Proceedings of the Edinburgh Mathematical Society (2005) **48**, 557–569 © DOI:10.1017/S0013091504000549 Printed in the United Kingdom

THE RELATIVE PICARD GROUP OF A COMODULE ALGEBRA AND HARRISON COHOMOLOGY

S. CAENEPEEL AND T. GUÉDÉNON

Faculty of Engineering, Vrije Universiteit Brussel, B-1050 Brussels, Belgium (scaenepe@vub.ac.be; tguedeno@vub.ac.be)

(Received 20 April 2004)

Abstract Let A be a commutative comodule algebra over a commutative bialgebra H. The group of invertible relative Hopf modules maps to the Picard group of A, and the kernel is described as a quotient group of the group of invertible group-like elements of the coring $A \otimes H$, or as a Harrison cohomology group. Our methods are based on elementary K-theory. The Hilbert 90 theorem follows as a corollary. The part of the Picard group of the coinvariants that becomes trivial after base extension embeds in the Harrison cohomology group, and the image is contained in a well-defined subgroup E. It equals E if H is a cosemisimple Hopf algebra over a field.

Keywords: Picard group; coring; Harrison cohomology

2000 Mathematics subject classification: Primary 16W30

1. Introduction

Let l be a cyclic Galois field extension of k. The Hilbert 90 theorem tells us that every cocycle in $Z^1(C_p, l^*)$ is a coboundary. There exist various generalizations of this result. For example, if we have a Galois extension $B \to A$ of commutative rings, with Galois group G, then the cohomology group $H^1(G, \mathbb{G}_m(A))$ is isomorphic to $\operatorname{Pic}(A/B)$, the kernel of the natural map from the Picard group of B to the Picard group of A (see, for example, [9]). Now we can ask the following question. Suppose that G acts on A as a group of isomorphisms. Can we still give an algebraic interpretation of $H^1(G, \mathbb{G}_m(A))$? A second problem is whether there is any relation between $H^1(G, \mathbb{G}_m(A))$ and the Picard group of the ring of invariants $B = A^G$.

In this paper we will discuss these two problems in a more general situation: we will assume that A is a commutative H-comodule algebra, with H an arbitrary commutative bialgebra over a commutative ring k. We then ask for an algebraic interpretation of the first Harrison cohomology group $H^1_{\text{Harr}}(H, A, \mathbb{G}_m)$ (with notation as in [6]). If H is finitely generated and projective, then this Harrison cohomology group is isomorphic to a Sweedler cohomology group $Z^1_{\text{Harr}}(H, A, \mathbb{G}_m)$, and if $H = \mathbb{Z}G$ with G a finite group, then it reduces to the cohomology group $H^1(G, \mathbb{G}_m(A))$.

We proceed as follows: we introduce the relative Picard group $\operatorname{Pic}^{H}(A)$ as the Grothendieck group of the category of invertible relative Hopf modules. The forgetful

functor to the category of invertible A-modules induces a K-theoretic exact sequence, linking the Picard group of A, the relative Picard group, and the groups of unit elements of A and the coinvariants $B = A^{\operatorname{co} H}$; the middle term in the sequence can be computed, and it is the group of invertible group-like elements of the coring $A \otimes H$. We show also that these group-like elements are precisely the Harrison cocycles, and it follows from the exactness of the sequence that the first Harrison cohomology group is the kernel of the map $\operatorname{Pic}^{H}(A) \to \operatorname{Pic}(A)$, answering our first question.

Then we observe that there is a similar exact sequence associated with the induction functor $\underline{\operatorname{Pic}}(B) \to \underline{\operatorname{Pic}}(A)$, and that the two exact sequences fit into a commutative diagram. If \overline{A} is a faithfully flat Hopf Galois extension of B, then the categories of B-modules and relative Hopf modules are equivalent, hence $\operatorname{Pic}(B) \cong \operatorname{Pic}^H(A)$, and we recover Hilbert 90. In general, we have an injection $\operatorname{Pic}(A/B) \to H^1_{\operatorname{Harr}}(H, A, \mathbb{G}_m)$, and we can describe a subgroup of $H^1_{\operatorname{Harr}}(H, A, \mathbb{G}_m)$ that contains the image of $\operatorname{Pic}(A/B)$. The image is precisely this subgroup if H is a cosemisimple Hopf algebra over a field k.

A special situation is the following: let k be an algebraically closed field, A a finitely generated commutative normal k-algebra, and G a connected algebraic group acting rationally on A. Then A is an H-comodule algebra, with H the affine coordinate ring of G. In this case, our exact sequence was given by Magid in [14], but apparently Magid was not aware of the connection to Harrison cohomology, group-like elements of corings or the generalized Hilbert 90 theorem.

In §5, we study the Harrison cocycles (or the group-like elements in $A \otimes H$) in some particular cases. First we look at the situation considered by Magid in [14], and then it turns out that the group-like elements of $G(A \otimes H)$ are induced by the group-like elements of H. In the situation where A is a \mathbb{Z} -graded commutative k-algebra, the relative Picard group turns out to be the graded Picard group $\operatorname{Pic}_{g}(A)$ studied by the first author in [5]. If A is reduced, then the group-like elements of $A \otimes H$ can also be described using the group-like elements of H, according to a result in [5].

