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Nonlinearity of density stratification modulates buoyancy effects. We report results from
a body-inclusive large eddy simulation of a wake in nonlinear stratification, specifically
for a circular disk at diameter-based Reynolds number (Re) of 5000. Five density profiles
are considered; the benchmark has linear stratification and the other four have hyperbolic
tangent profiles of the same thickness to model a pycnocline. The disk moves inside the
central core of the pycnocline in two of those four cases and, in the other two cases with
a shifted density profile, the disk moves partially/completely outside the pycnocline. The
maximum buoyancy frequency (Nqy) for all the profiles is the same. The first part of
the study investigates the centred cases. Non-uniform stratification results in increasing
wake turbulence relative to the benchmark owing to reduced suppression of turbulence
production as well as wave trapping in the pycnocline. Steady lee waves are also quantified
to understand the limitations of linear theory. The second part pays attention to the effect
of a relative shift between the pycnocline and the disk. The wake defect velocity decays
substantially faster in the cases with a shift and the wake has higher turbulence level. The
effect of disk location on the Kelvin wake waves (a family of steady waves within the
pycnocline) and its modal form is obtained and explained by solving the Taylor—Goldstein
equation. The family of unsteady internal gravity waves that are generated by the wake is
also studied and the effect of disk shift is quantified.
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1. Introduction

A pycnocline is a layer of fluid whose density changes rapidly with depth and so does
the stratification described by the buoyancy frequency (N), where N? = —(g/po)dp/oz
(here, g is the acceleration due to gravity, pp is the constant reference density, and dp/0z
is the background density gradient in the vertical coordinate). Such layers in the ocean or
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atmosphere affect environmental turbulence and waves, the transport of tracers (nutrients,
pollutants, etc.) and the interaction of the environment with engineered structures. The
upper-ocean pycnocline is flanked by a mixed layer on the top and a deeper layer at the
bottom. The mixed layer and the deep layer can also be stratified but their stratification
levels are typically lower than that in the pycnocline. Since much of our knowledge of
turbulence in stratified wakes is derived from canonical wakes in uniform stratification, it
is useful to study the wake of a canonical body inside and near a pycnocline where the
change in stratification is rapid and nonlinear.

Most of the past work on the flow features of bodies moving through a pycnocline has
involved the internal wave structure. Robey (1997) studied internal waves generated by
a sphere moving below a pycnocline using experimental and numerical techniques for a
wide range of body based Reynolds numbers (Re) and Froude numbers (£7). Nicolaou,
Garman & Stevenson (1995) experimentally studied the waves of an accelerating sphere in
a thermocline (a pycnocline where density gradients are a result of temperature gradients).

The phase configuration for two-dimensional trapped internal waves was theoretically
and experimentally studied by Stevenson, Kanellopulos & Constantinides (1986) for a
cylinder moving in a thermocline generated using salt brine. Often, these experimental
observations of wave patterns are compared with the theoretical results of earlier
studies, e.g. Barber (1993) and Keller & Munk (1970), where analytical results involving
the dispersion relation of internal waves and their modal wave forms for nonlinear
stratification profiles are provided.

A hyperbolic tangent profile bridging two regions with different values of N has
been often used to model nonlinear density variation within and density jump across a
pycnocline. Ermanyuk & Gavrilov (2002, 2003) used a hyperbolic tangent profile to study
forces on an oscillating cylinder and sphere, while Grisouard, Staquet & Gerkema (2011)
used a hyperbolic tangent profile with a constant bottom N to study internal solitary waves
in a pycnocline using direct numerical simulation. A hyperbolic profile of N has been used
for studying a weakly stratified shear layer adjacent to a uniformly stratified region (Pham,
Sarkar & Brucker 2009) as well as an asymmetrically stratified jet (Pham & Sarkar 2010).

There have been numerous studies on the evolution of turbulent wakes under
stratification. An early study of Froude number O(10-1000) wakes by Lin & Pao (1979)
showed that stratification starts to affect the wake at a buoyancy time scale (Nf) of
O(1) resulting in a non-axisymmetric evolution. The multistage wake decay was later
characterized by Spedding (1997) into three separate regimes, namely three-dimensional
(3-D), non-equilibrium (NEQ), and quasi-two-dimensional (Q2-D) and quantitative
turbulence measurements were obtained in this and following laboratory studies.

