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REMARKS ON CERTAIN METAPLECTIC GROUPS

HENG SUN

ABSTRACT. We study metaplectic coverings of the adelized group of a split con-
nected reductive group G over a number field F. Assume its derived group G0 is a
simply connected simple Chevalley group. The purpose is to provide some naturally
defined sections for the coverings with good properties which might be helpful when
we carry some explicit calculations in the theory of automorphic forms on metaplectic
groups. Specifically, we

1. construct metaplectic coverings of G(A) from those of G0(A);
2. for any non-archimedean place v, show the section for a covering of G(Fv)

constructed from a Steinberg section is an isomorphism, both algebraically and
topologically in an open subgroup of G(Fv);

3. define a global section which is a product of local sections on a maximal torus, a
unipotent subgroup and a set of representatives for the Weyl group.

1. Coverings of simple groups over a local fields. Suppose F is a field of charac-
teristic 0 and G is a connected, simply connected, simple Chevalley group. We also use
G to denote the group of the rational points. Fix a maximal split torus H in G, together
with the root system Σ relative to H and a set of simple roots Σ0. Each root ï determines a
homomorphism nï: F ! G whose image is a unipotent subgroup. Then G is generated by
the collection of symbols fnï(x) : ï 2 ΣÒ x 2 Fg subject to the following conditions [7]:

(A) nï(x) is additive in x.
(B) If ï and é are roots and ï + é 6= 0, thenh

nï(x)Ò né( y)
i

=
Y

niï+jé(cijxiy j)(1)

where the cij are certain integers. The product is over all positive integers i and j
such that iï + jé is a root arranged in any fixed order.

(B0) Denote wï(x) = nï(x)n�ï(�x�1)nï(x) for x 2 Fð then

wï(x)nï( y)wï(�x) = n�ï(�x�2y)(2)

(C) Denote hï(x) = wï(x)wï(�1) for x 2 Fð, then hï(x) is multiplicative in x.
Suppose ñ is an abelian group, we consider the following central extension

1 ! ñ ! Ḡ
ƒ
! G ! 1

By [7], Ḡ is generated by symbols fn̄ï(x) : ï 2 ΣÒ x 2 Fg subject to the conditions (A),
(B) (or (B0) if the rank of G is equal to 1) and a set of relationsY

i

�
h̄ïi (xi)h̄ïi ( yi)h̄ïi (xiyi)�1

�
= 1(3)
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where the product is over a finite set fïig of roots in some order and

w̄ï(x) = n̄ï(x)n̄�ï(�x�1)n̄ï(x)Ò h̄ï(x) = w̄ï(x)w̄ï(�1)

We choose a section «: G ! Ḡ as follows. Denote by N (resp. N0) the subgroup of G
(resp. Ḡ) generated by fnï(x) : ï Ù 0Ò x 2 Fg (resp. fn̄ï(x) : ï Ù 0Ò x 2 Fg). Since the
restriction of the projection ƒ on N0 is an isomorphism onto N, we define « on N by

«jN = (ƒjN0)�1(4)

Fix an ordering in Σ0. Then every element of H can be uniquely written as
Q

hï(xï)
(ï 2 Σ0 and xï 2 Fð) in the fixed ordering. Define

«
�Y

hï(xï)
�

=
Y

h̄ï(xï)(5)

Denote by H̄ the subgroup of Ḡ generated by fh̄ï(x) : ï 2 ΣÒ x 2 Fðg. Denote by
ËḠ(H̄) the the normalizer of H̄ in Ḡ. Then ËḠ(H̄)ÛH̄ ≤ ËG(H)ÛH which we denote
by W. Choose a system of representatives fw(ú) : ú 2 Wg (resp. fw̄(ú) : ú 2 Wg) in
ËG(H)ÛH (resp. ËḠ(H̄)) for W as follows. If ï 2 Σ0, denote by úï the simple reflection
relative to ï. Any ú 2 W can be written as a product

