
Bull. Aust. Math. Soc. 84 (2011), 137–152
doi:10.1017/S0004972711002280

BI-MAGIC AND OTHER GENERALIZATIONS OF
SUPER EDGE-MAGIC LABELINGS

S. C. LÓPEZ ˛, F. A. MUNTANER-BATLE and M. RIUS-FONT

(Received 27 November 2010)

Dedicated to the memory of Professor Gary Bloom

Abstract

In this paper, we use the product ⊗h in order to study super edge-magic labelings, bi-magic labelings
and optimal k-equitable labelings. We establish, with the help of the product ⊗h , new relations between
super edge-magic labelings and optimal k-equitable labelings and between super edge-magic labelings
and edge bi-magic labelings. We also introduce new families of graphs that are inspired by the family of
generalized Petersen graphs. The concepts of super bi-magic and r -magic labelings are also introduced
and discussed, and open problems are proposed for future research.
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1. Introduction

For most of the graph-theory terminology and notation utilized in this paper we follow
either [5] or [14], unless otherwise specified. In particular we may allow graphs to
have loops; however no multiple edges will be allowed unless we are in Section 4.
Let G = (V, E) be a graph. We say that a graph G is a (p, q)-graph if |V | = p and
|E | = q. Kotzig and Rosa introduced in [10] the concept of edge-magic labeling. A
bijective function f : V ∪ E −→ {i}p+q

i=1 is an edge-magic labeling of G if there exists
an integer k such that the sum f (x)+ f (xy)+ f (y)= k for all xy ∈ E . In 1998,
Enomoto et al. [6] defined the concepts of super edge-magic graphs and super edge-
magic labelings. A super edge-magic labeling is an edge-magic labeling with the extra
condition that f (V )= {i}pi=1. It is worthwhile mentioning that an equivalent labeling
had already appeared in the literature in 1991 under the name of strongly indexable
labeling [1]. A graph that admits a (super) edge-magic labeling is called a (super)
edge-magic graph.
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138 S. C. López et al. [2]

In 2000, Figueroa et al. [7] provided a very useful characterization of super edge-
magic graphs that we state in the next lemma.

LEMMA 1.1. A (p, q)-graph G is super edge-magic if and only if there is a bijective
function f̄ : V −→ {i}pi=1 such that the set SE = { f̄ (u)+ f̄ (v) : uv ∈ E} is a set of q
consecutive integers.

In [8], Figueroa et al. introduced the concept of super edge-magic digraph as
follows: a digraph D = (V, E) is super edge-magic if its underlying graph is super
edge-magic. In general, we say that a digraph D admits a labeling f if its underlying
graph admits the labeling f . In this paper we will use super edge-magic digraphs
in order to achieve our goals. In [4] Bloom and Ruiz introduced a generalization of
graceful labelings (see [9] for a formal definition of graceful labeling), which they
called k-equitable labelings. Let G = (V, E) be a (p, q)-graph and let g : V −→ Z
be an injective function with the property that the new function h : E −→ N defined
by the rule h(uv)= |g(u)− g(v)| for all uv ∈ E assigns the same integer to exactly
k edges. Then g is said to be a k-equitable labeling and G a k-equitable graph. In
[4] the authors called a k-equitable labeling, optimal, when g assigns all the elements
of the set {i}pi=1 to the elements of V . Both Bloom and Wojciechowski [15, 16], and
independently Barrientos [2], proved that Cn is optimal k-equitable if and only if k is
a proper divisor of n (k 6= n).

From now on, we will use the notation und(D) in order to denote the underlying
graph of a digraph D. At this point let D = (V, E) with V ⊂ N be any digraph. We
define the adjacency matrix of D, denoted by A(D), to be the matrix such that the
rows and columns are named after the vertices of D in increasing order, and an entry
(i, j) of the matrix is 1 if and only if (i, j) ∈ E . Otherwise, the entry (i, j) is 0.

In [8], Figueroa et al. defined the following product: let D = (V, E) be a digraph
with adjacency matrix A(D)= (ai, j ) and let 0 = {Fi }

m
i=1 be a family of m digraphs

with the same set of vertices V ′. Assume that h : E −→ 0 is any function that
assigns elements of 0 to the arcs of D. Then the digraph D ⊗h 0 is defined by the
following:

(1) V (D ⊗h 0)= V × V ′;
(2) ((a1, b1), (a2, b2)) ∈ E(D ⊗h 0) ⇐⇒ [(a1, a2) ∈ E(D) ∧ (b1, b2) ∈

E(h(a1, a2))].

An alternative way of defining the same product is through adjacency matrices, since
we can obtain the adjacency matrix of D ⊗h 0 as follows.

(1) If ai, j = 0 then ai, j is multiplied by the p′ × p′ 0-square matrix.
(2) If ai, j = 1 then ai, j is multiplied by A(h(i, j))where A(h(i, j)) is the adjacency

matrix of the digraph h(i, j).

Note that when h is constant, D ⊗h 0 is the Kronecker product. From now on, let
Sn denote the set of all super edge-magic 1-regular labeled digraphs of order n where
each vertex takes the name of the label that has been assigned to it. We also denote by
6n the set of all 1-regular digraphs of order n.
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[3] Bi-magic and other generalizations of super edge-magic labelings 139

The following results were introduced in [8].

