
Proceedings of the Edinburgh Mathematical Society (2005) 48, 557–569 c©
DOI:10.1017/S0013091504000549 Printed in the United Kingdom

THE RELATIVE PICARD GROUP OF A COMODULE ALGEBRA
AND HARRISON COHOMOLOGY

S. CAENEPEEL AND T. GUÉDÉNON
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Abstract Let A be a commutative comodule algebra over a commutative bialgebra H. The group of
invertible relative Hopf modules maps to the Picard group of A, and the kernel is described as a quotient
group of the group of invertible group-like elements of the coring A ⊗ H, or as a Harrison cohomology
group. Our methods are based on elementary K-theory. The Hilbert 90 theorem follows as a corollary.
The part of the Picard group of the coinvariants that becomes trivial after base extension embeds in the
Harrison cohomology group, and the image is contained in a well-defined subgroup E. It equals E if H

is a cosemisimple Hopf algebra over a field.
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1. Introduction

Let l be a cyclic Galois field extension of k. The Hilbert 90 theorem tells us that every
cocycle in Z1(Cp, l

∗) is a coboundary. There exist various generalizations of this result.
For example, if we have a Galois extension B → A of commutative rings, with Galois
group G, then the cohomology group H1(G, Gm(A)) is isomorphic to Pic(A/B), the
kernel of the natural map from the Picard group of B to the Picard group of A (see, for
example, [9]). Now we can ask the following question. Suppose that G acts on A as a
group of isomorphisms. Can we still give an algebraic interpretation of H1(G, Gm(A))? A
second problem is whether there is any relation between H1(G, Gm(A)) and the Picard
group of the ring of invariants B = AG.

In this paper we will discuss these two problems in a more general situation: we will
assume that A is a commutative H-comodule algebra, with H an arbitrary commutative
bialgebra over a commutative ring k. We then ask for an algebraic interpretation of
the first Harrison cohomology group H1

Harr(H, A, Gm) (with notation as in [6]). If H is
finitely generated and projective, then this Harrison cohomology group is isomorphic to
a Sweedler cohomology group Z1

Harr(H, A, Gm), and if H = ZG with G a finite group,
then it reduces to the cohomology group H1(G, Gm(A)).

We proceed as follows: we introduce the relative Picard group PicH(A) as the
Grothendieck group of the category of invertible relative Hopf modules. The forgetful
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functor to the category of invertible A-modules induces a K-theoretic exact sequence,
linking the Picard group of A, the relative Picard group, and the groups of unit elements
of A and the coinvariants B = Aco H ; the middle term in the sequence can be computed,
and it is the group of invertible group-like elements of the coring A ⊗ H. We show also
that these group-like elements are precisely the Harrison cocycles, and it follows from
the exactness of the sequence that the first Harrison cohomology group is the kernel of
the map PicH(A) → Pic(A), answering our first question.

Then we observe that there is a similar exact sequence associated with the induc-
tion functor Pic(B) → Pic(A), and that the two exact sequences fit into a commutative
diagram. If A is a faithfully flat Hopf Galois extension of B, then the categories of
B-modules and relative Hopf modules are equivalent, hence Pic(B) ∼= PicH(A), and we
recover Hilbert 90. In general, we have an injection Pic(A/B) → H1

Harr(H, A, Gm), and
we can describe a subgroup of H1

Harr(H, A, Gm) that contains the image of Pic(A/B).
The image is precisely this subgroup if H is a cosemisimple Hopf algebra over a field k.

A special situation is the following: let k be an algebraically closed field, A a finitely
generated commutative normal k-algebra, and G a connected algebraic group acting
rationally on A. Then A is an H-comodule algebra, with H the affine coordinate ring
of G. In this case, our exact sequence was given by Magid in [14], but apparently Magid
was not aware of the connection to Harrison cohomology, group-like elements of corings
or the generalized Hilbert 90 theorem.