2. Preliminary results

2.1. The language of corings

Relative Hopf modules can be viewed as comodules over a coring. This will be used below, and this is why we briefly recall some properties of corings. Recall that an A-coring is a comonoid in the monoidal category ${}_{A}\mathcal{M}_{A}$ of A-bimodules. Thus an A-coring \mathfrak{C} is an A-bimodule together with two A-bimodule maps,

$$\Delta_{\mathfrak{C}}: \mathfrak{C} \to \mathfrak{C} \otimes_A \mathfrak{C} \quad \text{and} \quad \varepsilon_{\mathfrak{C}}: \mathfrak{C} \to A,$$

satisfying the usual coassociativity and counit properties. We refer to [2-4, 11, 18] for a detailed discussion of corings. The set of group-like elements of \mathfrak{C} is given by

$$G(\mathfrak{C}) = \{ X \in \mathfrak{C} \mid \Delta_{\mathfrak{C}}(X) = X \otimes_A X \text{ and } \varepsilon_{\mathfrak{C}}(X) = 1 \}.$$

A right \mathfrak{C} -comodule M is a right A-module together with a right A-linear map $\rho_M : M \to M \otimes_A \mathfrak{C}$ satisfying

$$(M \otimes_A \varepsilon_{\mathfrak{C}}) \circ \rho_M = M$$
 and $(M \otimes_A \Delta_{\mathfrak{C}}) \circ \rho_M = (\rho_M \otimes_A \mathfrak{C}) \circ \rho_M.$

A morphism of right \mathfrak{C} -comodules $f: M \to N$ is an A-linear map f such that

$$\rho_N \circ f = (f \otimes_A \mathfrak{C}) \circ \rho_M.$$

 $\mathcal{M}^{\mathfrak{C}}$ will be the category of right \mathfrak{C} -comodules and comodule morphisms. We have the following interpretation of the group-like elements of \mathfrak{C} .

Lemma 2.1. Let \mathfrak{C} be an A-coring. Then there is a bijective correspondence between $G(\mathfrak{C})$ and the set of maps $\rho : A \to A \otimes_A \mathfrak{C} = \mathfrak{C}$, making A into a right \mathfrak{C} -comodule. The coaction ρ_X corresponding to $X \in G(\mathfrak{C})$ is given by

$$\rho_X(a) = Xa.$$

With this notation, $A^X = (A, \rho_X)$ is isomorphic to $A^Y = (A, \rho_Y)$ as a right \mathfrak{C} -comodule if and only if there exists an invertible $b \in A$ such that $\rho_Y(b) = Yb = bX$.

Proof. The first part is well known (and straightforward) (see, for example, [3]). Let $f: A^X \to A^Y$ be a right \mathfrak{C} -colinear isomorphism. Then f(a) = ba for some $b \in A$, which is invertible since f is an isomorphism. The fact that f is \mathfrak{C} -colinear tells us that

$$Yb = \rho_Y(f(1)) = (f \otimes_A \mathfrak{C})(\rho_X(1)) = bX.$$

The converse property is obvious.

2.2. Relative Hopf modules

Let H be a bialgebra over a commutative ring k, and A a right H-comodule algebra. Throughout this paper we will assume that H and A are commutative. Then A is a commutative algebra and we have a right H-coaction ρ on A such that

$$\rho(ab) = a_{[0]}b_{[0]} \otimes a_{[1]}b_{[1]},$$

for all $a, b \in A$. Here we use the Sweedler–Heyneman notation for the coaction ρ : $\rho(a) = a_{[0]} \otimes a_{[1]}$, with summation implicitly understood. For the comultiplication on H, we use the notation $\Delta(h) = h_{(1)} \otimes h_{(2)}$.

A relative Hopf module M is a k-module, together with a right A-action and a right C-coaction ρ_M such that

$$\rho_M(ma) = m_{[0]}a_{[0]} \otimes m_{[1]}a_{[1]},$$

for all $a \in A$ and $m \in M$. The category of relative Hopf modules and A-linear H-colinear maps will be denoted by \mathcal{M}_A^H . The coinvariant submodule $M^{\operatorname{co} H}$ of $M \in \mathcal{M}_A^H$ is defined by

$$M^{\operatorname{co} H} = \{ m \in M \mid \rho_M(m) = m \otimes 1 \}.$$

 $A^{\operatorname{co} H} = B$ is a k-subalgebra of A, and $M^{\operatorname{co} H}$ is a B-module. We obtain a functor $(\cdot)^{\operatorname{co} H} : \mathcal{M}_A^H \to \mathcal{M}_B$, which has a left adjoint $T = -\otimes_B A : \mathcal{M}_B \to \mathcal{M}_A^H$. The right H-coaction on $N \otimes_B A$ is $N \otimes_B \rho$. The unit u and counit c of the adjunction are given by the following formulae, for $N \in \mathcal{M}_B$ and $M \in \mathcal{M}_A^H$:

$$u_N : N \to (N \otimes_B A)^{\operatorname{co} H}, \quad u_N(n) = n \otimes 1,$$

$$c_M : M^{\operatorname{co} H} \otimes_B A \to M, \quad c_M(m \otimes a) = ma$$

A is called a Hopf algebra extension of $B = A^{\operatorname{co} H}$ if the canonical map

 $\operatorname{can}: A \otimes_B A \to A \otimes H, \quad \operatorname{can}(a \otimes_B b) = ab_{[0]} \otimes b_{[1]}$

is an isomorphism. If A is a faithfully flat Hopf Galois extension, then the adjunction $(-\otimes_B A, (\cdot)^{\operatorname{co} H})$ is a pair of inverse equivalences. We refer to $[\mathbf{10}, \mathbf{15}, \mathbf{17}]$ for a detailed discussion of Hopf algebras and relative Hopf modules.