THEOREM 1.2. Let D be a (super) edge-magic digraph and let h : E(D)−→ Sn be
any function. Then und(D ⊗h Sn) is (super) edge-magic.

THEOREM 1.3. Let
−→
Cm be a strong orientation of Cm and let h : E(

−→
Cm)−→ Sn be

any constant function. Then und(
−→
Cm ⊗h Sn)= gcd(m, n)Clcm[m,n].

THEOREM 1.4. Let F be an acyclic graph. Consider any function h : E(
−→
F )−→6n .

Then und(
−→
F ⊗h 6n)= nF.

Using this product, in the original paper, Figueroa et al. were able to find
exponential lower bounds for the number of nonisomorphic labelings of different
types, and different families of graphs.

2. Generalizations of generalized Petersen graphs and the ⊗h-product

The generalized Petersen graph P(n; k), n ≥ 3 and 1≤ k ≤ d(n − 1)/2e, consists
of an outer n-cycle x0x1 · · · xn−1x0, a set of n-spokes xi yi , 0≤ i ≤ n − 1, and n inner
edges of the form yi yi+nk , where+n denotes the sum of two elements in the group Zn .
In this section we propose two possible generalizations of this family, one replacing
the k step of the inner edges by a permutation and another one, increasing the number
of levels. We denote by Sn the set of permutations of {0, 1, . . . , n − 1}.

Let n ≥ 3 and let π ∈Sn . The first generalization of a generalized Petersen graph
considered in this paper GGP(n; π), consists of an outer n-cycle x0x1 · · · xn−1x0,
a set of n-spokes xi yi , 0≤ i ≤ n − 1 and n inner edges defined by yi yπ(i), i =
0, . . . , n − 1. Notice that, if we consider the permutation π defined by π(i)= i +n k
then GGP(n; π)= P(n; k).

Let m ≥ 2, n ≥ 3 and π2, . . . , πm ∈Sn . The second generalization of a
generalized Petersen graph considered in this paper GGP(n; π2, . . . , πm) is a graph
with vertex set

⋃m
j=1{x

j
i : i = 0, . . . , n − 1}, an outer n-cycle x1

0 x1
1 · · · x

1
n−1x1

0 , and

inner edges x j−1
i x j

i and x j
i x j
π j (i)

, for j = 2, . . . , m, and i = 0, . . . , n − 1. Notice
that, GGP(n; π2, . . . , πm)= Pm × Cn , when π j (i)= i +n 1 for every j = 2, . . . , m.

The graphs GGP(9; π) and GGP(5; π2, π3) are shown in Figure 1, where
π ∈S9, π2, π3 ∈S5 and π = (0, 1, 8, 3, 4, 2, 6, 7, 5), π2 = (0, 2, 4, 1, 3) and
π3(i)= i +5 1.

Let
−−→
L Pm be the digraph obtained from a path of m-vertices, in such a way that we

can travel from one leaf to the other following the directions of the arrows, with a loop
attached at each vertex.

PROPOSITION 2.1. Let
−→
Cn be a strong connected digraph obtained from a cycle of

order n where n is odd. Then

und(
−−→
L Pm ⊗

−→
Cn)= Pm × Cn.
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140 S. C. López et al. [4]

FIGURE 1. The graphs GGP(9; π) and GGP(5; π2, π3).

PROOF. By definition,

V (
−−→
L Pm ⊗

−→
Cn)= V (Pm × Cn).

Let a0a1 · · · am−1 and b0b1 · · · bn−1 be directed paths respectively in
−−→
L Pm and

−→
Cn .

Then ((ai , b j ), (ai ′, b j ′)) is an arc in
−−→
L Pm ⊗

−→
Cn if and only if (ai , ai ′) ∈ E(

−−→
L Pm)

and j ′ = j +n 1. That is, all arcs are of the form either ((ai , b j ), (ai , b j+n1)) or
((ai , b j ), (ai+m1, b j+n1)). 2

From now on, let us denote by σk ∈Sn the permutation defined by σk(i)= i +n k.

PROPOSITION 2.2. Let n be an odd integer and let π ∈Sn . Assume that, for some
h : E(

−−→
L P2)−→ Sn , we obtain

und(
−−→
L P2 ⊗h Sn)= GGP(n; π).

Then there exists h′ : E(
−−→
L Pm)−→ Sn such that

und(
−−→
L Pm ⊗h′ Sn)= GGP

(
n;

(m−2) times︷ ︸︸ ︷
σ1, . . . , σ1, π

)
.

PROOF. Let a0a1 · · · am−1 and b0b1 be the directed paths induced respectively in
−−→
L Pm

and
−−→
L P2. Let h′ : E(

−−→
L Pm)−→ Sn be the function defined by

h′(e)=


h(b1b1) if e = am−1am−1,

h(b0b1) if e = am−2am−1,

h(b0b0) otherwise.

Then

und(
−−→
L Pm ⊗h′ Sn)= GGP

(
n;

(m−2) times︷ ︸︸ ︷
σ1, . . . , σ1, π

)
.

This concludes the proof. 2
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[5] Bi-magic and other generalizations of super edge-magic labelings 141

FIGURE 2. The digraph
−−→
L P3.