In § 5, we study the Harrison cocycles (or the group-like elements in A ⊗ H) in some
particular cases. First we look at the situation considered by Magid in [14], and then
it turns out that the group-like elements of G(A ⊗ H) are induced by the group-like
elements of H. In the situation where A is a Z-graded commutative k-algebra, the relative
Picard group turns out to be the graded Picard group Picg(A) studied by the first author
in [5]. If A is reduced, then the group-like elements of A ⊗ H can also be described using
the group-like elements of H, according to a result in [5].

2. Preliminary results

2.1. The language of corings

Relative Hopf modules can be viewed as comodules over a coring. This will be used below,
and this is why we briefly recall some properties of corings. Recall that an A-coring is
a comonoid in the monoidal category AMA of A-bimodules. Thus an A-coring C is an
A-bimodule together with two A-bimodule maps,

∆C : C → C ⊗A C and εC : C → A,

satisfying the usual coassociativity and counit properties. We refer to [2–4,11,18] for a
detailed discussion of corings. The set of group-like elements of C is given by

G(C) = {X ∈ C | ∆C(X) = X ⊗A X and εC(X) = 1}.
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A right C-comodule M is a right A-module together with a right A-linear map ρM : M →
M ⊗A C satisfying

(M ⊗A εC) ◦ ρM = M and (M ⊗A ∆C) ◦ ρM = (ρM ⊗A C) ◦ ρM .

A morphism of right C-comodules f : M → N is an A-linear map f such that

ρN ◦ f = (f ⊗A C) ◦ ρM .

MC will be the category of right C-comodules and comodule morphisms. We have the
following interpretation of the group-like elements of C.

Lemma 2.1. Let C be an A-coring. Then there is a bijective correspondence between
G(C) and the set of maps ρ : A → A ⊗A C = C, making A into a right C-comodule. The
coaction ρX corresponding to X ∈ G(C) is given by

ρX(a) = Xa.

With this notation, AX = (A, ρX) is isomorphic to AY = (A, ρY ) as a right C-comodule
if and only if there exists an invertible b ∈ A such that ρY (b) = Y b = bX.

Proof. The first part is well known (and straightforward) (see, for example, [3]). Let
f : AX → AY be a right C-colinear isomorphism. Then f(a) = ba for some b ∈ A, which
is invertible since f is an isomorphism. The fact that f is C-colinear tells us that

Y b = ρY (f(1)) = (f ⊗A C)(ρX(1)) = bX.

The converse property is obvious. �

2.2. Relative Hopf modules

Let H be a bialgebra over a commutative ring k, and A a right H-comodule algebra.
Throughout this paper we will assume that H and A are commutative. Then A is a
commutative algebra and we have a right H-coaction ρ on A such that

ρ(ab) = a[0]b[0] ⊗ a[1]b[1],

for all a, b ∈ A. Here we use the Sweedler–Heyneman notation for the coaction ρ: ρ(a) =
a[0] ⊗ a[1], with summation implicitly understood. For the comultiplication on H, we use
the notation ∆(h) = h(1) ⊗ h(2).

A relative Hopf module M is a k-module, together with a right A-action and a right
C-coaction ρM such that

ρM (ma) = m[0]a[0] ⊗ m[1]a[1],

for all a ∈ A and m ∈ M . The category of relative Hopf modules and A-linear H-colinear
maps will be denoted by MH

A . The coinvariant submodule M co H of M ∈ MH
A is defined

by
M co H = {m ∈ M | ρM (m) = m ⊗ 1}.
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Aco H = B is a k-subalgebra of A, and M co H is a B-module. We obtain a functor
(·)co H : MH

A → MB , which has a left adjoint T = − ⊗B A : MB → MH
A . The right

H-coaction on N ⊗B A is N ⊗B ρ. The unit u and counit c of the adjunction are given
by the following formulae, for N ∈ MB and M ∈ MH

A :

uN : N → (N ⊗B A)co H , uN (n) = n ⊗ 1,

cM : M co H ⊗B A → M, cM (m ⊗ a) = ma.