Qm
i=1 úïi where ïi 2 Σ0 and m is the

length ‡(ú) of ú. Define

w(ú) =
mY

i=1
wïi (1)

�
resp. w̄(ú) =

mY
i=1

w̄ïi(1)
�


They are well-defined [3, p. 44]. Define

«
�
w(ú)

�
= w̄(ú)(6)

We then define the section on G according to the Bruhat decomposition

«(nhwn0) = «(n)«(h)«(w)«(n0) 8nÒ n0 2 NÒ h 2 HÒw = w(ú)Ò ú 2 W(7)

Remark that « does not depend on the particular Bruhat decomposition.
Denote by õ the 2-cocycle associated with the section «. For ï 2 Σ0, the subgroup

Gï generated by fnï(x)Ò n�ï(x) : x 2 Fg is isomorphic to SL(2). The function

cï(xÒ y) = õ
�
hï(x)Ò hï( y)

�
= h̄ï(x)h̄ï( y)h̄ï(xy)�1

on Fð ð Fð is a Steinberg cocycle [5, Section 8]. According to [5, p. 198], the value
of õ on Gï can be calculated explicitly. Every element in Gï is uniquely of the form
g1(uÒ t) = nï(u)hï(t), u 2 k, t 2 kð or of the form g2(uÒ tÒ v) = nï(u)wï(t)nï(v), uÒ v 2 k,
t 2 kð. We then have

õ
�
g2(uÒ tÒ v)Ò g2(u0Ò t0Ò v0)

�
=
(

cï(�tÒ �t0)�1 if w = �(v + u0) = 0
cï(tw�1Òw)�1cï(tw�1Ò t0) if w 6= 0;

õ
�
g2(uÒ tÒ v)Ò g1(u0Ò t0)

�
= cï(tÒ t0�1);(8)

õ
�
g1(uÒ t)Ò g2(u0Ò t0Ò v0)

�
= cï(tÒ t0);

õ
�
g1(uÒ t)Ò g1(u0Ò t0)

�
= cï(tÒ t0)
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Recall that if furthermore ï is a long root, then cï uniquely determines the extension
Ḡ.

In the rest of section, we assume F is a p-adic field and the abelian group ñ is given
the discrete topology. The central extensions discussed in the sequel are topological. We
first observe the following simple lemma.

LEMMA 1. Suppose G is a locally compact totally disconnected group and Ḡ is a
central extension of G by a discrete abelian group ñ. Assume that for any open subgroup
R, [RÒR] contains a neighborhood of 1. Then there is an open subgroup U of G together
with a section «U: G ! Ḡ, such that «U is an isomorphism on U, both algebraically and
topologically. Furthermore, there is an open subgroup V of U such that «UjV is uniquely
determined by the above property.

PROOF. The existence of such «U follows from [6, Theorem 2 e4]. Choose an open
subgroup V ² [UÒU]. The uniqueness of «UjV follows from the fact that «UjU is a
homomorphism.

Now we return to the simple group G over the p-adic field F. Denote by Ó the ring
of intergers in F and by § a fixed generator of the prime ideal in Ó. Denote by Ui

the subgroup of G generated by fnï(x) : x 2 §iÓÒï 2 Σg. Then Ui, i Ù 0 form a
system of neighborhoods of 1 and the assumptions in Lemma 1 are satisfied. Denote
K = G(Ó) = U0.

LEMMA 2. There is an open subgroup U of G such that « is an isomorphism on U,
both algebraically and topologically. Furthermore, «(U) is normal in K̄.