We can introduce a slight modification in h′ in order to construct, for each l < m,
GGP(n; π2, . . . , πm), where πi = σ1 for i 6= l and πl = π .

PROPOSITION 2.3. Let n be an odd integer. Assume that, for some h : E(
−−→
L P2)−→

Sn , we obtain
und(
−−→
L P2 ⊗h Sn)= GGP(n; π).

Then for each l, 1< l ≤ m, there exists h′l : E(
−−→
L Pm)−→ Sn such that

und(
−−→
L Pm ⊗h′l

Sn)= GGP(n; π2, . . . , πm),

where πi = σ1 for i 6= l and πl = π.

PROOF. The result follows from Proposition 2.2 when l = m. Hence, we only need
to consider the case when l < m. Let a0a1 · · · am−1 and b0b1 be the directed paths
induced respectively in

−−→
L Pm and

−−→
L P2. Assume that 0 ∈ Sn and denote by

←−
0 the

oriented digraph obtained from 0 by reversing all its arcs. Let h′l : E(
−−→
L Pm)−→ Sn be

the function defined by

h′l(e)=



h(b1b1) if e = al−1al−1,

h(b0b1) if e = al−2al−1,

h(b0b0) if e = al−2al−2,
←−−−−
h(b0b1) if e = al−1al ,

h(b0b0) otherwise.

Then
und(
−−→
L Pm ⊗h′l

Sn)= GGP(n; π2, . . . , πm),

where πi = σ1 for i 6= l and πl = π . 2

Let x0x1 · · · xm−1x0 be the outer cycle of P(m; k)with spokes xi yi , 0≤ i ≤ m − 1,
and inner edges yi yi+mk . We denote by

−−−−−→
P(m; k) the oriented graph obtained from

P(m; k) by orienting the edges of the outer cycle from xi to xi+m1, the inner edges
from yi to yi+mk and the spokes from the outer cycle to the inner one.

PROPOSITION 2.4. Let m, n be two positive integers such that gcd(m, n)= 1 with n
odd. Then

und(
−−−−−→
P(m; k)⊗

−→
Cn)= P(mn; k + mr),

where r is the smallest positive integer such that k +n mr = 1.
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142 S. C. López et al. [6]

PROOF. Let v0v1 · · · vn−1v0 be the cycle
−→
Cn , where each vertex is identified with the

corresponding label of a super edge-magic labeling of
−→
Cn . Then

V (
−−−−−→
P(m; k)⊗

−→
Cn)= {(xi , v j ), (yi , v j )}

j=0,...,n−1
i=0,...,m−1

and

E(
−−−−−→
P(m; k)⊗

−→
Cn)= {((xi , v j ), (xi+m1, v j+n1)), ((yi , v j ), (yi+mk, v j+n1)),

((xi , v j ), (yi , v j+n1))}
j=0,...,n−1
i=0,...,m−1.

By Theorem 1.3, the digraph induced by the vertices of the form (xi , v j ) is a
cycle of length mn with a strong orientation. By the definition of the Kronecker
product, we have mn spokes of the form ((xi , v j ), (yi , v j+n1)) and inner edges of
the form ((yi , v j ), (yi+mk, v j+n1)). Let us see now that d((xi , v j−n1), (xi+mk, v j ))=

k + mr , where r is the smallest positive integer such that k +n mr = 1. By the
definition of

−−−−−→
P(m; k) there is a directed path of length k from xi to xi+k = k. Thus

d((xi , v j ), (xi , v j+nm))= m and hence

d((xi , v j−1), (xi+k, v j )) = d((xi , v j−1), (xi+k, v j−1+k))

+ d((xi+k, v j−1+k), (xi+k, v j ))

= k + d((xi+k, v j−mr ), (xi+k, v j ))= k + mr.

This completes the proof. 2

2.1. (Super) edge-magic GGP. Since every digraph
−−→
L Pm admits a super edge-

magic labeling (just label the vertices of the path following the arrows in increasing
order) we can apply Theorem 1.2 to extend the class of graphs that are super edge-
magic, by adding every GGP that can be obtained from the ⊗h-product of the

−−→
L Pm

with Sn . For instance, next we propose an alternative proof for the following theorem
found in [6, 7].

THEOREM 2.5 [6, 7]. Let m, n be two integers, n odd. Then Pm × Cn is super edge-
magic.

PROOF. Since, by Theorem 1.2
−−→
L Pm ⊗

−→
Cn is super edge-magic and by Proposition 2.1

und(
−−→
L Pm ⊗

−→
Cn)= Pm × Cn , the result follows. 2

THEOREM 2.6. The Petersen graph is super edge-magic. Moreover we have the
following results.

(i) For each m ≥ 2, 1< l ≤ m and 1≤ k ≤ 2, the graph GGP(5; π2, . . . , πm),
where πi = σ1 for i 6= l and πl = σk , is super edge-magic.