A is called a Hopf algebra extension of B = Aco H if the canonical map

can : A ⊗B A → A ⊗ H, can(a ⊗B b) = ab[0] ⊗ b[1]

is an isomorphism. If A is a faithfully flat Hopf Galois extension, then the adjunction
(− ⊗B A, (·)co H) is a pair of inverse equivalences. We refer to [10,15,17] for a detailed
discussion of Hopf algebras and relative Hopf modules.

C = A ⊗ H is a coring, with structure maps

a′(b ⊗ h)a = a′ba[0] ⊗ ha[1],

∆C(a ⊗ h) = (a ⊗ h(1)) ⊗A (1 ⊗ h(2)),

εC(a ⊗ h) = aε(h).

The category MA⊗H is isomorphic to the category MH
A of relative Hopf modules; we

refer to [2,4] for full details. Note that X =
∑

i ai ⊗ hi ∈ G(A ⊗ H) if and only if
∑

i

(ai ⊗ hi(1) ⊗ hi(2)) =
∑
i,j

(aiaj[0] ⊗ hiaj[1] ⊗ hj) and
∑

aiε(hi) = 1. (2.1)

A ⊗ H is also a commutative algebra, with multiplication

(a ⊗ h)(b ⊗ k) = ab ⊗ hk.

The product of two group-like elements is a group-like element, and 1A ⊗ 1H is group-
like. Hence Gi(A ⊗ H), the set of invertible group-like elements, is an abelian group. Also
observe that an invertible group-like element is precisely a normalized Harrison 1-cocycle
(see, for example, [6, § 9.2] for the definition of the Harrison complex).

Let H be a finitely generated projective cocommutative Hopf algebra, and let A be a
commutative left H-module algebra. Then H∗ is a commutative Hopf algebra and A is
a right H∗-comodule algebra. If

∑
i ai ⊗ fi ∈ A ⊗ H∗ is an invertible group-like element

(or a normalized Harrison cocycle), then

φ : H → A, φ(h) =
∑

i

aifi(h), (2.2)

is a normalized Sweedler 1-cocycle. This means that φ(1H) = 1A, and the cocycle condi-
tion

φ(hh′) =
∑

i

(h(1) · (φ(h′)))φ(h(2)) (2.3)
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is satisfied. This gives a bijective correspondence between Harrison and Sweedler cocycles,
see [6, Proposition 9.2.3]. For the definition of the Sweedler complex, see [16] or [6, § 9.1].
In the case where H = kG, with G a finite group, Sweedler cohomology reduces to group
cohomology.

2.3. Elementary algebraic K-theory

Let (C,⊗, I) and (D,⊗, J) be skeletally small symmetric monoidal categories, and let
F : C → D be a cofinal, strong monoidal functor. Then we can consider the Grothendieck
and Whitehead groups of C and D, and we have an exact sequence connecting them (see,
for example, [1, Chapter VII]):

K1C
K1F−−−→ K1D

d−→ K1φF
g−→ K0C

K0F−−−→ K0D. (2.4)

C ∈ C is called invertible if there exists C ′ ∈ C such that C ⊗ C ′ ∼= I. If all elements of C
and D are invertible, then the description of the five groups in (2.4) and the connecting
maps simplifies (see [6, Appendix C]). K0C is the group of isomorphism classes of objects
in C and K1C ∼= AutC(I) (which is then an abelian group). Let ΨF be the following
category: objects are couples (C, α), with C ∈ C and α : F (C) → J an isomorphism
in D. A morphism between (C, α) and (C ′, α′) is an isomorphism f : C → C ′ in C such
that α′ = F (f) ◦ α. ΨF is monoidal, every object is invertible and

K1φF
g−→∼= K0ΨF .