 $\mathfrak{C} = A \otimes H$ is a coring, with structure maps

$$\begin{aligned} a'(b \otimes h)a &= a'ba_{[0]} \otimes ha_{[1]}, \\ \Delta_{\mathfrak{C}}(a \otimes h) &= (a \otimes h_{(1)}) \otimes_A (1 \otimes h_{(2)}), \\ \varepsilon_{\mathfrak{C}}(a \otimes h) &= a\varepsilon(h). \end{aligned}$$

The category $\mathcal{M}^{A\otimes H}$ is isomorphic to the category \mathcal{M}_A^H of relative Hopf modules; we refer to $[\mathbf{2}, \mathbf{4}]$ for full details. Note that $X = \sum_i a_i \otimes h_i \in G(A \otimes H)$ if and only if

$$\sum_{i} (a_i \otimes h_{i(1)} \otimes h_{i(2)}) = \sum_{i,j} (a_i a_{j[0]} \otimes h_i a_{j[1]} \otimes h_j) \quad \text{and} \quad \sum a_i \varepsilon(h_i) = 1.$$
(2.1)

 $A \otimes H$ is also a commutative algebra, with multiplication

$$(a \otimes h)(b \otimes k) = ab \otimes hk.$$

The product of two group-like elements is a group-like element, and $1_A \otimes 1_H$ is group-like. Hence $G^i(A \otimes H)$, the set of invertible group-like elements, is an abelian group. Also observe that an invertible group-like element is precisely a normalized Harrison 1-cocycle (see, for example, [6, § 9.2] for the definition of the Harrison complex).

Let H be a finitely generated projective cocommutative Hopf algebra, and let A be a commutative left H-module algebra. Then H^* is a commutative Hopf algebra and A is a right H^* -comodule algebra. If $\sum_i a_i \otimes f_i \in A \otimes H^*$ is an invertible group-like element (or a normalized Harrison cocycle), then

$$\phi: H \to A, \quad \phi(h) = \sum_{i} a_i f_i(h),$$
(2.2)

is a normalized Sweedler 1-cocycle. This means that $\phi(1_H) = 1_A$, and the cocycle condition

$$\phi(hh') = \sum_{i} (h_{(1)} \cdot (\phi(h')))\phi(h_{(2)})$$
(2.3)

is satisfied. This gives a bijective correspondence between Harrison and Sweedler cocycles, see [6, Proposition 9.2.3]. For the definition of the Sweedler complex, see [16] or [6, § 9.1]. In the case where H = kG, with G a finite group, Sweedler cohomology reduces to group cohomology.

2.3. Elementary algebraic K-theory

Let $(\mathcal{C}, \otimes, I)$ and $(\mathcal{D}, \otimes, J)$ be skeletally small symmetric monoidal categories, and let $F : \mathcal{C} \to \mathcal{D}$ be a cofinal, strong monoidal functor. Then we can consider the Grothendieck and Whitehead groups of \mathcal{C} and \mathcal{D} , and we have an exact sequence connecting them (see, for example, [1, Chapter VII]):

$$K_1 \mathcal{C} \xrightarrow{K_1 F} K_1 \mathcal{D} \xrightarrow{d} K_1 \underline{\phi} F \xrightarrow{g} K_0 \mathcal{C} \xrightarrow{K_0 F} K_0 \mathcal{D}.$$
 (2.4)

 $C \in \mathcal{C}$ is called invertible if there exists $C' \in \mathcal{C}$ such that $C \otimes C' \cong I$. If all elements of \mathcal{C} and \mathcal{D} are invertible, then the description of the five groups in (2.4) and the connecting maps simplifies (see [6, Appendix C]). $K_0\mathcal{C}$ is the group of isomorphism classes of objects in \mathcal{C} and $K_1\mathcal{C} \cong \operatorname{Aut}_{\mathcal{C}}(I)$ (which is then an abelian group). Let $\underline{\Psi}F$ be the following category: objects are couples (C, α) , with $C \in \mathcal{C}$ and $\alpha : F(C) \to J$ an isomorphism in \mathcal{D} . A morphism between (C, α) and (C', α') is an isomorphism $f : C \to C'$ in \mathcal{C} such that $\alpha' = F(f) \circ \alpha$. $\underline{\Psi}F$ is monoidal, every object is invertible and

$$K_1 \phi F \xrightarrow{g} \cong K_0 \underline{\Psi} F.$$

The maps d and g are given as follows: $d(\alpha) = [(I, \alpha)]$ and $g[(C, \alpha)] = [C]$.

A typical example is the following: for a commutative ring A, let $\underline{\text{Pic}}(A)$ be the category of invertible A-modules. If $i: B \to A$ is a morphism of commutative rings, then we have the cofinal strongly monoidal functor

$$G = -\otimes_B A : \underline{\operatorname{Pic}}(B) \to \underline{\operatorname{Pic}}(A),$$

and (2.4) takes the form

$$1 \to \mathbb{G}_m(B) \to \mathbb{G}_m(A) \xrightarrow{d'} K_1 \underline{\phi} G \xrightarrow{g'} \operatorname{Pic}(B) \to \operatorname{Pic}(A).$$
(2.5)

3. The relative Picard group

If $M, N \in \mathcal{M}_A^H$, then $M \otimes_A N \in \mathcal{M}_A^H$, with right *H*-coaction

$$\rho_{M\otimes_A N}(m\otimes_A n) = m_{[0]} \otimes_A n_{[0]} \otimes m_{[1]}n_{[1]}.$$

So we have a symmetric monoidal category $(\mathcal{M}_A^H, \otimes_A, A)$. Let $\underline{\operatorname{Pic}}^H(A)$ be the full subcategory consisting of invertible objects. $\operatorname{Pic}^H(A) = K_0 \underline{\operatorname{Pic}}^H(A)$, the group of isomorphism classes of relative Hopf modules, will be called the relative Picard group of A and H. The isomorphism class in $\operatorname{Pic}^H(A)$ represented by an invertible relative Hopf module Mwill be denoted by $\{M\}$. This new invariant fits into an exact sequence.