PROOF. Choose a U = Uk and «U as in Lemma 1. Define a section «0 as follows.
First, «0 = « on N and H. Second, fix a ú 2 W and hence w = w(ú). Denote by Nú the
subgroup of N generated by fnï(x) : ï Ù 0Ò ú(ï) Ú 0Ò x 2 Fg. Since U \ NHw(ú)N 6= ;
[8, p. 127, Theorem 23], define for u = núhw(ú)n 2 U, nú 2 Nú , h 2 H, n 2 N,

«0(uÒw) = «0(h)�1«0(nú)
�1«U(u)«0(n)�1(9)

Observe that ƒ
�
«0(uÒw)

�
= w and «0(uÒw) is continuous in u for u 2 U \ NHw(ú)N

[5, p. 200] and hence must be constant. Define «0(w) = «0(uÒw), u 2 U. By the Bruhat
decomposition, we can define the section «0 on G by

«0
�
núhw(ú)n

�
= «(nú)«(h)«0

�
w(ú)

�
«(n)Ò 8ú 2 WÒ nú 2 Nú Ò h 2 HÒ n 2 N

It is easy to see that «0 = «U on U, so «0 satisfies the first property in this lemma.
We show «0 = «. It is enough to show «0

�
w(ú)

�
= «

�
w(ú)

�
, for any ú 2 W. If ú is

a reflection relative to a simple root ï, a straightforward calculation by (8) shows that
« is an isomorphism in a neighborhood hence must equal «0 there by the uniqueness in
Lemma 1. It then follows «0

�
wï(1)

�
= «

�
wï(1)

�
. Now we show «0

�
w(ú)

�
= «

�
w(ú)

�
by

induction on ‡(ú). Suppose this is true for ‡(ú) = k � 1. If w(ú) = h�1n1un2, for h 2 H,
n1Ò n2 2 N, u 2 U, then «

�
w(ú)

�
= «(h)�1n̄1«U(u)n̄2, n̄1Ò n̄2 2 N0. We consider ú Ð úïk

and
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assume ‡(úúïk
) = k. Suppose n is the order of the group of all roots of unity in F. Choose

an x 2 �Fðn close to 0. Observe that for any h 2 H, ï 2 Σ, h̄ï(�x)«(h) = «
�
hï(�x)h

�
.

By applying the relations in [3, Lemme 5.2.] we get

«
�
w(ú)

�
w̄ïk

(1) = «
�
w(ú)

�
h̄ïk

(�x�1)�1n̄ïk
(�x�1)n̄�ïk

(x)n̄ïk
(�x�1)

= h̄ú(ïk)(�x�1)�1n̄3«
�
w(ú)

�
n̄�ïk

(x)n̄ïk
(�x�1)

= h̄ú(ïk)(�x�1)�1n̄3

�
«(h)�1n̄1«U(u)n̄2

�
n̄�ïk

(x)n̄ïk
(�x�1)

= «
�
hhú(ïk)(�x�1)

��1
n̄4«U(u)n̄�ïk

(x)n̄5

In the above expressions, n̄3, n̄4 and n̄5 are certain elements in N0. Since «U(u)n̄�ïk
(x) 2

«U(U), we conclude «
�
w(ú)wïk

(1)
�

= «0
�
w(ú)wïk

(1)
�
. This complete the proof of the

first assertion.
For the second assertion, observe that for any k 2 K, the section «(k)«(k�1uk)«(k)�1

is also a homomorphism on U, hence must equal « by the uniqueness.

2. Coverings of certain reductive groups over local field. Suppose F is a field of
characteristic 0 and ñ is an abelian group. Suppose G is a connected reductive group
split over F whose derived group G0 = [GÒG] is a simply connected simple Chevalley
group. Here we denote [gÒ h] = ghg�1h�1, gÒ h 2 G and denote by [GÒG] the subgroup
of G generated by f[gÒ h] : gÒ h 2 Gg. We also use G to denote the group of rational
points of G. Fix maximal split tori H and S of G0 and G respectively such that S = Hð T
for a subtorus T of S. It is not hard to show that

LEMMA 3. The group G is isomorphic to the semi-direct product G0çT as algebraic
groups, with G0 normal in G.