Temporal simulations have enabled longer simulations in terms of evolved time (7") or
streamwise distance (x) using the transformation 7 = x/ U, Where Uy is the free-stream
velocity. Gourlay et al. (2001) found the appearance of pancake vortices in the Q2-D
regime in their temporal direct numerical simulation (DNS) of a wake at Re = 10* and
Fr = 10. Spedding (2001), through laboratory measurements on horizontal and vertical
centre planes, showed that vertical fluctuations in the stratified wake decay faster than the
horizontal fluctuations, a result that was later used by Meunier, Diamessis & Spedding
(2006) to predict the wake velocity, width and height of stratified momentum wakes far
from the body. Brucker & Sarkar (2010) performed a full turbulence analysis, including
quantification of mean and turbulent kinetic energy balances, of the DNS of towed and
self-propelled wakes and showed that this anisotropy is linked to the decreased turbulent
production in the wake. The net result is a longer lifetime of the stratified wake, also
verified later by Redford, Lund & Coleman (2015) in their DNS of a weakly stratified
turbulent wake. Redford e al. (2015) also found that the horizontal nature of the wake in
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the Q2-D regime resulted in the dominance of the lateral Reynolds shear stress so that
the decay of the mean wake velocity was faster (compared with the NEQ regime) and was
accompanied by an increase in the turbulent kinetic energy. Other studies that use temporal
wake models include Dommermuth et al. (2002), Diamessis, Domaradzki & Hesthaven
(2005), de Stadler & Sarkar (2012) and Abdilghanie & Diamessis (2013).

Temporal simulations have been shown to be sensitive to the choice of initial conditions
(Redford, Castro & Coleman 2012). Besides, inclusion of vortex shedding at the body
and lee wave generation presents a challenge to temporal models. In recent work on
stratified wakes, these limitations have been overcome by body-inclusive simulations.
Orr et al. (2015) conducted a numerical study of a sphere wake at Re = 200 and 1000
where they identified vortex shedding and lee waves. Pal et al. (2016) simulated the wake
of a sphere at Re = 3700 using DNS and found that there is a resurgence of turbulent
fluctuations below a critical Fr instead of a monotone suppression. This observation was
further examined by Chongsiripinyo, Pal & Sarkar (2017) who found that, despite the
low Fr, vortex stretching was dominant in the near wake, resulting in small-scale 3-D
turbulence. The decay of a disk wake at Re = 5 x 10* was examined by Chongsiripinyo
& Sarkar (2020) who decomposed its evolution into three regimes based on buoyancy
time scale and horizontal Froude number of the fluctuations (instead of the mean wake):
weakly stratified, intermediately stratified and strongly stratified turbulence. Turbulence
scales were also used to characterize wake transitions by Zhou & Diamessis (2019).
Ortiz-Tarin, Chongsiripinyo & Sarkar (2019) performed large eddy simulation (LES) of
flow past a prolate spheroid with laminar boundary layer separation into the near and
intermediate wake and found that at Fr ~ O(1), buoyancy effects are stronger for slender
bodies as compared with bluff bodies. Nidhan et al. (2020) analysed the unstratified
disk wake dataset of Chongsiripinyo & Sarkar (2020) using spectral proper orthogonal
decomposition (POD) and showed that the vortex shedding mode, originating near the
body, can persist for O(100D) distance downstream. Recently, Ortiz-Tarin, Nidhan &
Sarkar (2021) found that the wake defect for a slender body wake at high Reynolds number
deviates from that of bluff-body wakes.

Interaction of the turbulent wake with the stratified background leads to the generation
of unsteady internal waves. Abdilghanie & Diamessis (2013) found that the NEQ regime
is prolonged at high Re, resulting in internal wave radiation that persists up to Nt =
100. Brucker & Sarkar (2010) showed that internal wave flux dominates the turbulent
dissipation during 20 < Nt < 75 for a wake at Re = 5 x 10* and Fr = 4. In contrast,
Redford et al. (2015) showed that, for very high Fr, the internal wave activity, although
still more pronounced at the start of the NEQ regime, makes a negligible contribution to
the turbulent energy budget. Rowe, Diamessis & Zhou (2020) characterized the angles
for the strongest internal waves and found that, after Nt = 10, internal wave radiation
is an important sink for wake kinetic energy. Nidhan, Schmidt & Sarkar (2022) used
spectral proper orthogonal decomposition and connected the leading wake eigenmodes
to the wave field. Besides numerical techniques, many experimental (Gilreath & Brandt
1985; Hopfinger et al. 1991; Chomaz, Bonneton & Hopfinger 1993; Bonneton, Chomaz &
Hopfinger 1993; Brandt & Rottier 2015; Meunier et al. 2018) as well as theoretical (Sturova
1974; Voisin 1991, 1994, 2003, 2007) studies have been done to analyse the internal wave
field in a stratified flow.