The maps d and g are given as follows: d(α) = [(I, α)] and g[(C, α)] = [C].
A typical example is the following: for a commutative ring A, let Pic(A) be the category

of invertible A-modules. If i : B → A is a morphism of commutative rings, then we have
the cofinal strongly monoidal functor

G = − ⊗B A : Pic(B) → Pic(A),

and (2.4) takes the form

1 → Gm(B) → Gm(A) d′
−→ K1φG

g′

−→ Pic(B) → Pic(A). (2.5)

3. The relative Picard group

If M, N ∈ MH
A , then M ⊗A N ∈ MH

A , with right H-coaction

ρM⊗AN (m ⊗A n) = m[0] ⊗A n[0] ⊗ m[1]n[1].

So we have a symmetric monoidal category (MH
A ,⊗A, A). Let PicH(A) be the full subcat-

egory consisting of invertible objects. PicH(A) = K0PicH(A), the group of isomorphism
classes of relative Hopf modules, will be called the relative Picard group of A and H.
The isomorphism class in PicH(A) represented by an invertible relative Hopf module M

will be denoted by {M}. This new invariant fits into an exact sequence.
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Proposition 3.1. We have an exact sequence

1 → Gm(B) → Gm(A) d−→ Gi(A ⊗ H)
g−→ PicH(A) → Pic(A). (3.1)

Proof. This result can be proved in two ways: a first possibility is to show that
(3.1) is precisely the exact sequence (2.4), associated with the functor PicH(A) → Pic(A)
forgetting the H-coaction. Let us present an easy direct proof.

The map Gm(B) → Gm(A) is the natural inclusion. Take a ∈ A invertible, and let
d(a) = X = a−1a[0] ⊗ a[1]. X is group-like, since a−1a[0]ε(a[1]) = 1, and

X ⊗A X = (a−1a[0] ⊗ a[1]) ⊗A (b−1b[0] ⊗ b[1])

= a−1a[0](b−1)[0]b[0] ⊗ a[1](b−1)[1]b[1] ⊗ b[2]

= a−1b[0] ⊗ b[1] ⊗ b[2]

= (a−1b[0] ⊗ b[1]) ⊗A (1 ⊗ b[2]) = ∆(X),

where we identified (A ⊗ H) ⊗A (A ⊗ H) = A ⊗ H ⊗ H and we wrote a = b. The inverse
of X is X−1 = a(a−1)[0] ⊗ (a−1)[1], so X ∈ Gi(A ⊗ H).

If d(a) = a−1a[0] ⊗a[1] = 1A ⊗1H , then a[0] ⊗a[1] = a⊗1H , so a ∈ B, and the sequence
is exact at Gm(A).

For X ∈ Gi(A⊗H), let g(X) = AX , with notation as in Lemma 2.1. g is multiplicative:
take X =

∑
i ai ⊗ hi and Y =

∑
j bj ⊗ kj in Gi(A ⊗ H), then AX ⊗A AY = A as an A-

bimodule, with comultiplication given by

ρAX⊗AAY (1) =
∑
i,j

ai ⊗A bj ⊗ hikj = XY,

as needed.
If g(X) = {A} in PicH(A), then there exists an H-colinear A-linear isomorphism

f : AX → A. Then f(1) = a is invertible in A, and, since f is H-colinear, a[0] ⊗ a[1] =
ρ(a) = (f ⊗ H)(X) = aX, so X = a−1a[0] ⊗ a[1] = d(a), and the sequence is also exact
at Gi(A ⊗ H).

The exactness of the sequence at PicH(A) follows from Lemma 2.1. �

Remark 3.2. Let H = kZ, and let A be a commutative Z-graded k-algebra. Then
PicH(A) = Picg(A), the graded Picard group of A, as introduced in [5] (see also [8]). The
exact sequence (3.1) reduces to the exact sequence in [5, Proposition 2.1].