(ii) For each 1≤ k ≤ 2, the graph P(5n; k + 5r) is super edge-magic, where r is the
smallest positive integer such that k +n 5r = 1.
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[7] Bi-magic and other generalizations of super edge-magic labelings 143

PROOF. Let a0a1 be a directed path in
−−→
L P2. Let

−→
C5 be the directed cycle defined by

1→ 4→ 2→ 5→ 3→ 1 and
−→
C1 ∪

−→
C4 the digraph 1→ 5→ 3→ 4→ 1 with a loop

labeled 2. We can obtain the Petersen graph from
−−→
L P2 ⊗h {

−→
C5,
−→
C1 ∪

−→
C4}, where h is

defined by h(a0a0)= h(a1a1)=
−→
C5 and h(a0a1)=

−→
C1 ∪

−→
C4. By Theorem 2.5 P(5; 1)

is super edge-magic. Thus, applying Proposition 2.3 together with Theorem 1.2, we
obtain (i). Similarly, by Proposition 2.4 and Theorem 1.2 we obtain (ii). 2

3. Edge bi-magic

A (p, q)-graph G = (V, E) is said to have an edge bi-magic labeling if there
exists a bijective function f : V ∪ E −→ {i}p+q

i=1 such that for each edge uv ∈ E ,
f (u)+ f (uv)+ f (v) ∈ {k1, k2}, where k1, k2 are two distinct constants. In this case,
the graph is said to be edge bi-magic. If we add the extra condition that f (V )= {i}pi=1
then we say that f is a super edge bi-magic labeling and G a super edge bi-magic
graph. In this section, we study the complete graphs that are edge bi-magic and we
introduce new classes of (super) edge bi-magic graphs. In particular, we generalize
the class of edge bi-magic graphs that was given by Rajan et al. in [11]. We also prove
that the product introduced in [8] is useful for providing new families of edge bi-magic
graphs.

The next theorem gives necessary conditions for a complete graph to be edge bi-
magic, provided that the magic constants are of the same parity. It is similar to [13,
Theorem 2.11]. See also [12].

THEOREM 3.1. Suppose that K p has an edge bi-magic labeling with magic constants
k1, k2 such that k1 + k2 is an even integer. The number ν of vertices that receive even
labels satisfies the following condition.

(i) If p ≡ 0 or 3 (mod 4) and k1 is even then ν = 1
2 (p − 1±

√
p + 1).

(ii) If p ≡ 1 or 2 (mod 4) and k1 is even then ν = 1
2 (p − 1±

√
p − 1).

(iii) If p ≡ 0 or 3 (mod 4) and k1 is odd then ν = 1
2 (p + 1±

√
p + 1).

(iv) If p ≡ 1 or 2 (mod 4) and k1 is odd then ν = 1
2 (p + 1±

√
p + 1).

PROOF. The proof is similar to the one given [13, Theorem 2.11]. It is only relevant
to note that k1 and k2 are of the same parity. 2

LEMMA 3.2. Let G be a super edge bi-magic graph of order p > 4 without loops.
Then its size is at most 4p − 10.

PROOF. Let G be a super edge bi-magic graph of order p > 4 without loops and let
f be a super edge bi-magic labeling of G. Consider the set SE = { f (u)+ f (v) : uv ∈
E(G)}. Then if we allow repetitions in SE we have that

SE ⊂ {3, 4, . . . , 2p − 1} ∪ {5, . . . , 2p − 3}.

Therefore, the size of a super edge bi-magic graph without loops is at most 4p − 10. 2
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FIGURE 3. A super edge bi-magic labeling of K5.

REMARK 3.3. This upper bound is tight. Figure 3 shows an edge bi-magic labeling
of K5. Using Lemma 3.2 we obtain that the graph Kn is not super edge bi-magic for
n > 5.

The next lemma gives a characterization of super edge bi-magic graphs in terms of
arithmetic progressions. In some sense, it is a similar result to Lemma 1.1 for the case
of super edge-magic labelings given by Figueroa et al. in [7].

LEMMA 3.4. A graph labeling of G is super edge bi-magic if and only if the set of
sum labels of adjacent vertices (including repetitions) can be partitioned into two sets
S and S′ and there exists an integer r such that S ∪ (S′ − r) is a set of consecutive
integers.

PROOF. In order to prove the necessity assume that there exists a super edge bi-
magic labeling of G. Let k and k′ be the two magic constants and let S (respectively
S′) be the sums of the labels of adjacent vertices with magic sum k (respectively
k′). Thus (k − S) ∪ (k′ − S′) forms a set of consecutive integers (the labels of the
edges). Hence, so do the sets (S − k) ∪ (S′ − k′) and S ∪ (S′ − (k′ − k)). Let
us prove the converse. Let S ∪ (S′ − r)= {a1 < · · ·< aq} and assume first that
a1 ∈ S. We have that ai + p + q − i + 1= k is constant. For each 1≤ i ≤ q we
assign to the corresponding edge the label p + q − i + 1. Thus, for each ai ∈ S we
have ai + p + q − i + 1= k, whereas if ai ∈ S′ − r we obtain that ai + r + p + q −
i + 1= k + r = k′. We proceed similarly in case a1 + r ∈ S′. 2

3.1. Some constructions of (super) edge bi-magic graphs. Let G = (V, E) be a
graph and let S ⊂ V . We denote by G ∗S u the graph obtained from G by adding a
new vertex u and the edge set {uv : v ∈ S} and by G ∧S {ui }

|S|
i=1 the graph obtained

from G by adding a leaf vi ui to each vertex of vi ∈ S. Furthermore, in general we
write G ∧S {u

j
i }

j=1,...,ni
i=1,...|S| to denote the graph obtained from G by adding leaves vi u

j
i ,

j = 1, . . . , ni to each vertex of vi ∈ S.
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[9] Bi-magic and other generalizations of super edge-magic labelings 145

PROPOSITION 3.5. Let G = (V, E) be a (p, q)-graph with a (super) edge-magic
labeling f . Let S ⊂ V be a subset of vertices such that { f (v)}v∈S is a set of
consecutive integers. Then the graph G ∗S u is (super) edge bi-magic.