Study of the wake in the vicinity of a pycnocline with a characterization of turbulence
and its interaction with trapped internal waves is limited. Pham & Sarkar (2010) studied
the interaction between internal waves from a shear layer and an adjacent stratified jet, and
classified waves that are trapped/reflected by the jet and waves that transmit through the
jet. Sutherland & Yewchuk (2004) and Sutherland (2016) calculated analytical expressions
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Figure 1. Schematic showing the simulation set-up and domain.

for internal wave transmission through density staircases for a stationary, 2-D Boussinesq
fluid. Voropayeva & Chernykh (1997) simulated a temporally evolving wake in a nonlinear
stratification using a Reynolds-averaged turbulence model. To the best of the authors’
knowledge, the present study is the first body-inclusive wake LES for a nonlinearly
stratified fluid. We aim to assess the effect of nonlinear stratification on wake turbulence,
its interaction with trapped waves as well as characterize the far-field lee waves. The disk is
chosen as a canonical generator of a bluff-body wake to avoid the computational expense
incurred in resolving the boundary layer that develops on a long body.

Section 2 describes the numerical set-up and the simulation parameters. The results are
divided into two sections. The basic differences between linear and nonlinear stratification
when the disk is centred in the pycnocline layer are studied in § 3. The effect of relative
shift between the density profile and the disk, so that the disk is partially/completely
outside the pycnocline layer, is discussed in § 4. We summarize and conclude the study
in §5.

2. Methodology
2.1. Governing equations and numerical scheme

The wake of a disk is simulated by solving the 3-D incompressible unsteady form of the
conservation equations for mass, momentum and density. A high-resolution LES with
the Boussinesq approximation for density effects is used. The disk, with diameter D and
thickness 0.01D, is immersed perpendicular to a flow with velocity Us. The equations are
numerically solved in cylindrical coordinates but both Cartesian (x, y, z) and cylindrical
(r, 0, x) coordinates are appropriately used in the discussion. Here, x is streamwise, y is
spanwise and positive along 6 = 0° and z is vertical and positive along 6 = 90° (figure 1).
The density field (p(x, t)) is split into a constant reference density (pog), the variation of
the background (App(2)), and the flow induced deviation, (pg4(x, 1)) so that p(x, t) = po +
App(z) + pa(x, 1). The Reynolds number of the flow, defined as Re = UoD/v (where v is
the kinematic viscosity) is 5000. Since the stratification is non-uniform, the Froude number
defined by Fr(z) = Uso/N(2)D is variable and its case-dependent behaviour is described
in § 2.2. The minimum value of the Froude number (Fr;,;,) is set to 1 for all the cases.
The filtered non-dimensional equations are as follows:

Ui _ . 2.1)

ax;
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ou; ou; 0 1 0 v ou;
Dy tm P (142 S Py (2.2)
ot 0x; dx;  Redx; v/ 0x; Fri.

0 0 1 0 0

ot 0x; RePr dx; Kk / 0x;

where u; refers to the filtered velocities in the x, y and z directions for i = 1,2 and 3,
respectively, vge and v in (2.2) are the subgrid-scale kinematic viscosity and the kinematic
viscosity, respectively, while kg5 and « in (2.3) are the subgrid-scale diffusion coefficient
and the diffusion coefficient, respectively. The Prandtl number defined by Pr = v/k is set
to one. No major qualitative influence of Pr was found in the wake study by de Stadler,
Sarkar & Brucker (2010) who varied Pr between 0.2 and 7. The dynamic eddy viscosity
model (Germano et al. 1991) is employed to obtain vy, following the implementation
of Chongsiripinyo & Sarkar (2020), and the subgrid Prandtl number is also set to unity to
obtain k. The eddy viscosity model calculates the values of eddy viscosity in the vicinity
of the solid boundary by following a similar procedure as used for the velocity field, i.e.
by enforcing Dirichlet boundary conditions on virtual points on the solid boundary and
then using a linear reconstruction scheme to modify the value at the forcing points near
the solid boundary (Balaras 2004). The parameters used for non-dimensionalization are
as follows: free-stream velocity (Uso) for velocity, disk diameter (D) for length, advection
time (D/Ux) for time, dynamic pressure (pU go) for pressure and characteristic change in
background density (—D(d App/02) |max) for the flow induced density deviation.

The periodicity in the azimuthal direction is leveraged in solving the discretized pressure
Poisson equation in the predictor step, reducing it to a pentadiagonal system of linear
equations, which is then solved using a direct solver (Rossi & Toivanen 1999). The disk
is represented by the immersed body method of Balaras (2004) and Yang & Balaras
(2006). At the inlet boundary, a uniform stream of velocity (Us,) is imposed while an
Orlanski-type convective boundary condition is used for the outflow (Orlanski 1976).
A Neumann boundary condition is imposed at the radial boundary of the domain for
density as well as the three velocity components. To prevent spurious reflection of waves
back into the domain, sponge layers are used at the inlet (streamwise length 10D), outlet
(streamwise length 10D) and the cylindrical walls (radial length 15D) of the domain to
gradually relax the velocities and the density to their respective background values at the
boundaries.