The map d : Gm(A) d−→ Gi(A ⊗ H) is precisely the map Gm(A) → Gm(A ⊗ H) in the
Harrison complex. From Proposition 3.1, we therefore immediately obtain the following
corollary.

Corollary 3.3. With H and A as in Proposition 3.1, we have an isomorphism of
abelian groups

PicH(A) ∼= H1
Harr(H, A, Gm).

This is the promised algebraic interpretation of the first Harrison cohomology group.
Note that there are no flatness or projectivity assumptions on H or A. We have Hilbert 90
as an easy consequence.
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Corollary 3.4 (Hilbert 90). Let H, A, B be as in Proposition 3.1. If A is a faithfully
flat H-Galois extension of B, then we have an isomorphism of abelian groups:

Pic(A/B) ∼= H1
Harr(H, A, Gm).

Proof. From the fact that the monoidal categories MB and MH
A are equivalent, it

follows that Pic(B) ∼= PicH(A). �

Take the exact sequences (2.5) and (3.1), and observe that they fit into a commutative
diagram:

1 �� Gm(B) ��

=

��

Gm(A) d′
��

=

��

K1φG
g′

�� Pic(B) ��

j

��

Pic(A)

=

��
1 �� Gm(B) �� Gm(A) d �� Gi(A ⊗ H)

g �� PicH(A) �� Pic(A)

The map j maps [N ] ∈ Pic(B) to {N ⊗B A} ∈ PicH(A). Using the ‘five lemma’, we find
a map i : K1φG → Gi(A ⊗ H).

Lemma 3.5. With notation as above, the maps i and j are injective.

Proof. From the fact that u is a natural transformation between additive endofunc-
tors of the category of B-modules, and since uB is an isomorphism, it follows that
uN : N → (N ⊗B A)co H is an isomorphism if N is finitely generated and projective as a
B-module. So if N ⊗B A ∼= A, then N ∼= (N ⊗B A)co H ∼= Aco H = B, and j is injective.
The injectivity of i then follows from an easy diagram-chasing argument. �

Our next aim is to characterize the image of i. This will be the topic of § 4; it will turn
out that we obtain nice results in the case where H is cosemisimple.

4. Coinvariantly generated relative Hopf modules

Some of our results will be more specific if we assume that H is a cosemisimple Hopf
algebra over a field k. Recall that H is cosemisimple if there exists a left integral φ

on H∗ such that φ(1) = 1 (see, for example, [18]). In this case, the coinvariants functor
(·)co H : MH

A → MB is exact (see [15, Lemma 2.4.3]).
A relative Hopf module M is called coinvariantly generated if cM is surjective, or,

equivalently, if M = M co HA. If M is coinvariantly generated, and finitely generated as
an A-module, then we can find a finite set {m1, . . . , mn} ∈ M co H that generates M .

It follows immediately from the properties of adjoint functors that N ⊗B A is
coinvariantly generated, for every N ∈ MB ; in particular, A is coinvariantly generated.
We also have the following lemma.

Lemma 4.1. Let M ∈ MH
A and N ∈ MB . If M is an epimorphic image of N ⊗B A

in MH
A , then M co H = 0 implies that M = 0.
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Proof. If M co H = 0, then

HomH
A (N ⊗B A, M) = HomB(N, M co H) = 0.

But HomH
A (N ⊗B A, M) contains the epimorphism of relative Hopf modules N ⊗B A →

M , so M = 0. �

If N is an epimorphic image of M in MH
A , and if M is coinvariantly generated, then

N is also coinvariantly generated.

Lemma 4.2. Assume that H is a cosemisimple Hopf algebra over a field k. If N ∈ MB

is projective, then N ⊗B A is projective in MH
A .

Proof. See [7, Proposition 2.5]. �

Lemma 4.3. Let k be a field.

(1) The forgetful functor MH
A → MA preserves projectives.

