G'(Dy). G'(2)] = G'(Ly), there is a unique homomorphism
ky: G'(Oy) — G/(Dy). Denote W = {w(r) : 7 € W} which is a set of representatives of
the Weyl group W.

LEMMA 6. For v ¢ V, the homomorphism x, defined above equals , on H(Qy),
N(F,) and 28.

PrROOF. We need to check sy = 3, on H, (£y), N, (Fy) and w,, (1) for any simple root
A. Then everything boils down to the case of SL (2). The calculationsare straightforward
by the Kubota's construction of « (refer to [2, Theorem 2]). ]

We extend the ., to a section, which we still denote by «,, on G(F,) by the conditions
ry(gt) = ry(g)3y(t), for any g € G'(Oy) and t € T(Ly); kv = 3y on G(Fy) — G(Dy).

COROLLARY 3. For v ¢ V, the section «, defined aboveis a Borel section and equals
3y on §(Oy), N(F), B and G(F,) — G(Ly). n
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Denote K} = ky(Ky). Denote by TT, G(FV)[K;] the restrictive direct product of G(Fy)
relativeto K (v ¢ V). Itis easy to see the following two groups are isomorphic:

Gy = [ G /M

where M is the subgroup generated by the elements of the form (..., &, ..., €.l
¢ € p, with ¢ and ¢~ at the v-th place and the w-th place respectively. For simplicity,
we identify the two groups.

We define the global section s for the covering by 3(g) = Ilvev v(Qv) - Tlvgy £v(Qv)
for g =TIy gv € G(A). Remark that if F is atotally imaginary then 3 is an isomorphism
on an open subgroup of G(A).

Denote by ¢ the two cocycle associated with the section 3. By Corollary 3, we get

COROLLARY 4. The global cocycle o equals T, oy on S(A) x §A) where each oy is
the local two cocycle associated with the section 3, for the local covering G(F,). ]

Fix along root A and call the function o(h,(-).hy())) on A* x A the Steinberg
cocycle for G(A). For each natural number n such that F contains the group p, of all
n-th roots of unity, we denote by "G’(A) the covering of G'(A) given by the Steinberg
cocycle (-, -) = IIv(-, ‘v, Where (-, -), isthe n-th Hilbert symbol. The following lemmais
avariation of [3, Theoreme 11.3].

LEMMA 7. For any metaplectic covering of G'(A) by afiniteabelian group , thereare
a natural number n and injective homomorphisms ¢,,: un — w1 and ¢:"G'(A) — G/'(A)
such that the following diagram commutes:

11— puy —— "G'(A) G'(A) 1
L]
1— p —— G(A) G'(A) 1
The number n is uniquely determined. ]

Applying the above lemmato our reductive group G, we get

COROLLARY 5. For any metaplectic covering G(A) of G(A) by afinite abelian group
u, thereis a uniquely determined positive integer n such that the restriction of G(A) to
G/(A) isatrivial covering of "G/(A). "

We summarize the results in this note in the following theorem.

THEOREM 1. Suppose p is a finite abelian group and G is a connected reductive
group split over a number field F. Assume its derived group G’ is simply connected
simple Chevalley group. Then any metaplectic covering G(A) of G(A) by . is given by
(up to isomorphisms) a positive integer n and a metaplectic covering T(A) of T(A) by
1 such that the Steinberg symbol for G(A) is given by the product TT,(-. -)y of local n-th
Hilbert symbols.
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For each place v, define a section 3q,: G'(Fy) — G/(F\) by (4), (5), (6), (7). We can
choose a section 3+1,: T(Fy) — T(F,) such that if 3,: G(F,) — G(F,) defined as (11),
then for any non-archimedean place v, 3, isan isomor phismon an open subgroup U, of
G(F) and itsimage is normal in K.

Thereis a global section 3: G(A) — G(A) such that

(1) for any non-archimedeanv, 3|y, = 3v|u,;

(2) 3|ny = Iy Sv|ner,) is @ homomor phism;

(3) 3|gny = Iv &v|sF.);

(4) 3lw =TIy 3y

DIt ]

We can also give the explicit construction of an isomorphism from G(F) into G(A) as
follows. Defineamap ¢ on G(F) by

¥(g) = 3(N)3(h)3(w)s(n’), g=nhwn’ € G(F), n,n" € N(F),h € H(F),w € 2.

By the abovetheorem, 3 =TI, 3, on H(A). By the reciprocity law for the Hilbert symbol,
3 isahomomorphism on H(F) and hence on G'(F). It then follows from our construction
of 3t that we have the following corollary.

COROLLARY 6. The map v is a homomor phismfrom G(F) into G(A). ]
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