2.2. Density profiles

The profiles chosen for the variation of background density in the five cases are shown
in figure 2. Except for the benchmark 111 case, the profiles have non-uniform N(z) and
Fr(z) = U/N(z)D. Profile 111 with linear stratification has a constant Fr(z), which is
the conventional body-based Froude number of Fr = Uy /ND = 1. The maximum value
of the density gradient is the same for all four nonlinear profiles and corresponds to
Frpin = 1. In profile 614 (figure 2b), a hyperbolic tangent function is used to bridge two
linearly stratified regions (6 and 4 represent the value, rounded to an integer, of the local
Fr in the linearly stratified regions). Profile I11 (I standing for ‘Infinity’) is a complete
hyperbolic tangent profile between two constant-density regions, therefore having infinite
Froude number far above and below the body.

For the I1I and 614 profiles, the disk centre coincides with the centre of the density
profile and, furthermore, the disk lies entirely within the nonlinearly stratified region.
Profiles 614— and 614+ are obtained after shifting profile 614 (and not the disk) vertically
by —2.5D and 3D, respectively. The disk centre is located at z = 0 for all five profiles and
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Figure 2. Variation of background density for (a) 111, (b) 614, (c) 111, (d) 614—, (e) 6144, along with (f)
respective buoyancy frequency profiles. Solid black line at the centre of (a—e) represents the disk (not to scale).
Profiles are summarized in table 1 and also discussed in text. For 614—, the upper half of the disk is in a
constant-N region and the lower is in the pycnocline. For 614+, the disk is in the bottom constant-N region
with its upper edge 0.5D below the pycnocline.

the negative and positive signs in the names 614— and 614+ indicate whether the profile
is shifted downwards or upwards, respectively. The vertical shift in 614— (figure 2d) is
chosen so that the upper half of the disk lies in the linearly stratified region with Fr = 6
and the lower half in the pycnocline. The vertical shift in 6144- (figure 2¢) is chosen so that
the disk lies entirely in the linearly stratified region with Fr = 4 while being very close to
the pycnocline, specifically, its upper edge is 0.5D below the pycnocline.
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Case % Frin Froo 400 Froos oo % Comment
111 N/A 1 1 1 0 N(z) = constant (figure 2a)
111 2 1 o0 %) 0 N(z — £o0) = 0 (figure 2¢)
614 2 1 6.13 3.74 0 N(z — +00) = 0.163,

N(z — —o0) = 0.267 (figure 2b)
614— 2 1 6.13 3.74 —-2.5 N(z) of 614 shifted down (figure 2d)
614+ 2 1 6.13 3.74 3 N(z) of 614 shifted up (figure 2¢)

Table 1. Physical parameters of the simulated cases. For each case, Re = 5000 and Pr = 1. The domain with
L, =060,Ly =2m, L =30and L = 102 is discretized using N, = 479, Ny = 128 and N, = 2176 points.

The profile I11 is given by the following function, which was also used by Ermanyuk &
Gavrilov (2002, 2003) and Nicolaou et al. (1995) in their studies:
2
App(2) = =2 tanh ==, 2.4)
2 8
The central nonlinear region of the 614 profile is obtained from the I1I profile. The
linearly stratified regions of profile 614 are added by matching the slopes at z = 1.255 and
z = —4 so that the density profile is continuously differentiable in z. This results in Froude
numbers of 6.13 and 3.74 above and below the pycnocline layer respectively, for profile
614.
The profiles 614— and 614+ are shifted with respect to 614 and their central nonlinear
region is as follows:

PO oy 2C =9

A =— h ,
Pp(2) 5 tan 5

where s denotes the shift and takes values —2.5D and 3D for 614— and 614+, respectively.
The local Froude number corresponding to this pycnocline region can be calculated
using the local background buoyancy frequency

(2.5)

Uso ) 2(z—9)
F = ———,/ — |cosh
&= "=pVD ‘ 5

The minimum value of Fr(z) occurs at z = s. Thus, the minimum Froude number for

profiles 614 and 111 is
Frippm =Fr(z=5s=0) = \/ 2 (2.7)
T r s . .
e ‘ JegD\V D

Equation (2.7) highlights two important non-dimensional parameters for a body moving
through a pycnocline: Uy, /+/€gD, which is the conventional Froude number defined using
reduced gravity eg, and §/D, which is the non-dimensional thickness of the pycnocline.
In the simulations, Uso/~/egD = 1/+/2 and §/D = 2 for profiles 614 and I1I to obtain
Friyin = 1. Note that for 111, which has constant linear stratification throughout, Fry,;, = 1
still holds. Parameters for each case are given in table 1.