Proposition 3.1. We have an exact sequence

$$1 \to \mathbb{G}_m(B) \to \mathbb{G}_m(A) \xrightarrow{d} G^i(A \otimes H) \xrightarrow{g} \operatorname{Pic}^H(A) \to \operatorname{Pic}(A).$$
(3.1)

Proof. This result can be proved in two ways: a first possibility is to show that (3.1) is precisely the exact sequence (2.4), associated with the functor $\underline{\operatorname{Pic}}^{H}(A) \to \underline{\operatorname{Pic}}(A)$ forgetting the *H*-coaction. Let us present an easy direct proof.

The map $\mathbb{G}_m(B) \to \mathbb{G}_m(A)$ is the natural inclusion. Take $a \in A$ invertible, and let $d(a) = X = a^{-1}a_{[0]} \otimes a_{[1]}$. X is group-like, since $a^{-1}a_{[0]} \varepsilon(a_{[1]}) = 1$, and

$$\begin{split} X \otimes_A X &= (a^{-1}a_{[0]} \otimes a_{[1]}) \otimes_A (b^{-1}b_{[0]} \otimes b_{[1]}) \\ &= a^{-1}a_{[0]}(b^{-1})_{[0]}b_{[0]} \otimes a_{[1]}(b^{-1})_{[1]}b_{[1]} \otimes b_{[2]} \\ &= a^{-1}b_{[0]} \otimes b_{[1]} \otimes b_{[2]} \\ &= (a^{-1}b_{[0]} \otimes b_{[1]}) \otimes_A (1 \otimes b_{[2]}) = \Delta(X), \end{split}$$

where we identified $(A \otimes H) \otimes_A (A \otimes H) = A \otimes H \otimes H$ and we wrote a = b. The inverse of X is $X^{-1} = a(a^{-1})_{[0]} \otimes (a^{-1})_{[1]}$, so $X \in G^i(A \otimes H)$.

If $d(a) = a^{-1}a_{[0]} \otimes a_{[1]} = 1_A \otimes 1_H$, then $a_{[0]} \otimes a_{[1]} = a \otimes 1_H$, so $a \in B$, and the sequence is exact at $\mathbb{G}_m(A)$.

For $X \in G^i(A \otimes H)$, let $g(X) = A^X$, with notation as in Lemma 2.1. g is multiplicative: take $X = \sum_i a_i \otimes h_i$ and $Y = \sum_j b_j \otimes k_j$ in $G^i(A \otimes H)$, then $A^X \otimes_A A^Y = A$ as an Abimodule, with comultiplication given by

$$\rho_{A^X \otimes_A A^Y}(1) = \sum_{i,j} a_i \otimes_A b_j \otimes h_i k_j = XY,$$

as needed.

If $g(X) = \{A\}$ in $\operatorname{Pic}^{H}(A)$, then there exists an *H*-colinear *A*-linear isomorphism $f: A^{X} \to A$. Then f(1) = a is invertible in *A*, and, since *f* is *H*-colinear, $a_{[0]} \otimes a_{[1]} = \rho(a) = (f \otimes H)(X) = aX$, so $X = a^{-1}a_{[0]} \otimes a_{[1]} = d(a)$, and the sequence is also exact at $G^{i}(A \otimes H)$.

The exactness of the sequence at $\operatorname{Pic}^{H}(A)$ follows from Lemma 2.1.

Remark 3.2. Let $H = k\mathbb{Z}$, and let A be a commutative \mathbb{Z} -graded k-algebra. Then $\operatorname{Pic}^{H}(A) = \operatorname{Pic}_{g}(A)$, the graded Picard group of A, as introduced in [5] (see also [8]). The exact sequence (3.1) reduces to the exact sequence in [5, Proposition 2.1].

The map $d: \mathbb{G}_m(A) \xrightarrow{d} G^i(A \otimes H)$ is precisely the map $\mathbb{G}_m(A) \to \mathbb{G}_m(A \otimes H)$ in the Harrison complex. From Proposition 3.1, we therefore immediately obtain the following corollary.

Corollary 3.3. With H and A as in Proposition 3.1, we have an isomorphism of abelian groups

$$\operatorname{Pic}^{H}(A) \cong H^{1}_{\operatorname{Harr}}(H, A, \mathbb{G}_{m}).$$

This is the promised algebraic interpretation of the first Harrison cohomology group. Note that there are no flatness or projectivity assumptions on H or A. We have Hilbert 90 as an easy consequence.