PROOF. Let G ∗S u = (V ′, E ′) and assume that s =max{ f (x) | x ∈ S}. We consider
the labeling f ′ : V ′ ∪ E ′ −→ {i}p+q+|S|+1

i=1 such that

f ′(x)=


f (x)+ 1 if x ∈ V ∪ E,

1 if x = u,

p + q + 2+ i if x = uv, v ∈ S, and f (v)= s − i.

Then f ′ is a (super) edge bi-magic labeling of G ∗S u = (V ′, E ′)with magic constants
k1 = k + 3 and k2 = p + q + s + 4, where k is the magic sum for f . 2

The graph PY (n) is the graph obtained from the cylinder C3 × Pn by adding a new
vertex and joining it to the three vertices of the cycle on the top.

COROLLARY 3.6 [11, Theorem 1]. The graph PY (n) is edge bi-magic.

PROOF. Recall that und(
−−→
L Pn ⊗

−→
C3)= C3 × Pn . In particular, it admits a (super)

edge-magic labeling, with the vertices of the cycle on the top labeled with {1, 2, 3}.
Thus, the construction of Proposition 3.5 produces an edge bi-magic labeling
of PY (n). 2

PROPOSITION 3.7. Let G = (V, E) be a (p, q)-graph with a (super) edge-magic
labeling f . Let S be a subset of vertices such that { f (v)}v∈S is a set of consecutive
integers and |S| is odd. Then the graph G ∧S {ui }

|S|
i=1 is (super) edge bi-magic.

PROOF. Let G ∧S {ui }
|S|
i=1 = (V

′, E ′) and assume that s =max{ f (x) | x ∈ S} and
that the new edges are vi ui where f (vi )= s − i + 1. We consider the labeling
f ′ : V ′ ∪ E ′ −→ {i}p+q+|S|+1

i=1 such that

f ′(x)=



f (x)+ |S| if x ∈ V ∪ E,
|S| − 1

2
+

i + 1
2

if x = ui and i is odd,

i

2
if x = ui and i is even,

p + q + |S| + l if x = vi ui and i = 2l − 1,

p + q + |S| +
|S| + 1

2
+ l if x = vi ui and i = 2l.

Then f ′ is a (super) edge bi-magic labeling of G ∧S {ui }
|S|
i=1 with magic constants

k1 = k + 3|S| and k2 = p + q + s + (5|S| + 3l)/2, where k is the magic sum of f . 2
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PROPOSITION 3.8. Let G = (V, E) be a (p, q)-graph with a (super) edge-magic
labeling f . Let S be a subset of vertices such that f (vi )= s − d(i − 1) for each vi ∈ S
with d > 1. Then the graph G ∧S {u

j
i }

j=1,...,ni
i=1,...|S| , where n2l−1 = d − 1 and n2l = 1, is

(super) edge bi-magic.

PROOF. Let G ∧S {u
j
i }

j=1,...,ni
i=1,...,|S| = (V

′, E ′). Let r = (d − 1)d|S|/2e + b|S|/2c. We

consider the labeling f ′ : V ′ ∪ E ′ −→ {i}p+q+2r
i=1 such that

f ′(x)=



f (x)+ r if x ∈ V ∪ E,

(l − 1)d + j if x = u j
2l−1,

ld if x = u1
2l ,

p + q + r + ld − j if x = v2l−1u j
2l−1,

p + q + r + ld if x = v2lu1
2l .

Then f ′ is a (super) edge bi-magic labeling of G ∧S {u
j
i }

j=1,...,ni
i=1,...,|S| with magic constants

k1 = k + 3r and k2 = p + q + d + 2r + s, where k is the magic sum of f . 2

3.2. (Super) edge bi-magic graphs obtained using ⊗h-product. We present a
simplified proof of the main result found in [8]. Recall that Sn denotes the set of
all super edge-magic 1-regular labeled digraphs of odd order n.

THEOREM 3.9. Let D be a (super) edge-magic digraph and let h : E(D)→ Sn be
any function. Then the graph und(D ⊗h Sn) is (super) edge-magic.

PROOF. As in the original paper, we rename the vertices of D and each element of
Sn after the labels of their corresponding edge-magic and super edge-magic labelings
respectively. We also define the labels as in [8, Theorem 3.1].

(1) If (i, j) ∈ V (D ⊗h Sn) we assign to the vertex the label: n(i − 1)+ j .
(2) If ((i, j), (i ′, j ′)) ∈ E(D ⊗h Sn) we assign to the arc the label: n(e − 1)+

(3n + 3)/2− ( j + j ′), where e is the label of (i, i ′) in D.

Notice that, since each element 0 of Sn is labeled with a super edge-magic labeling,
by [8, Corollary 1.1] we have

{(3n + 3)/2− ( j + j ′) : ( j, j ′) ∈ E(0)} = {1, 2, . . . , n}.