. (2.6)

2.3. Domain and grid

The domain extends from x/D = —L; = —30 to x/D = L} = 102 in the streamwise
direction and from r/D = 0 to /D = L, = 60 in the radial direction. The number of grid
956 A5-7
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points employed for discretizing the domain is N, = 2176, Ny = 128 and N, = 479 in
the streamwise, azimuthal and radial directions, respectively, resulting in approximately
130 million grid points. The disk is resolved into 47312 triangles. The LES grid
is non-uniform in the streamwise and radial directions and is designed to have high
resolution. In terms of the Kolmogorov length (n = (v3 /ekT)l/ 4), the maximum value
of Ax/n is 4.39 and that of Ar/n is 5.03. Also, the turbulent dissipation rate used for
the calculation of 5 includes the resolved-scale dissipation (¢ = 2v(s;js;.j)) as well as the

subgrid-scale dissipation (€55 = _<T_§/'gSij

the fluctuating and mean strain rates, respectively. See § 2.4 for averaging details. Most of
the turbulent dissipation resides in the resolved scales.

/ 1 —_— . / .o
sij) with Tsgsy = 2v5g5Sij), where 8ij and §;; are

2.4. Statistics

Each of the simulations is approximately 260 non-dimensional time units (D/Ux,) long,
which is approximately 2.5 flow throughs. Statistics are collected after the initial transience
has subsided and statistical steady state is reached (which takes approximately 120
non-dimensional time units). Averaging is done over a total of 140 non-dimensional time
units after statistical steady state is reached. For any dependent variable in the simulation,
(-) is used to represent the time average and ’ is used to represent the fluctuation about that
average, over the multiple ensembles collected during the statistical steady state.

3. Linear vs nonlinear stratification
3.1. Steady lee waves

Disturbances in stratified environments generate internal waves. These can be steady lee
waves generated by the body or unsteady internal waves generated by turbulence in the
wake of body. In this section, the characteristics of the body generated lee waves on the
vertical centre plane for 111 and 614 will be analysed using linear asymptotic theory. Note
that since I11 is essentially unstratified away from the pycnocline layer, it does not show
any lee waves.

Instantaneous contours of vertical velocity (w) for 111 (top half) and 614 (top and bottom
halves) on a vertical plane passing through the centreline are plotted in figure 3(a—c). The
amplitude of steady lee waves decays moving away from the body. The lee waves observed
in 111 are symmetric with respect to z = 0 while 614 has two different sets of lee waves (top
and bottom) owing to the two different local values of Fr(z) (6.13 above and 3.74 below)
in the linearly stratified regions above and below the pycnocline layer. The waves in the
614 case have a much smaller amplitude than in the 111 case and a larger wavelength.
(Note that we use w instead of (w) to visualize the steady lee waves to give a complete
picture of the flow field. Unsteady internal waves, that are discussed in § 4.3 can be seen
in figure 3(a—c) as distortions in the wave field near the wake that grow as x/D increases.)

Linear theory, given by Voisin (1991, 2003, 2007) is used to analytically predict the
wavelength and amplitude of the lee waves. The theory computes a wave function, xy from
a linearized set of inviscid equations involving a source term ¢ on the right-hand side of
the continuity equation to model the moving body using a Green’s function approach for
large times (Nt >> 1), which in our case translates to x/D >> Fr. Once x is known, w is
calculated. The expression for w for the case of a Rankine ovoid as derived by Ortiz-Tarin
et al. (2019) and employed for a 4 : 1 spheroid wake can be reduced to give the wave
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Figure 3. Instantaneous vertical velocity at 7 = 200D/ Uy, showing internal waves (a—c) and their amplitudes
(d—f) along the dashed arrow labelled by d/D. (a,d) — 111 (90° plane); (b,e) — 614 (90° plane); (c,f) — 614 (270°
plane). The instantaneous velocity contains both the steady lee wave, which is dominant in the far field, and
the unsteady wake generated waves.

pattern on the vertical centreline plane as

mN Na N
wx,y=0,2) ~—————cosysin| —cosy | sin| —ry; |, (3.1
U0 xz U U
where 1, = v/x2 +z2 and { = arctan(z/x). Also, m and a are calculated from the
potential flow stagnation point solution for a Rankine ovoid of length L, and
cross-sectional diameter D,,

(L2, — 4a?)? ( Sma )L D> < Sma > ! (3.2a.b)
ro — aa = 70> ro — : -2a,
TUso mUs) /4d® + D2,

Note that Ortiz-Tarin et al. (2019) calculated m and a using the potential flow solution of
a Rankine oval, which is a 2-D solution. Equation (3.2a,b) is based on the solution for
a Rankine ovoid (which is three-dimensional), and serves as a correction to Ortiz-Tarin
et al. (2019). Note that, as per (3.1), the wave amplitude decreases with decreasing N or
increasing Fr.