Corollary 3.4 (Hilbert 90). Let H, A, B be as in Proposition 3.1. If A is a faithfully flat H-Galois extension of B, then we have an isomorphism of abelian groups:

$$\operatorname{Pic}(A/B) \cong H^1_{\operatorname{Harr}}(H, A, \mathbb{G}_m)$$

Proof. From the fact that the monoidal categories \mathcal{M}_B and \mathcal{M}_A^H are equivalent, it follows that $\operatorname{Pic}(B) \cong \operatorname{Pic}^H(A)$.

Take the exact sequences (2.5) and (3.1), and observe that they fit into a commutative diagram:

The map j maps $[N] \in \operatorname{Pic}(B)$ to $\{N \otimes_B A\} \in \operatorname{Pic}^H(A)$. Using the 'five lemma', we find a map $i: K_1 \phi G \to G^i(A \otimes H)$.

Lemma 3.5. With notation as above, the maps i and j are injective.

Proof. From the fact that u is a natural transformation between additive endofunctors of the category of B-modules, and since u_B is an isomorphism, it follows that $u_N: N \to (N \otimes_B A)^{\operatorname{co} H}$ is an isomorphism if N is finitely generated and projective as a B-module. So if $N \otimes_B A \cong A$, then $N \cong (N \otimes_B A)^{\operatorname{co} H} \cong A^{\operatorname{co} H} = B$, and j is injective. The injectivity of i then follows from an easy diagram-chasing argument.

Our next aim is to characterize the image of i. This will be the topic of § 4; it will turn out that we obtain nice results in the case where H is cosemisimple.

4. Coinvariantly generated relative Hopf modules

Some of our results will be more specific if we assume that H is a cosemisimple Hopf algebra over a field k. Recall that H is cosemisimple if there exists a left integral ϕ on H^* such that $\phi(1) = 1$ (see, for example, [18]). In this case, the coinvariants functor $(\cdot)^{\operatorname{co} H} : \mathcal{M}_A^H \to \mathcal{M}_B$ is exact (see [15, Lemma 2.4.3]).

A relative Hopf module M is called *coinvariantly generated* if c_M is surjective, or, equivalently, if $M = M^{\operatorname{co} H} A$. If M is coinvariantly generated, and finitely generated as an A-module, then we can find a finite set $\{m_1, \ldots, m_n\} \in M^{\operatorname{co} H}$ that generates M.

It follows immediately from the properties of adjoint functors that $N \otimes_B A$ is coinvariantly generated, for every $N \in \mathcal{M}_B$; in particular, A is coinvariantly generated. We also have the following lemma.

Lemma 4.1. Let $M \in \mathcal{M}_A^H$ and $N \in \mathcal{M}_B$. If M is an epimorphic image of $N \otimes_B A$ in \mathcal{M}_A^H , then $M^{\operatorname{co} H} = 0$ implies that M = 0.

Proof. If $M^{\operatorname{co} H} = 0$, then

$$\operatorname{Hom}_{A}^{H}(N \otimes_{B} A, M) = \operatorname{Hom}_{B}(N, M^{\operatorname{co} H}) = 0.$$

But $\operatorname{Hom}_{A}^{H}(N \otimes_{B} A, M)$ contains the epimorphism of relative Hopf modules $N \otimes_{B} A \to M$, so M = 0.

If N is an epimorphic image of M in \mathcal{M}_A^H , and if M is coinvariantly generated, then N is also coinvariantly generated.

Lemma 4.2. Assume that H is a cosemisimple Hopf algebra over a field k. If $N \in \mathcal{M}_B$ is projective, then $N \otimes_B A$ is projective in \mathcal{M}_A^H .

Proof. See [7, Proposition 2.5].

Lemma 4.3. Let k be a field.

- (1) The forgetful functor $\mathcal{M}_A^H \to \mathcal{M}_A$ preserves projectives.
- (2) If H is cosemisimple, then the forgetful functor also reflects projectivity of finitely generated modules.

Proof. (1) Take $M \in \mathcal{M}_A^H$ projective, and consider the epimorphism $p: M \otimes A \to M$, $p(m \otimes a) = ma$ in \mathcal{M}_A^H . The exact sequence

$$0 \to \operatorname{Ker} p \to M \otimes A \xrightarrow{p} M \to 0$$

splits in \mathcal{M}_A^H , since M is a projective object, and *a fortiori* in \mathcal{M}_A . Hence M is a direct factor of $M \otimes A$, which is a projective A-module, so M is also a projective A-module.

(2) Let M and N be relative Hopf modules, and assume that M is finitely generated and projective in \mathcal{M}_A . According to [7, Proposition 4.2], $\operatorname{Hom}_A(M, N) \in \mathcal{M}_A^H$, and it is easy to show that $\operatorname{Hom}_A(M, N)^{\operatorname{co} H} = \operatorname{Hom}_A^H(M, N)$. It follows that the functor $\operatorname{Hom}_A^H(M, -) : \mathcal{M}_A^H \to \mathcal{M}$ is exact, since it is the composition of the exact functors $\operatorname{Hom}_A(M, -) : \mathcal{M}_A^H \to \mathcal{M}^H$ ($M \in \mathcal{M}_A$ is projective) and $(\cdot)^{\operatorname{co} H} : \mathcal{M}^H \to \mathcal{M}$ (H is cosemisimple). \Box

Lemma 4.4. Let H be a cosemisimple Hopf algebra over a field k, and take $P, Q \in \mathcal{M}_A^H$ finitely generated as A-modules. Assume that Q is a projective object of \mathcal{M}_A^H . Then every epimorphism $f: P \to Q$ in \mathcal{M}_A^H has a right inverse in \mathcal{M}_A^H .