To discuss coverings of G, we first make the following definition. We call the data
(G0Ò T̄Ò ã) an admissible couple of extensions if

1. G0 is a central extension of G0 by ñ with the projection ƒ0: G0 ! G0;
2. T̄ is a central extension of T by ñ;
3. ã is an action of T on G0 such that

ã(t)(ò) = òÒ 8t 2 TÒ ò 2 ñ; ƒ0

�
ã(t)(g)

�
= tƒ0(g)t�1Ò 8t 2 TÒ g 2 G0(10)

The above action ã gives rise to an action of T̄ on G0 by the requirement that ñ acts on
G0 trivially.

Given an admissible couple of extensions (G0Ò T̄Ò ã), we can construct a central exten-
sion Ḡ of G by ñ as follows. Define the semi-direct product G0 ç T̄ relative to the action
ã. The multiplication is given by (g1Ò t1)(g2Ò t2) =

�
g1ã(t1)(g2)Ò t1t2

�
, for (giÒ ti) 2 G0ç T̄,

i = 1Ò 2. The group ñ is a central subgroup of G0ç T̄ via the map ò 7! (òÒ ò�1), 8ò 2 ñ. It
is then immediate that the quotient group (G0ç T̄)Ûñ is a central extension of TçG0 = G.

Conversely, suppose Ḡ is a central extension of G by ñ. Restrictions give central
extensions G0 and T̄ of G0 and T by ñ respectively. Define an action ã of T on G0 by
ã(t)(g) = «T(t)g«T(t)�1, where t 2 T, g 2 G0 and «T is a section T ! T̄. Then (T̄ÒG0Ò ã)
is an admissible couple of extensions.
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Two admissible couples of extensions (G0Ò T̄Ò ã) and (G̃0Ò T̃Ò å) are said to be equivalent
if there are equivalences of group extensions û0: G0 ! G̃0 and ûT: T̄ ! T̃ such that
û0

�
ã(t)(g)

�
= å(t)

�
û0(g)

�
. It is routine to show the following lemma.

LEMMA 4. There is a one to one correspondence between the set of equivalence
classes of central extensions Ḡ of G by ñ and the set of equivalence classes of admissible
couples (G0Ò T̄Ò ã) given by the following two inverse maps:

Φ: Ḡ 7! (G0Ò T̄Ò conjugation in Ḡ);

Φ�1: (G0Ò T̄Ò ã) 7! (G0 ç T̄)Ûñ

Now fix a central extension Ḡ of G by ñ. Suppose (G0Ò T̄Ò ã) is the associated admis-
sible couple of extensions as in the above lemma. Define the section «0 for the extension
G0 by (4), (5), (6), (7). Fix a section «T for the extension T̄. Define a section « on G by

«(gt) = «0(g)«T(t)Ò g 2 G0Ò t 2 T(11)

Denote by õ the two cocycle associated with «. We have for any g 2 G0, t 2 T

ã(t)(g) = «(tgt�1)õ(tÒ g)(12)

Then ã being a group action implies that for any gÒ g1Ò g2 2 G0, tÒ t1Ò t2 2 T,

õ(t1t2Ò g) = õ(t1Ò t2gt�1
2 )õ(t2Ò g);(13)

õ(tÒ g1g2)õ(g1Ò g2) = õ(tÒ g1)õ(tÒ g2)õ(tg1t�1Ò tg2t�1);(14)

õ(g1t1Ò g2t2) = õ(g1Ò t1g2t�1
1 )õ(t1Ò t2)õ(t1Ò g2)(15)

Denote by èï the character on T such that ã(t)
�
nï(x)

�
= nï

�
èï(t)x

�
.