The Rankine ovoid was chosen since it is close to the observed shape of the disk plus
separation bubble and it has a simple potential flow solution — a 3-D source and a 3-D sink
—needed for the linear theory of wave generation. The ovoid dimensions are based on the
observed dimensions of the separation bubble. To apply linear theory to a bluff body such
as a disk, the separation bubble created by the disk should also be included as a part of the
extended body involved in wave generation. The complete extended body for 111, I11 and
614 cases resembles an ovoid with L,, ~ 2.5D and D,, ~ 1.5D. It should be noted that the
exact body shape is insignificant as far as the wavelength of the waves is considered, but
the wave amplitude depends on the body shape.

Figure 3(d) compares the wave amplitude between simulation and the theoretical
estimate of (3.1). The comparison is along the dashed line with an arrow in figure 3(a),
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Figure 4. (a) Mean defect velocity at centreline. (b) Mean streamwise velocity contours on vertical plane
passing through centreline. Dashed yellow line represents the separation bubble (U = 0).

which is at an angle of 45° to the x-axis. The theory, when used with the Rankine ovoid
approximation for the disk and the separated flow behind it, is able to accurately capture
the amplitude variation specially moving away from the body for the 111 case which has
linear stratification with constant V.

A similar analysis is performed for the lee waves of 614 after taking the Froude number
in the analysis to be that of the linearly stratified region, i.e. Fr = 6.13 for figure 3(e)
and Fr = 3.74 for figure 3(f). This procedure results in the correct prediction of the
wavelength of the propagating lee waves. Theory is able to capture the order of magnitude
of the significantly reduced (relative to 111) wave amplitude but the theoretical estimate of
the wave amplitude is an under-prediction. The disk moves through a local stratification
corresponding to Fr = 1 but the lee waves form and propagate in the linearly stratified
regions where the Froude number is larger (Fr = 6.13 and Fr = 3.74). Therefore, the true
wave amplitude corresponds to Fr somewhat lower than that used in the theory and, thus,
larger than the theoretical estimate. Since the wavelength is comparable to the variability
scale of N(z), Wentzel-Kramers—Brillouin (WKB) theory cannot be used and we do not
proceed further with linear analysis.

3.2. Mean defect velocity

All cases show a strong effect of buoyancy on the wake since Fr = 1 at the disk is common
to them but there are differences among the cases as elaborated below. Figure 4(a) shows
the mean centreline defect velocity for the three cases plotted against the streamwise
distance. The 111 case shows strong oscillatory modulation of the wake and its defect
velocity, similar to the sphere wake (Pal et al. 2017). In contrast to 111, the modulation in
614 and I11, although present, is small. The wavelength of modulation for 111 is 2wDFr as
in the linear theory result (3.1), and as noted in previous work.

All cases show a similar decay law of Uy x 918 in the NEQ regime, which was also
observed by Chongsiripinyo & Sarkar (2020) for a disk at a higher Reynolds number of
5 x 10*. Around x/D = 45(Nt = 45), the decay law transitions to a faster decay rate,
signalling the beginning of the Q2-D regime. A notable difference in the defect velocity
profiles occurs at x/D ~ 4, where the initial dip in the profile for 111 is larger in magnitude
and occurs earlier than that of 614 and I1I, owing to the stronger lee wave in 111 as
compared with 614 and I1I. The mean velocity contours on a vertical streamwise cut
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Figure 5. (a) The TKE contours at x/D = 20. (b) Area-averaged values of TKE as a function of streamwise
distance.

(figure 4b) show that the lee wave modulation in the wake for 111 is stronger and its
separation bubble is smaller, which is consistent with the earlier dip in the profile of defect
velocity (figure 4a).

3.3. Turbulent kinetic energy

The nonlinearly stratified cases exhibit stronger levels of turbulent kinetic energy (TKE).
This difference is illustrated by the contours of TKE at x/D = 20 in figure 5(a), plotted for
the three stratification profiles. The pycnocline cases have a higher TKE (by 50 %—100 %)
relative to the 111 case over the entire wake length as shown by the area-averaged values
of TKE plotted in figure 5(b). The area averaging at any streamwise location is done in
the region covered by a circle of radius 3D, therefore containing most of the turbulent
zone. The TKE is substantially larger in I11 and 614 relative to 111, especially in the NEQ
regime. For example, 111 has almost twice the TKE of 111 at x/D = 45. It is worth noting
the slight increase in TKE for the case 111 at x/D = 50 which is where the decay law for
the mean defect velocity changes (§ 3.2), again pointing towards the transition to Q2-D
regime.