Proof. It is clear that $\operatorname{Hom}_A(Q, P)$ and $\operatorname{Hom}_A(Q, Q)$ are right *H*-comodules, and the map

$$f^* = \operatorname{Hom}_A(Q, f) : \operatorname{Hom}_A(Q, P) \to \operatorname{Hom}_A(Q, Q)$$

is right *H*-colinear. It follows from Lemma 4.3 that Q is projective as an *A*-module, so f^* is surjective. Since f^* is *H*-colinear, f^* restricts to a surjection

$$\operatorname{Hom}_{A}^{H}(Q, P) = \operatorname{Hom}_{A}(Q, P)^{\operatorname{co} H} \to \operatorname{Hom}_{A}^{H}(Q, Q) = \operatorname{Hom}_{A}(Q, Q)^{\operatorname{co} H}.$$

Take a preimage $g \in \operatorname{Hom}_{A}^{H}(Q, P)$ of the identity map id_{Q} on Q. Then $f \circ g = \operatorname{id}_{Q}$, and the result follows.

For $M \in \mathcal{M}_A$, we will denote the dual module by $M^* = \operatorname{Hom}_A(M, A)$.

Proposition 4.5. Let *H* be cosemisimple, and assume that $P \in \mathcal{M}_A^H$ is coinvariantly generated and finitely generated projective as an *A*-module. Then

- (1) $P^{\operatorname{co} H}$ is a finitely generated projective *B*-module;
- (2) P^* is coinvariantly generated;
- (3) the map c_P is an isomorphism in \mathcal{M}_A^H .

Proof. (1) As we have seen, there exist $p_1, p_2, \ldots, p_n \in P^{\operatorname{co} H}$ such that $P = \sum_i p_i A$. Set $F = A^n$ and let $f: F \to P$ be the A-linear map given by $f(a_1, a_2, \ldots, a_n) = \sum_i p_i a_i$. Then $F \in \mathcal{M}_A^H$ and f is an epimorphism in \mathcal{M}_A^H . By Lemma 4.4, there exists a monomorphism $g \in \operatorname{Hom}_A(P, F)$ such that $f \circ g = \operatorname{id}_P$. The restriction of g to $P^{\operatorname{co} H}$ is then a B-linear right inverse of the restriction of f to $F^{\operatorname{co} H}$, and $F^{\operatorname{co} H} = B^n$, and we obtain (1).

(2) The map $g^* = \text{Hom}_A(g, A) : F^* \to P^*$ is surjective and *H*-colinear. The fact that F^* is coinvariantly generated then implies that P^* is also coinvariantly generated.

(3) Consider the natural transformation $t: (\cdot)^{\operatorname{co} H} \otimes_B A \to (\cdot)$ given by

$$t_P: P^{\operatorname{co} H} \otimes_B A \to P, \quad t_P(p \otimes a) = pa.$$

The map t_A is an isomorphism, so t_F is an isomorphism by additivity. It follows that t_P is an isomorphism, since $F = P \oplus \text{Ker } f$ as *H*-comodules.

Let $X = \sum_{i} a_i \otimes h_i \in G(A \otimes H)$, and write

$$A_X = \left\{ a \in A \mid \rho(a) = aX = \sum_i aa_i \otimes h_i \right\}$$

and

$$A_X^i = \{ a \in A_X \mid a \text{ is invertible} \}.$$

Observe that

$$\operatorname{Im}(d) = \{ X \in G^i(A \otimes H) \mid A^i_X \neq \emptyset \}$$

and

$$A_{1\otimes 1} = A^{\operatorname{co} H}$$

Furthermore, $A_X A_Y \subset A_{XY}$: take $a \in A_X$ and $b \in A_Y$, then $\rho(a) = aX = \sum_i aa_i \otimes h_i$, $\rho(b) = bY = \sum_i bb_j \otimes k_j$ and

$$\rho(ab) = a_{[0]}b_{[0]} \otimes a_{[1]}b_{[1]} = \sum_{i,j} aa_i bb_j \otimes h_i k_j = abXY.$$

Also $A_X^i \cap A_Y^i = \emptyset$ if $X \neq Y$.

Lemma 4.6. The set

$$E = \{ X \in G^i(A \otimes H) \mid AA_X = A \text{ and } AA_{X^{-1}} = A \}$$

is a subgroup of $G^i(A \otimes H)$ containing $\operatorname{Im}(d)$.

Proof. If $X \in \text{Im}(d)$, then there exists an invertible $a \in A_X$, and then $AA_X = A$. Since $X^{-1} \in \text{Im}(d)$, we also have $AA_{X^{-1}} = A$, hence $X \in E$. It is clear that $1 \otimes 1 \in E$. If $X, Y \in E$, then $AA_{XY} \supset AA_XA_Y = AA_Y = A$, and, in a similar way, $AA_{(XY)^{-1}} = A$, hence $XY \in E$. Finally, if $X \in E$, then obviously $X^{-1} \in E$.

Proposition 4.7. Consider the injective map $j : \operatorname{Pic}(B) \to \operatorname{Pic}^{H}(A)$. If H is a cosemisimple Hopf algebra over a field k, then

 $\operatorname{Im}(j) = \{\{M\} \in \operatorname{Pic}^{H}(A) \mid M \text{ is coinvariantly generated}\}.$

Proof. $M \otimes_B A$ is coinvariantly generated, so $\operatorname{Im}(j)$ is contained in the desired set. If H is cosemisimple, and $\{N\} \in \operatorname{Pic}^H(A)$, with N coinvariantly generated, then $N = (N^{\operatorname{co} H}) \otimes_B A \in \operatorname{Im}(j)$, by Proposition 4.5 (3).