LEMMA 5. Suppose ñ is finite. Fix a positive root ï. For any t 2 T, x 2 Fð,

õ
�
tÒ nï(x)

�
= 1;(16)

õ
�
tÒwï(x)

�
= 1;(17)

õ
�
tÒ hï(x)

�
= cï

�
xÒ èï(t)

��1
(18)

PROOF. By our construction of «0, õ(gÒ n) = õ(nÒ g) = 1 for any n 2 N and g 2 G0. A
straightforward calculation by (8) shows that

õ
�
twï(x)t�1Ò twï(�1)t�1

�
õ
�
wï(x)Òwï(�1)

��1
= cï

�
xÒ èï(t)

��1


Applying (14), we get for any simple root ï, any xÒ y 2 Fð,

õ
�
tÒ nï(x + y)

�
= õ

�
tÒ nï(x)

�
õ
�
tÒ nï( y)

�
(19)

õ
�
tÒ n�ï(x + y)

�
= õ

�
tÒ n�ï(x)

�
õ
�
tÒ n�ï( y)

�
(20)

õ
�
tÒwï(x)

�
= õ

�
tÒ nï(2x)

�
õ
�
tÒ n�ï(�x�1)

�
(21)

õ
�
tÒ hï(x)

�
= õ

�
tÒ nï(2x � 2)

�
õ
�
tÒ n�ï(�x�1 + 1)

�
cï
�
xÒ èï(t)

��1
(22)
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The identity (19) implies that õ
�
tÒ nï(x)

�
= õ

�
tÒ nï(xÛn)

�n
= 1 which is (16). Similarly,

(20) implies õ
�
tÒ n�ï(x)

�
= 1. Identities (21) and (22) give (17) and (18) respectively.

It is immediate by the above lemma that

õ(gÒ n) = õ(nÒ g) = 1Ò 8n 2 NÒ g 2 G

PROPOSITION 1. Denote by L(G0Ò ñ) the subgroup of H2(G0Ò ñ) consisting of elements
corresponding to bilinear Steinberg cocycles. There is an injective homomorphism

Φ: H2(GÒ ñ) !̈ H2(G0Ò ñ) ð H2(TÒ ñ)(23)

whose image contains L(G0Ò ñ) ð H2(TÒ ñ).

PROOF. Lemma 4 gives the map Φ in the proposition. Once we fix central extensions
T̄ and G0, the action of T on G0 is uniquely determined by (12), (14) and Lemma 5. So
Φ is injective.

We now show the image of Φ contains L(GÒ ñ) ð H2(TÒ ñ). This is equivalent to
constructing a group action ã of T on G0 satisfying (10) if we are given a covering G0

whose corresponding Steinberg cocycle is bilinear.
Define the action ã of T on N0

ï = fn̄ï(x) : ï 2 ΣÒ x 2 Fg in the obvious way:
ã(t)

�
n̄ï(x)

�
= n̄ï

�
èï(t)x

�
. Since Nï, ï 2 Σ, generate G0, we can extend ã to TðG0 if the

relations (A), (B), (B0), (C) and (3) still hold after we replace each n̄ï(x), by n̄ï
�
èï(t)x

�
,

ï 2 Σ, x 2 F. We then need to check (10). All the above can be seen by straightforward
calculations.

We remark that Lemma 5 and hence Proposition 1 are still true even if ñ is infinite.
However, we do not need it in the following discussion.

In the rest of this section we suppose F is a completion of a number field containing
the group ñr of all n-th roots of unity. Then G becomes a topological group. It is not hard
to see that in Lemma 4, Φ and Φ�1 send topological extensions to topological extensions,
so Proposition 1 is true for topological extensions. By [5, Theorem 3.1], a topological
Steinberg cocycle on F valued in a group of roots of unity in F is always bilinear. So we
have

COROLLARY 1. Suppose F is a p-adic field containing the group ñn of n-th roots of
unity. There is one and only one central extension Ḡ of G by ñn such that its restrictions
to G0 and T are the given central extensions G0 and T̄ respectively, both by ñn.

Denote by K the subgroup of G generated by G0(Ó) and T(Ó). Then K is a maximal
compact subgroup of G. Suppose Ḡ is a topological covering of G.