(2) If H is cosemisimple, then the forgetful functor also reflects projectivity of finitely
generated modules.

Proof. (1) Take M ∈ MH
A projective, and consider the epimorphism p : M ⊗A → M ,

p(m ⊗ a) = ma in MH
A . The exact sequence

0 → Ker p → M ⊗ A
p−→ M → 0

splits in MH
A , since M is a projective object, and a fortiori in MA. Hence M is a direct

factor of M ⊗ A, which is a projective A-module, so M is also a projective A-module.

(2) Let M and N be relative Hopf modules, and assume that M is finitely generated
and projective in MA. According to [7, Proposition 4.2], HomA(M, N) ∈ MH

A , and
it is easy to show that HomA(M, N)co H = HomH

A (M, N). It follows that the functor
HomH

A (M, −) : MH
A → M is exact, since it is the composition of the exact functors

HomA(M, −) : MH
A → MH (M ∈ MA is projective) and (·)co H : MH → M (H is

cosemisimple). �

Lemma 4.4. Let H be a cosemisimple Hopf algebra over a field k, and take P, Q ∈ MH
A

finitely generated as A-modules. Assume that Q is a projective object of MH
A . Then every

epimorphism f : P → Q in MH
A has a right inverse in MH

A .

Proof. It is clear that HomA(Q, P ) and HomA(Q, Q) are right H-comodules, and the
map

f∗ = HomA(Q, f) : HomA(Q, P ) → HomA(Q, Q)

is right H-colinear. It follows from Lemma 4.3 that Q is projective as an A-module, so
f∗ is surjective. Since f∗ is H-colinear, f∗ restricts to a surjection

HomH
A (Q, P ) = HomA(Q, P )co H → HomH

A (Q, Q) = HomA(Q, Q)co H .

Take a preimage g ∈ HomH
A (Q, P ) of the identity map idQ on Q. Then f ◦ g = idQ, and

the result follows. �
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For M ∈ MA, we will denote the dual module by M∗ = HomA(M, A).

Proposition 4.5. Let H be cosemisimple, and assume that P ∈ MH
A is coinvariantly

generated and finitely generated projective as an A-module. Then

(1) P co H is a finitely generated projective B-module;

(2) P ∗ is coinvariantly generated;

(3) the map cP is an isomorphism in MH
A .

Proof. (1) As we have seen, there exist p1, p2, . . . , pn ∈ P co H such that P =
∑

i piA.
Set F = An and let f : F → P be the A-linear map given by f(a1, a2, . . . , an) =

∑
i piai.

Then F ∈ MH
A and f is an epimorphism in MH

A . By Lemma 4.4, there exists a monomor-
phism g ∈ HomA(P, F ) such that f ◦ g = idP . The restriction of g to P co H is then a
B-linear right inverse of the restriction of f to F co H , and F co H = Bn, and we obtain (1).

(2) The map g∗ = HomA(g, A) : F ∗ → P ∗ is surjective and H-colinear. The fact that
F ∗ is coinvariantly generated then implies that P ∗ is also coinvariantly generated.

(3) Consider the natural transformation t : (·)co H ⊗B A → (·) given by

tP : P co H ⊗B A → P, tP (p ⊗ a) = pa.

The map tA is an isomorphism, so tF is an isomorphism by additivity. It follows that tP
is an isomorphism, since F = P ⊕ Ker f as H-comodules. �

Let X =
∑

i ai ⊗ hi ∈ G(A ⊗ H), and write

AX =
{

a ∈ A

∣∣∣∣ ρ(a) = aX =
∑

i

aai ⊗ hi

}

and

Ai
X = {a ∈ AX | a is invertible}.

Observe that
Im(d) = {X ∈ Gi(A ⊗ H) | Ai

X �= ∅}

and
A1⊗1 = Aco H .