Thus, the set of labels in D ⊗h Sn covers all elements in {1, 2, . . . , n(|V (D)| +
|E(D)|)}. Moreover, for each arc ((i, j)(i ′, j ′)) ∈ E(D ⊗h Sn), coming from an arc
e = (i, i ′) ∈ E(D) and an arc ( j, j ′) ∈ E(h(i, i ′)), the sum of labels is constant and
equal to

n(i + i ′ + e − 3)+ (3n + 3)/2. (3.1)

That is, n(val f − 3)+ (3n + 3)/2. We also notice that if the digraph D is super
edge-magic then the vertices of D ⊗h Sn receive the smallest labels. 2
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Using this proof we can extend the previous result to the case of edge bi-magic
digraphs.

THEOREM 3.10. Let D be a (super) edge bi-magic digraph and let h : E(D)→ Sn
be any function. Then the graph und(D ⊗h Sn) is (super) edge bi-magic.

PROOF. Let k1 and k2 be the valences for a (super) edge bi-magic labeling of D. From
the proof of Theorem 1.2, it is clear that for each arc ((i, j), (i ′, j ′)) ∈ E(D ⊗h Sn),
coming from an arc (i, i ′) in D labeled with e, the induced sum (3.1) belongs to
{n(k1 − 3)+ (3n + 3)/2, n(k2 − 3)+ (3n + 3)/2}. 2

4. k-equitable

In this section, we use the ⊗h-product in order to construct k-equitable labelings
of new families of graphs. In this case, the input elements are k-equitable digraphs
and 1-regular super edge-magic digraphs. However, instead of applying the product
directly, we have to use what we call the rotation of a super edge-magic digraph.

4.1. Rotations of super edge-magic digraphs. Let M = (ai, j ) be a square matrix
of order n and let M R

= (aR
i, j ) be the matrix obtained from M where aR

i, j = an+1− j,i .

Graphically this corresponds to a rotation of the matrix by π/2 radians clockwise (see
Example 4.1). We say that M R is the rotation of the matrix M . Note that the digraph
corresponding to M R may contain loops and double arcs. Therefore, in this section
we may work with digraphs for which their underlying graphs contain multiple edges.
Recall that if we write Sn then n is odd.

EXAMPLE 4.1. A matrix M and its rotation M R

M =

0 1 0
0 0 1
1 0 0

→ M R
=

1 0 0
0 0 1
0 1 0

.
LEMMA 4.2. Let D ∈ Sn , and assume that each vertex is named after the label of a
super edge-magic labeling. Let A = (ai, j ) be its adjacency matrix. If aR

i, j = 1 then

|i − j | ≤
n − 1

2
.

PROOF. By [8, Corollary 1.1], if A = (ai, j ) is the adjacency matrix of D ∈ Sn and
ai, j = 1 then (n + 3)/2≤ i + j ≤ (3n + 1)/2. Hence, since aR

i, j = an+1− j,i , if aR
i, j =

1 it follows that (n + 3)/2≤ n + 1− j + i ≤ (3n + 1)/2. Therefore, −(n − 1)/2≤
i − j ≤ (n − 1)/2 and we obtain the result. 2

A digraph S is said to be a rotation super edge-magic of order n if its adjacency
matrix is the rotation matrix of the adjacency matrix of a super edge-magic 1-regular
digraph of order n. We denote by RSn the set of all digraphs that are rotation super
edge-magic of order n. The following corollaries are easy observations.
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COROLLARY 4.3. Let S be a digraph in RSn and let k be an integer. If |k| ≤
(n − 1)/2 then there exists a unique arc (i, j) ∈ E(S) such that i − j = k.

PROOF. Let D ∈ Sn be the digraph where S is coming from. Let A = (ai, j ) be the
adjacency matrix of D, where every vertex takes the label of a super edge-magic
labeling of D. Note that, since A comes from a super edge-magic labeling of a
1-regular digraph, every secondary diagonal (↗) contains at most a 1, and the
diagonals that contain the 1s are consecutive. Moreover, in each main diagonal (↘) of
AR there appears at most a 1 and the diagonals that contain the 1s are consecutive. 2

COROLLARY 4.4. For each digraph D and each constant function h : E(D)−→ RSn
one of the weakly connected components of D ⊗h RSn is isomorphic to D.

PROOF. Let S be a digraph in RSn . By Corollary 4.3 we know that S contains a loop.
Let ( j, j) be a loop in S. Then the subdigraph of D ⊗h RSn induced by the vertices
of the form (i, j) for i ∈ V (D) is isomorphic to D. 2

REMARK 4.5. Inheriting the notation used in this section, let A be the adjacency
matrix of a super edge-magic digraph D of order n. We have that, AR

= AtP , where
At is the transpose of A, and P = (pi, j ) where pi, j = 1 if i + j = n + 1 but pi, j = 0
otherwise. Clearly, (AR)t is the adjacency matrix of some digraph in RSn . That is,
there exists a (possibly) different super edge-magic labeling of D, such that if B is its
induced adjacency matrix then BtP = (AR)t . Thus, B = PAtP .