Lemma 4.8. Take $X \in G^i(A \otimes H)$. Then A^X is coinvariantly generated if and only if $AA_{X^{-1}} = A$. If H is cosemisimple, then this is also equivalent to $X \in E$.

Proof. The first statement follows from the fact that $(A^X)^{\operatorname{co} H} = A_{X^{-1}}$. Indeed, $a \in (A^X)^{\operatorname{co} H}$ if and only if $\rho_X(a) = Xa = a \otimes 1$, if and only if $\rho(a) = (1 \otimes 1)a = X^{-1}(a \otimes 1) = aX^{-1}$, which means that $a \in A_{X^{-1}}$.

 $X^{-1}(a \otimes 1) = aX^{-1}$, which means that $a \in A_{X^{-1}}$. Let H be cosemisimple. Note that $(A^X)^* \cong A^{X^{-1}}$ as relative Hopf modules. If A^X is coinvariantly generated, then so is $A^{X^{-1}}$, by Proposition 4.5, and then $X \in E$.

Now we are able to prove the main result of this section.

Theorem 4.9. Consider the monomorphism $i: K_1 \underline{\phi} G \rightarrow G^i(A \otimes H)$ introduced in Lemma 3.5.

Then $\text{Im}(i) \subset E$ and Im(i) = E if H is a cosemisimple Hopf algebra over a field k. In this situation, $\text{Pic}(A/B) \cong E$.

Proof. Take $[(M, \alpha)] \in K_0 \psi G$, and let $i[(M, \alpha)] = X \in G^i(A \otimes H)$. Then

$$\{A^X\} = j(g'[(M,\alpha)]) = j([M]) = \{M \otimes_B A\},\$$

hence A^X is coinvariantly generated and $AA_{X^{-1}} = A$, by Lemma 4.8. In a similar way, $i([(M, \alpha)]^{-1}) = X^{-1}$, and $A^{X^{-1}} \cong M^* \otimes_B A$ is coinvariantly generated, so $AA_X = A$, again by Lemma 4.8. This proves that $X \in E$.

Assume now that H is cosemisimple, and take $X \in E$. It follows from Lemma 4.8 that A^X is coinvariantly generated, and from Proposition 4.7 that $A^X = M \otimes_B A$ for some $M \in \underline{\operatorname{Pic}}(B)$. Since the image of M in $\operatorname{Pic}(A)$ is trivial, $[M] = g'[(M, \alpha)]$ for some $(M, \alpha) \in \mathcal{C}$. Write $i[(M, \alpha)] = Y$. Then X = Yd(a), for some $a \in \mathbb{G}_m(A)$. Consider the map $\alpha' : M \otimes_B A \to A$, $\alpha'(m \otimes b) = a^{-1}\alpha(m \otimes b)$. Then $i[(M, \alpha')] = X$.

5. On the group-like elements

We have an injective map $i: G(H) \to G(A \otimes H), i(g) = 1_A \otimes g$. Everything simplifies if i is an isomorphism. We discuss two situations in which this is (almost) the case.

Recall that a commutative algebra which is an integral domain is called normal if it is integrally closed in its field of fractions.

Proposition 5.1. Let k be an algebraically closed field, let A be a finitely generated commutative normal k-algebra and let G be a connected algebraic group acting rationally on A. Let H be the affine coordinate ring of G, and $\chi(G)$ be the group of characters of G. Then

$$G(A \otimes H) = \{1 \otimes \phi \mid \phi \in G(H) = \chi(G)\}.$$

Proof. Let $x = \sum_{i} a_i \otimes f_i \in G(A \otimes H)$. Then we have

$$\sum_{i} (a_i \otimes f_{i(1)} \otimes f_{i(2)}) = \sum_{i,j} (a_i a_{j[0]} \otimes (f_i * a_{j[1]}) \otimes f_j)$$
(5.1)

and $\sum a_i \varepsilon(f_i) = 1$. The map

$$\alpha: A \otimes H \to \operatorname{Hom}(kG, A), \quad \alpha(a \otimes f)(g) = af(g)$$

is injective. Let $\phi = \alpha(x)$. Using (5.1), we compute for all $g, g' \in G$ that

$$\begin{split} \phi(gg') &= \sum_{i} a_{i} f_{i}(gg') = \sum_{i} a_{i} f_{i(1)}(g) f_{i(2)}(g') \\ &= \sum_{i,j} a_{i} a_{j[0]}((f_{i} * a_{j[1]})(g)) f_{j}(g') \\ &= \sum_{i,j} a_{i} a_{j[0]} f_{i}(g) a_{j[1]}(g) f_{j}(g') \\ &= \sum_{i,j} (g \cdot a_{j}) f_{j}(g') a_{i} f_{i}(g) \\ &= \sum_{i,j} g \cdot (a_{j} f_{j}(g')) a_{i} f_{i}(g) \\ &= (g \cdot (\phi(g'))) \phi(g). \end{split}$$

From the second equality, we have $1 = \sum_i a_i f_i(1_G) = \phi(1_G)$. For every $g \in G$, $\phi(g)$ is invertible in A, with inverse $g \cdot (\phi(g^{-1}))$. By the proof of [13, Proposition 1b, p. 46], $\phi(g) \in k$ for every $g \in G$, so $\phi \in \chi(G)$. Now $\chi(G) = G(H) \subset H$ (see [12, p. 25]), so it follows in particular that $\phi \in H$. For all $g \in G$ we now have that

$$\alpha(1 \otimes \phi)(g) = \phi(g) = \sum_{i} a_i f_i(g) = \alpha(x)(g),$$

hence $x = 1 \otimes \phi$, by the injectivity of α .