Furthermore, AXAY ⊂ AXY : take a ∈ AX and b ∈ AY , then ρ(a) = aX =
∑

i aai ⊗ hi,
ρ(b) = bY =

∑
j bbj ⊗ kj and

ρ(ab) = a[0]b[0] ⊗ a[1]b[1] =
∑
i,j

aaibbj ⊗ hikj = abXY.

Also Ai
X ∩ Ai

Y = ∅ if X �= Y .

https://doi.org/10.1017/S0013091504000549 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000549


566 S. Caenepeel and T. Guédénon

Lemma 4.6. The set

E = {X ∈ Gi(A ⊗ H) | AAX = A and AAX−1 = A}

is a subgroup of Gi(A ⊗ H) containing Im(d).

Proof. If X ∈ Im(d), then there exists an invertible a ∈ AX , and then AAX = A.
Since X−1 ∈ Im(d), we also have AAX−1 = A, hence X ∈ E. It is clear that 1 ⊗ 1 ∈ E.
If X, Y ∈ E, then AAXY ⊃ AAXAY = AAY = A, and, in a similar way, AA(XY )−1 = A,
hence XY ∈ E. Finally, if X ∈ E, then obviously X−1 ∈ E. �

Proposition 4.7. Consider the injective map j : Pic(B) → PicH(A). If H is a
cosemisimple Hopf algebra over a field k, then

Im(j) = {{M} ∈ PicH(A) | M is coinvariantly generated}.

Proof. M ⊗B A is coinvariantly generated, so Im(j) is contained in the desired
set. If H is cosemisimple, and {N} ∈ PicH(A), with N coinvariantly generated, then
N = (N co H) ⊗B A ∈ Im(j), by Proposition 4.5 (3). �

Lemma 4.8. Take X ∈ Gi(A ⊗ H). Then AX is coinvariantly generated if and only
if AAX−1 = A. If H is cosemisimple, then this is also equivalent to X ∈ E.

Proof. The first statement follows from the fact that (AX)co H = AX−1 . Indeed,
a ∈ (AX)co H if and only if ρX(a) = Xa = a ⊗ 1, if and only if ρ(a) = (1 ⊗ 1)a =
X−1(a ⊗ 1) = aX−1, which means that a ∈ AX−1 .

Let H be cosemisimple. Note that (AX)∗ ∼= AX−1
as relative Hopf modules. If AX is

coinvariantly generated, then so is AX−1
, by Proposition 4.5, and then X ∈ E. �

Now we are able to prove the main result of this section.

Theorem 4.9. Consider the monomorphism i : K1φG → Gi(A ⊗ H) introduced in
Lemma 3.5.

Then Im(i) ⊂ E and Im(i) = E if H is a cosemisimple Hopf algebra over a field k. In
this situation, Pic(A/B) ∼= E.

Proof. Take [(M, α)] ∈ K0ψG, and let i[(M, α)] = X ∈ Gi(A ⊗ H). Then

{AX} = j(g′[(M, α)]) = j([M ]) = {M ⊗B A},

hence AX is coinvariantly generated and AAX−1 = A, by Lemma 4.8. In a similar way,
i([(M, α)]−1) = X−1, and AX−1 ∼= M∗ ⊗B A is coinvariantly generated, so AAX = A,
again by Lemma 4.8. This proves that X ∈ E.

Assume now that H is cosemisimple, and take X ∈ E. It follows from Lemma 4.8
that AX is coinvariantly generated, and from Proposition 4.7 that AX = M ⊗B A for
some M ∈ Pic(B). Since the image of M in Pic(A) is trivial, [M ] = g′[(M, α)] for some
(M, α) ∈ C. Write i[(M, α)] = Y . Then X = Y d(a), for some a ∈ Gm(A). Consider the
map α′ : M ⊗B A → A, α′(m ⊗ b) = a−1α(m ⊗ b). Then i[(M, α′)] = X. �
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5. On the group-like elements

We have an injective map i : G(H) → G(A ⊗ H), i(g) = 1A ⊗ g. Everything simplifies if
i is an isomorphism. We discuss two situations in which this is (almost) the case.