EXAMPLE 4.6. Let D be the super edge-magic digraph 1→ 5→ 3→ 4→ 1 and a
loop in 2. Its adjacency matrix A is

A =


0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0


which has rotation matrix

AR
=


0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

.

Then (AR)t = BtP where B = PAtP . That is, B is the adjacency matrix of a super
edge-magic digraph obtained by reversing the arcs of D and by interchanging the
labels by σ , where σ is the permutation on {1, . . . , n} defined by σ(i)= n + 1− i .
In our example, the super edge-magic digraph defined by B is 1→ 5→ 2→ 3→ 1
and the loop in 4.
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REMARK 4.7. Let M3R be the matrix obtained from M by rotating 3π/2 radians in
the clockwise sense the columns of M . That is, M3R

= P At . Note that this different
rotation of the adjacency matrix of a super edge-magic labeled digraph has the same
properties of MR .

4.2. Main theorem. Let D be a k-equitable digraph where the vertices are identified
by the labels of a k-equitable labeling of D. Let us consider the induced labeling
on V (G ⊗h RSn) that assigns the label n(i − 1)+ j to the vertex (i, j). One can
easily see that all labels are distinct and that, in case the labeling of D is optimal,
all elements in {1, . . . , n · |V (D)|} are used. Moreover, by the product definition of
⊗h , |n(i − i ′)+ ( j − j ′)| is an induced arc label if and only if (i, i ′) ∈ E(D) and
( j, j ′) ∈ E(h(i, i ′)).

LEMMA 4.8. Let D be a k-equitable digraph, and let ((i, j), (i ′, j ′)), ((r, s), (r ′, s′))
be two arcs of D ⊗h RSn. If |n(i − i ′)+ ( j − j ′)| = |n(r − r ′)+ (s − s′)| then
|i − i ′| = |r − r ′| and |s − s′| = | j − j ′|.

PROOF. Note that the equality n(i − i ′)+ ( j − j ′)=±(n(r − r ′)+ (s − s′)) implies
that there exists α ∈ Z such that |αn| = |±(s − s′)− ( j − j ′)|. Thus, by Lemma 4.2,
|αn| ≤ n − 1. Hence, α = 0 and therefore | j − j ′| = |s − s′| and |i − i ′| = |r − r ′|. 2

THEOREM 4.9. Let D be an (optimal) k-equitable digraph and let h : E(D)→ RSn
be any function. Then D ⊗h RSn is (optimal) k-equitable.

PROOF. Assume that |n(i − i ′)+ ( j − j ′)| is an arc label induced by a k-equitable
labeling of D. There exist exactly k arcs in D, (il , i ′l ) , 1≤ l ≤ k such that |il − i ′l | =
|i − i ′|. Thus |n(il − i ′l )| = |n(i − i ′)| and by Lemma 4.2 we have that

|n(il − i ′l )| −
n − 1

2
≤ |n(i − i ′)+ ( j − j ′)| ≤ |n(il − i ′l )| +

n − 1
2

.

Hence, we obtain that

||n(i − i ′)+ ( j − j ′)| − |n(il − i ′l )|| ≤
n − 1

2

and by Corollary 4.3 there exist two different arcs (r, r ′), (s, s′) ∈ E(h(il , i ′l )) such
that

||n(i − i ′)+ ( j − j ′)| − |n(il − i ′l )|| = |r − r ′| = |s − s′|

with r − r ′ ≤ 0≤ s − s′.
Therefore, either |n(i − i ′)+ ( j − j ′)| = |n(il − i ′l )+ r − r ′| or |n(i − i ′)+

( j − j ′)| = |n(il − i ′l )+ s − s′|. In the first case ((il , r), (i ′l , r ′)) is labeled with
|n(i − i ′)+ ( j − j ′)|, whereas in the second case ((il , s), (i ′l , s′)) is labeled with
|n(i − i ′)+ ( j − j ′)|.

Moreover, assume that

|n(i − i ′)+ ( j − j ′)| = |n(r − r ′)+ (s − s′)|.
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By Lemma 4.8, |i − i ′| = |r − r ′| and |s − s′| = | j − j ′|. That is, |n(i − i ′)| =
|n(r − r ′)| and we only have k-possible arcs with the same label.

In particular, if the k-equitable labeling of D is optimal, then the induced labeling
on D ⊗h RSn is also optimal. 2

Recall that cycles are k-equitable for each proper divisor k of their size. By
giving a nonoptimal labeling, it was stated in [3] that the union of vertex-disjoint
k-equitable graphs is k-equitable. Using Theorem 4.9, we can provide optimal
k-equitable labelings of n copies of trees, for n odd.

THEOREM 4.10. Let n be an odd integer and let F be an optimal k-equitable forest
for each proper divisor k of |E(F)|. Then nF is optimal k-equitable for each proper
divisor k of |E(F)|.

PROOF. Clearly, each rotation of a super edge-magic 1-regular digraph gives a
1-regular digraph. In particular, by Theorem 1.4 we have that und(

−→
F ⊗h 6n)= nF.

Thus, since F is optimal k-equitable for each proper divisor k of |E(F)|, Theorem 4.9
implies that nF is optimal k-equitable for each proper divisor k of |E(F)|. 2

THEOREM 4.11. Let m − 1, n be odd integers. Then nCm is optimal k-equitable for
all proper divisors k of m.