To explain the relatively high turbulence, we inspect the terms in the TKE budget,
especially the lateral production (the production by vertical Reynolds shear stress is small)
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Figure 6. (a) Lateral production contours at x/D = 20. (b) Area-averaged values of lateral production as a
function of streamwise distance.

and the wave flux. Although the hyperbolic tangent profile is close to a linear profile near
the centreline, the weaker stratification regions above and below are not as effective in
suppressing near-wake turbulence stresses, which results in higher TKE production further
downstream. Also, the weaker far-field stratification in 614 and I1I relative to 111 does
not allow the full frequency range of waves generated in the Fr = 1 central region to
escape into the far field. The reduction of wave energy flux traps fluctuations in the wake
and results in a TKE increase. The two quantities, lateral TKE production and wave flux,
are diagnosed in the following subsections. Although both contribute, it is found that the
increase in TKE production is somewhat larger than the decrease in wave flux.

3.3.1. The TKE production
Contours of lateral production Py, which is the dominant component of TKE production
for all three cases, are plotted in figure 6(a) at x/D = 20. The increased P,y in 614 and I11
is partly a result of the higher lateral Reynolds shear stress (—u'v’).

Area-averaged values of the lateral production over a circle of radius 3D are shown
in figure 6(b). The lateral production is consistently larger in the 614 and I11 cases over
10 < x/D < 50 and is as much as twice at some locations.
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Figure 7. (a) Radial waveflux contours at x/D = 20. (b) Total waveflux integrated over rectangular perimeter
outside the turbulent wake as a function of streamwise distance.

3.3.2. Energy flux of wake generated unsteady waves
The dispersion relation for internal gravity waves in a stratified non-rotating medium

2 =NcosO, 3.3)

where @ is the angle of the phase line with the vertical, limits the maximum allowable
frequency to N. Since weaker stratification supports a narrower frequency band of wave
propagation, 614 and I11 can be expected to allow a smaller wave energy flux to radiate
through the pycnocline layer as compared with 111. This is indeed the case as can be seen
by the contours of the radial wave flux (p'u,) in figure 7(a), where it is evident that the wave
flux is restricted within the pycnocline layer (—2 < z/D < 2) instead of being radiated
away as in 111. Note that the means of the radial velocity and pressure are subtracted when
computing the flux so as to discard the component from the steady lee waves.

A quantitative comparison among the cases is performed by computing the line integral
of the internal wave flux over a rectangular perimeter. Specifically, the integral

f i(l/p’) - ndl, (3.4)
C PO
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Figure 8. (a) Schematic showing trapping of internal waves for 614 and 111 compared with 111, (b) W, at
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which is a function of x/D, is calculated using a rectangle C with vertical sides at
v/D = *£4 and top/bottom sides at z/D = £2.5 (thereby containing the pycnocline layer).
Figure 7(b) shows that the flux of wave energy radiated away from the wake of 111 is much
larger than 614 and I11 in the early part of the NEQ regime. However, at x/D = 40 in the
late NEQ stage, the fluxes for 614 and 111 overtake the flux of 111. Both of these trends can
be explained by the schematic shown in figure 8(a). The wake generated internal waves
that are trapped inside undergo complex wave—wave interaction after getting vertically
restricted, resulting in sideward escape of the wave flux. The sideward escape can be
verified by using an appropriate scaling argument for the vertical as well as lateral wave
flux at the top and side boundaries of the rectangle, respectively,

(3.5a,b)

(plwl> ~ PrmsWrms (P/U,> ~ PrmsVrms-

Here, the subscript rms stands for the root mean square value. The values of Wyy;
at the point Pyp, Vs at the point Pgg, and pp,g at Py, and Pgige are shown in
figure 8(b—e), respectively. Comparison of figures 8(d) and 8(e) shows that, although
pressure fluctuations at the top boundary are highest initially for 111 among all cases
and boundaries, the pressure fluctuations for 614 and I1I increase with time at the side
boundaries because of the wave trapping and the resulting sideward escape. The velocity
fluctuations at the boundaries also show similar trends. The sideward escape of the wave
energy takes some time to manifest which, in the simulation frame, translates to streamwise
distance, hence causing the slight delay in the increase of integrated wave flux for 614 and
I11. Figure 8(b—e) is consistent with the following result: most of the wave flux for 614 and
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I11 that escapes the wake core does so in the form of lateral wave flux (p'v’) unlike 111
where the vertical wave flux (p’w’) is the major contributor.