COROLLARY 2. There is a section «T: T ! T̄ such that the section « defined by (11)
is an isomorphism on an open subgroup U, both algebraically and topologically. Fur-
thermore, «(U) is normal in K̄.

https://doi.org/10.4153/CMB-1998-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-064-1


494 HENG SUN

PROOF. By Lemma 1, there is an open subgroup U of Ḡ and a section «U: U ! Ū
which is also a homomorphism. Extend «UjT\U to a section «T on T. It is then not hard
to see that «T satisfies all the properties in the corollary.

It follows from the above corollary that for any open normal subgroup V of K contained
in U, «(V) is normal in K̄.

3. Global metaplectic groups. Supposeñ is a finite abelian group and F is a number
field. Denote by A the ring of adeles over F. Suppose G is a connected reductive group
split over F whose derived group G0 is a connected, simply connected simple Chevalley
group. As in Section 2, denote by S = H ð T the maximal split torus in G and write
G = G0 ç T. We consider metaplectic coverings Ḡ(A) of G(A) by ñ. By definition, they
are central extensions of G(A) by ñ which split over G(F).

If L is a subgroup of G(A) we denote by L̄ the inverse image under the natural projection
Ḡ(A) ! G(A). By [4, I.1.2. Remark], the following properties on the covering G(A) are
satisfied:

1. For any non-archimedean place v, there is an open subgroup Uv where the covering
G(Fv) splits.

2. For almost all places v, the above Uv can be chosen to be Kv.
We then can choose a section «T: T(A) ! T(A) with the following property. Denote
«TÒv = «TjT(Fv). The following two conditions must be satisfied:

1. For any non-archimedean place v, there is an open subgroup UTÒv of T(Fv) on
which «TÒv is an isomorphism both algebraically and topologically;

2. For almost all places v, the above UTÒv is T(Óv);
3. The map «T jT(F) is a homomorphism.

The existence of such « is obvious.
Denote by V a finite set of places containing all archimedean ones such that for any

v Û2 V, the residue class field of Fv has at least four elements and v is relatively prime to
the order of the group of all roots of unity in F. By [5, Lemma 11.3], for any v Û2 V, Ḡ
splits over G0(Óv). Since [G0(Óv)ÒG0(Óv)] = G0(Óv), there is a unique homomorphism
îv: G0(Óv) ! G0(Óv). Denote ‘ = fw(ú) : ú 2 Wg which is a set of representatives of
the Weyl group W.

LEMMA 6. For v Û2 V, the homomorphism îv defined above equals «v on H(Óv),
N(Fv) and ‘.

PROOF. We need to check îv = «v on Hï(Óv), Nï(Fv) and wï (1) for any simple root
ï. Then everything boils down to the case of SL(2). The calculations are straightforward
by the Kubota’s construction of îv (refer to [2, Theorem 2]).

We extend the îv to a section, which we still denote by îv, on G(Fv) by the conditions
îv(gt) = îv(g)«v(t), for any g 2 G0(Óv) and t 2 T(Óv); îv = «v on G(Fv) � G(Óv).

COROLLARY 3. For v Û2 V, the section îv defined above is a Borel section and equals
«v on S(Óv), N(Fv), ‘ and G(Fv) � G(Óv).
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Denote KŁ
v = îv(Kv). Denote by

Q
v G(Fv)[KŁ

v ] the restrictive direct product of G(Fv)
relative to KŁ

v (v Û2 V). It is easy to see the following two groups are isomorphic:

G(A) ≤
Y
v

G(Fv)[KŁ
v ]ÛM

where M is the subgroup generated by the elements of the form (   Ò òÒ    Ò ò�1Ò   ),
ò 2 ñ, with ò and ò�1 at the v-th place and the w-th place respectively. For simplicity,
we identify the two groups.

We define the global section « for the covering by «(g) =
Q

v2V «v(gv) Ð
Q

vÛ2V îv(gv)
for g =

Q
v gv 2 G(A). Remark that if F is a totally imaginary then « is an isomorphism

on an open subgroup of G(A).
Denote by õ the two cocycle associated with the section «. By Corollary 3, we get

COROLLARY 4. The global cocycle õ equals
Q

v õv on S(A) ð S(A) where each õv is
the local two cocycle associated with the section «v for the local covering G(Fv).