PROOF. Let
−→
Cn be a strong orientation of Cn and assume that M is the adjacency

matrix of
−→
Cn where each vertex is identified with the label of a super edge-magic

labeling of
−→
Cn . The matrix MR obtained by rotating π/2 radians clockwise is

the adjacency matrix of a digraph
−−→
RCn =

−→
C1 ∪

−→
Cn1 ∪ · · · ∪

−→
Cnk . Let

←−−
RCn be the

digraph obtained from
−−→
RCn by reversing all its arcs. Consider a function h :

E(
−→
Cm)→ {

−−→
RCn,

←−−
RCn} such that two consecutive arcs in

−→
Cm , namely (x, y), (y, z)

have h(x, y) 6= h(y, z). Assume that a1a2 · · · am is a directed path in
−→
Cm . Then for

each (i, j) ∈ E(h(a1, a2)) we obtain that (a1, i)(a2, j)(a3, i) · · · (am, j)(a1, i) is a
cycle of length m in

−→
Cm ⊗h {

−−→
RCn,

←−−
RCn}. That is,

−→
Cm ⊗h {

−−→
RCn,

←−−
RCn} ' n

−→
Cm .

Thus, since every cycle is optimal k-equitable for each proper divisor k of the size, the
result follows by Theorem 4.9. 2

5. (Super) edge r-magic graphs. Open problems

A (p, q)-graph G = (V, E) admits an edge r-magic labeling if there exists a
bijective function f : V ∪ E −→ {i}p+q

i=1 such that for each edge uv ∈ E , f (u)+
f (uv)+ f (v) ∈ {k1, k2, . . . , kr } where {k1, . . . , kr } are r distinct constants. In
this case, the graph is said to be edge r -magic. If we add the extra condition
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that f (V )= {i}pi=1 then we say that f is a super edge r-magic labeling and G a super
edge r-magic graph.

The next lemma is an extension of Lemma 3.4 for the case of super edge r -magic
graphs. The proof works similarly.

LEMMA 5.1. A graph labeling of a graph G is super edge r-magic if and only if
the set of sum labels of adjacent vertices (including repetitions) can be partitioned
into r sets S0, S1, . . . , Sr−1 and there exist r − 1 integers c1, c2, . . . , cr−1 such that
S0 ∪ (S1 − c1) ∪ · · · ∪ (Sr−1 − cr−1) is a set of consecutive integers.

With a similar proof as in Section 3.2 we can state the following result.

THEOREM 5.2. Let D be a (super) edge r-magic digraph and let h : E(D)→ Sn .
Then the graph und(D ⊗h Sn) is (super) edge r-magic.

Clearly, each graph is edge r -magic for some r . Thus a natural question appears.

QUESTION 5.3. Given a graph G, find the minimum r such that G is edge r -magic.

Similarly, we can study the following aspect.

QUESTION 5.4. Let G be an edge r -magic graph. Find an edge r -magic labeling
f of G that minimizes the difference kr − k1, where k1 and kr are, respectively, the
minimum and the maximum magic constants of f .

References

[1] B. D. Acharya and S. M. Hegde, ‘Strongly indexable graphs’, Discrete Math. 93 (1991), 123–129.
[2] C. Barrientos, ‘Difference vertex labelings’, PhD Thesis, Universitat Politècnica de Catalunya,

2004.
[3] C. Barrientos, I. J. Dejter and H. Hevia, ‘Equitable labelings of forests’, in: Combinatorics and

Graph Theory’95, Vol.1 (ed. Y. Alavi) (World Scientific, Singapore, 1995), pp. 1–26.
[4] G. Bloom and S. Ruiz, ‘Decomposition into linear forest and difference labelings of graphs’,

Discrete Appl. Math. 49 (1994), 13–37.
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd edn (Wadsworth & Brooks/Cole

Advanced Books and Software, Monterey, 1986).
[6] H. Enomoto, A. Lladó, T. Nakamigawa and G. Ringel, ‘Super edge-magic graphs’, SUT J. Math.

34 (1998), 105–109.
[7] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, ‘The place of super edge-magic

labelings among other classes of labelings’, Discrete Math. 231(1–3) (2001), 153–168.
[8] R. M. Figueroa-Centeno, R. Ichishima, F. A. Muntaner-Batle and M. Rius-Font, ‘Labeling

generating matrices’, J. Combin. Math. Combin. Comput. 67 (2008), 189–216.
[9] J. A. Gallian, ‘A dynamic survey of graph labeling’, Electron. J. Combin. 17 (2010), #DS6.

[10] A. Kotzig and A. Rosa, ‘Magic valuations of finite graphs’, Canad. Math. Bull. 13 (1970),
451–461.

[11] B. Rajan, I. Rajasingh and M. A. Basker, ‘Edge bi-magic total labelings of graphs’, Proc. 5th
Asian Mathematical Conf., Malaysia, June 2009 (eds. L. S. Keong and H. K. Haith) (June 2009),
pp. 426–428.

[12] L. Valdés, ‘Edge-magic K p’. Paper delivered at Thirty-Second South Eastern International
Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, 2001.

[13] W. D. Wallis, Magic Graphs (Birkhäuser, Boston, MA, 2001).

https://doi.org/10.1017/S0004972711002280 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002280
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