Now consider the situation from Remark 3.2: $H = k\mathbb{Z} \cong k[X, X^{-1}]$, and A is a commutative \mathbb{Z} -graded algebra. In this situation $A \otimes H = A \otimes k[X, X^{-1}]$. Group-like elements in $A \otimes H$ can be constructed as follows. Let $1 = e_1 + \cdots + e_n$ with the e_i orthogonal idempotents, and take $d_1, \ldots, d_n \in \mathbb{Z}$. Then $\sum_{i=1}^n e_i \otimes X^{d_i}$ is a group-like element in $A \otimes k[X, X^{-1}]$. In this way, we have an embedding of $\mathcal{C}(\operatorname{Spec}(A), \mathbb{Z})$, the continuous functions from $\operatorname{Spec}(A)$ (with the Zariski topology) to \mathbb{Z} (with the discrete topology), into $G(A \otimes k[X, X^{-1}])$. The first author was amazed to see that one of his first results, [5, Theorem 2.3], can be restated in such a way that it becomes a result about corings. Recall that a commutative ring is called reduced if it has no non-trivial nilpotents.

Proposition 5.2. Let A be a reduced \mathbb{Z} -graded commutative k-algebra. Then the map $\mathcal{C}(\operatorname{Spec}(A), \mathbb{Z}) \to G(A \otimes k[X, X^{-1}])$ is a bijection.

Example 5.3 (cf. Example 2.6 in [5]). Proposition 5.2 does not hold if A contains nilpotent elements; this is related to the fact that there exist non-homogeneous units in this situation. Let A = k[x], with $x^2 = 0$, and put a \mathbb{Z} -grading on A by taking deg(x) = 1. Then $1 + ax \in \mathbb{G}_m(A)$, and $d(1 + ax) = (1 - ax) \otimes 1 + ax \otimes X$ is a group-like element in $G(A \otimes k[X, X^{-1}])$ which is not in the image of $\mathcal{C}(\text{Spec}(A), \mathbb{Z})$.

Acknowledgements. The research herein was supported by the project G.0278.01 'Construction and applications of non-commutative geometry: from algebra to physics' from FWO Vlaanderen.

References

- 1. H. BASS, Algebraic K-theory (Benjamin, New York, 1968).
- 2. T. BRZEZIŃSKI, The structure of corings, Induction functors, Maschke-type theorem, and Frobenius and Galois properties, *Alg. Representat. Theory* **5** (2002), 389–410.
- T. BRZEZIŃSKI, The structure of corings with a group-like element, Banach Center Publicat. 61 (2003), 21–35.
- 4. T. BRZEZIŃSKI AND R. WISBAUER, *Corings and comodules*, London Mathematical Society Lecture Note Series, vol. 309 (Cambridge University Press, 2003).
- 5. S. CAENEPEEL, A cohomological interpretation of the graded Brauer group, I, *Commun. Alg.* **11** (1983), 2129–2149.
- 6. S. CAENEPEEL, Brauer groups, Hopf algebras and Galois theory, K-Monographs in Mathematics, vol. 4 (Kluwer, 1998).
- S. CAENEPEEL AND T. GUÉDÉNON, Projectivity of a relative Hopf module over the subring of coinvariants, in *Hopf algebras* (ed. J. Bergen, S. Catoiu and W. Chin), pp. 97–108, Lecture Notes in Pure and Applied Mathematics, vol. 237 (Marcel Dekker, New York, 2004).
- 8. S. CAENEPEEL AND F. VAN OYSTAEYEN, *Brauer groups and the cohomology of graded rings*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 121 (Marcel Dekker, New York, 1988).
- 9. F. DEMEYER AND E. INGRAHAM, Separable algebras over commutative rings, Lecture Notes in Mathematics, vol. 181 (Springer, 1971).
- S. DĂSCĂLESCU, C. NĂSTĂSESCU AND Ş. RAIANU, Hopf algebras: an introduction, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235 (Marcel Dekker, New York, 2001).
- L. EL KAOUTIT, J. GÓMEZ-TORRECILLAS AND F. J. LOBILLO, Semisimple corings, Algebra Collog. 11 (2004), 427–442.

- J. C. JANTZEN, *Representations of algebraic groups*, Pure and Applied Mathematics, vol. 131 (Academic, 1987).
- A. MAGID, Finite generation of class groups of rings of invariants, *Proc. Am. Math. Soc.* 60 (1976), 45–48.
- 14. A. MAGID, Picard groups of rings of invariants, J. Pure Appl. Alg. 17 (1980), 305-311.
- 15. S. MONTGOMERY, *Hopf algebras and their actions on rings* (American Mathematical Society, Providence, RI, 1993).
- M. E. SWEEDLER, Cohomology of algebras over Hopf algebras, Trans. Am. Math. Soc. 133 (1968), 205–239.
- 17. M. E. SWEEDLER, *Hopf algebras* (Benjamin, New York, 1969).
- M. E. SWEEDLER, The predual Theorem to the Jacobson-Bourbaki theorem, Trans. Am. Math. Soc. 213 (1975), 391–406.