Fix a long root ï and call the function õ
�
hï(Ð)Ò hï(Ð)

�
on Að ð Að the Steinberg

cocycle for G(A). For each natural number n such that F contains the group ñn of all
n-th roots of unity, we denote by nG0(A) the covering of G0(A) given by the Steinberg
cocycle (ÐÒ Ð) =

Q
v(ÐÒ Ð)v , where (ÐÒ Ð)v is the n-th Hilbert symbol. The following lemma is

a variation of [3, Théorème 11.3].

LEMMA 7. For any metaplectic covering of G0(A) by a finite abelian groupñ, there are
a natural number n and injective homomorphisms ûñ:ñn ! ñ and û: nG0(A) ! G0(A)
such that the following diagram commutes:

1 ��! ñn ��! nG0(A) ��! G0(A) ��! 1???yûñ

???yû wwww
1 ��! ñ ��! G0(A) ��! G0(A) ��! 1

The number n is uniquely determined.

Applying the above lemma to our reductive group G, we get

COROLLARY 5. For any metaplectic covering G(A) of G(A) by a finite abelian group
ñ, there is a uniquely determined positive integer n such that the restriction of G(A) to
G0(A) is a trivial covering of nG0(A).

We summarize the results in this note in the following theorem.

THEOREM 1. Suppose ñ is a finite abelian group and G is a connected reductive
group split over a number field F. Assume its derived group G0 is simply connected
simple Chevalley group. Then any metaplectic covering G(A) of G(A) by ñ is given by
(up to isomorphisms) a positive integer n and a metaplectic covering T(A) of T(A) by
ñ such that the Steinberg symbol for G(A) is given by the product

Q
v(ÐÒ Ð)v of local n-th

Hilbert symbols.
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For each place v, define a section «0Òv: G0(Fv) ! G0(Fv) by (4), (5), (6), (7). We can
choose a section «TÒv: T(Fv) ! T(Fv) such that if «v: G(Fv) ! G(Fv) defined as (11),
then for any non-archimedean place v, «v is an isomorphism on an open subgroup Uv of
G(Fv) and its image is normal in Kv.

There is a global section «: G(A) ! G(A) such that
(1) for any non-archimedean v, «jUv = «vjUv ;
(2) «jN(A) =

Q
v «vjN(Fv) is a homomorphism;

(3) «jS(A) =
Q

v «vjS(Fv);
(4) «j‘ =

Q
v «vj‘.

We can also give the explicit construction of an isomorphism from G(F) into G(A) as
follows. Define a map † on G(F) by

†(g) = «(n)«(h)«(w)«(n0)Ò g = nhwn0 2 G(F)Ò nÒ n0 2 N(F)Ò h 2 H(F)Òw 2 ‘

By the above theorem, « =
Q

v «v on H(A). By the reciprocity law for the Hilbert symbol,
« is a homomorphism on H(F) and hence on G0(F). It then follows from our construction
of «T that we have the following corollary.

COROLLARY 6. The map † is a homomorphism from G(F) into G(A).

ACKNOWLEDGMENT. This note is a part of my Ph.D. thesis under the supervision
of J. Arthur, whose insight and guidance are greatly appreciated. I would like to thank
P. Deligne who pointed to me that the homomorphism in Proposition 1 is not neces-
sarily surjective, and J. Adams, W. Banks, O. Bucicovicsh, G. Prasad, B. Roberts and
V. Patankar for many useful conversations. In particular, G. Prasad gave me many useful
suggestions. The note is inspired by [1].

REFERENCES

1. D. A. Kazhdan and S. J. Patterson, Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59(1984),
35–142.

2. T. Kubota, On automorphic functions and the reciprocity law in a number field. Kinokuniya Book-Store
Co., Ltd., Tokyo, 1969.

3. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École
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