Recall that a commutative algebra which is an integral domain is called normal if it is
integrally closed in its field of fractions.

Proposition 5.1. Let k be an algebraically closed field, let A be a finitely generated
commutative normal k-algebra and let G be a connected algebraic group acting rationally
on A. Let H be the affine coordinate ring of G, and χ(G) be the group of characters
of G. Then

G(A ⊗ H) = {1 ⊗ φ | φ ∈ G(H) = χ(G)}.

Proof. Let x =
∑

i ai ⊗ fi ∈ G(A ⊗ H). Then we have
∑

i

(ai ⊗ fi(1) ⊗ fi(2)) =
∑
i,j

(aiaj[0] ⊗ (fi ∗ aj[1]) ⊗ fj) (5.1)

and
∑

aiε(fi) = 1. The map

α : A ⊗ H → Hom(kG, A), α(a ⊗ f)(g) = af(g)

is injective. Let φ = α(x). Using (5.1), we compute for all g, g′ ∈ G that

φ(gg′) =
∑

i

aifi(gg′) =
∑

i

aifi(1)(g)fi(2)(g′)

=
∑
i,j

aiaj[0]((fi ∗ aj[1])(g))fj(g′)

=
∑
i,j

aiaj[0]fi(g)aj[1](g)fj(g′)

=
∑
i,j

(g · aj)fj(g′)aifi(g)

=
∑
i,j

g · (ajfj(g′))aifi(g)

= (g · (φ(g′)))φ(g).

From the second equality, we have 1 =
∑

i aifi(1G) = φ(1G). For every g ∈ G, φ(g) is
invertible in A, with inverse g · (φ(g−1)). By the proof of [13, Proposition 1b, p. 46],
φ(g) ∈ k for every g ∈ G, so φ ∈ χ(G). Now χ(G) = G(H) ⊂ H (see [12, p. 25]), so it
follows in particular that φ ∈ H. For all g ∈ G we now have that

α(1 ⊗ φ)(g) = φ(g) =
∑

i

aifi(g) = α(x)(g),

hence x = 1 ⊗ φ, by the injectivity of α. �
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Now consider the situation from Remark 3.2: H = kZ ∼= k[X, X−1], and A is a commu-
tative Z-graded algebra. In this situation A ⊗ H = A ⊗ k[X, X−1]. Group-like elements
in A ⊗ H can be constructed as follows. Let 1 = e1 + · · · + en with the ei orthogonal
idempotents, and take d1, . . . , dn ∈ Z. Then

∑n
i=1 ei ⊗ Xdi is a group-like element in

A ⊗ k[X, X−1]. In this way, we have an embedding of C(Spec(A), Z), the continuous func-
tions from Spec(A) (with the Zariski topology) to Z (with the discrete topology), into
G(A ⊗ k[X, X−1]). The first author was amazed to see that one of his first results, [5, The-
orem 2.3], can be restated in such a way that it becomes a result about corings. Recall
that a commutative ring is called reduced if it has no non-trivial nilpotents.

Proposition 5.2. Let A be a reduced Z-graded commutative k-algebra. Then the
map C(Spec(A), Z) → G(A ⊗ k[X, X−1]) is a bijection.

Example 5.3 (cf. Example 2.6 in [5]). Proposition 5.2 does not hold if A contains
nilpotent elements; this is related to the fact that there exist non-homogeneous units in
this situation. Let A = k[x], with x2 = 0, and put a Z-grading on A by taking deg(x) = 1.
Then 1 + ax ∈ Gm(A), and d(1 + ax) = (1 − ax) ⊗ 1 + ax ⊗ X is a group-like element in
G(A ⊗ k[X, X−1]) which is not in the image of C(Spec(A), Z).
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