4. Centred vs shifted nonlinear stratifications
4.1. Taylor-Goldstein equation and Kelvin wake waves

In cases involving pycnoclines, there is a family of steady waves which resemble a
Kelvin ship wave pattern, on horizontal planes inside the pycnocline layer. Intuitively,
a stratification profile with a large central value of buoyancy frequency (Fr < O(1)) that
changes rapidly in the vertical (over §/D < O(1)) to a small value at the edges can be
thought of as a smoothed density jump and thus one can expect a pattern resembling
that generated on the air—water interface by a moving ship. Both centred and shifted
stratification profiles show Kelvin wake wave patterns. However, as demonstrated here, the
wake wave structure differs qualitatively from the centred 614 wake when the stratification
profile is shifted with respect to the disk centre, as in 614— and 614+ .

The dispersion relation of air—water surface gravity waves leads to the waveforms of
air—water Kelvin ship waves. To obtain an appropriate dispersion relation for the nonlinear
continuously stratified profiles, the Taylor—-Goldstein equation is numerically solved

o) 5 (N

—— + k| — -1 =0. 4.1
2 T )¢(z) (@.1)
Here, ¢ () is the vertical displacement eigenfunction, and k and §2 (k) are the wavenumber
and angular frequency corresponding to the dispersion relation. The Taylor—Goldstein
equation is numerically solved as an eigenvalue problem for ¢ (z) by treating §2 as an
eigenvalue and k as a parameter, e.g. Robey (1997). The boundary conditions used are

$(z=—L)=¢=L)=0. 4.2)

Also, based on Sturm-Liouville theory, the eigenfunctions are normalized using

=L,
f GnN*(2)n dz = Sy (4.3)
Vé

=L,

Figures 9(a) and 9(b), respectively, show the mode 1 and mode 2 eigenfunctions for
different values of k. The numerically calculated dispersion relation is also compared in
figure 9(c) with the approximation given by Barber (1993)

Cpok
1+ M'
Nmax

k) = (4.4)

Here, ¢y, is the limiting long-wave phase speed of a given mode at k = 0, which is obtained
by extrapolation, i.e. ¢p, is the slope at the origin of the mode-specific curve in figure 9(c).
For the chosen profiles, ¢p,/Ux for mode 1 and mode 2 are 2.23 and 0.68, respectively.
Since (4.4) provides a very good approximation to the dispersion relation, it will be used
for the remaining analysis of this section.

Using the dispersion relation, phase and group velocities associated with each mode can
be calculated using ¢, = §2/k and ¢, = d£2/dk, and then substituted in the expressions
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Figure 9. (@) Mode 1 and (b) mode 2 eigenfunctions for different values of wavenumber in (4.1).
(c) Numerically calculated dispersion relation compared with approximation given by Barber (1993). (d) Mode
1 and (e) mode 2 waveforms as calculated using (4.5a,b).

given by Keller & Munk (1970) to obtain the modal wave patterns corresponding to each

eigenfunction
2\ 172
CpCq p
w(1-5) el

, , (4.5a,b)
k(cp —cg) k(cp — cg)

where (x, y) corresponds to a locus of points on the horizontal plane parametrically given
in terms of k for a constant value of phase, ¢. Figures 9(d) and 9(e) respectively show
mode 1 and mode 2 wave patterns, plotted using (4.5a,b).

Figure 10 shows the instantaneous radial velocity contours for 111, 614, 614— and 614+
plotted on a half-horizontal plane passing through the respective pycnocline centre. (For
111, the plot is on 6 = 0° plane.) The waves in 614 have constant-phase lines which
resemble mode 2 (shown earlier in figure 9¢) but not mode 1. In contrast, the phase
lines for 614— and 614+ are more complex. In the region 0 < y/D < 10 they resemble
the mode 1 pattern of figure 9(d) but, for y/D > 10, they resemble the mode 2 pattern.
The manifestation of any mode by a disturbance in the pycnocline layer depends on
the location of the disturbance with respect to the pycnocline layer. In 614, the disk
centre travels along the centre of the pycnocline layer to displace fluid symmetrically
in the upward and downward directions, corresponding to the antisymmetric mode 2
eigenfunction for displacement and therefore generates mode 2 waves. Any vertical offset
from the pycnocline centre modifies the antisymmetric pattern of the displacement so as
to also involve some contribution from the mode 1 waveform. The presence of a mode 2
wave pattern in the central region of the lateral plane and a mode 1 pattern otherwise is in
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Figure 10. Instantaneous contours of radial velocity on a half-pycnocline-centre plane at 7 = 200D/ Uxo: (a)
111, (b) 614—, (c) 614 and (d) 614-+. Dashed lines correspond to mode 2 waves which were shown in figure 9(e).

agreement with the visualizations in the experiment of Robey (1997). For profile 614+, the
contours look similar to that of 614— but with slightly lower intensity because of the disk
being further away from the centre of the pycnocline. (Note that the wave pattern for I11 is
the same as that of 614 because they have the same hyperbolic tangent function modelling
the nonlinearity.)

4.2. Distinction between lee waves and Kelvin wake waves

Kelvin wake waves are steady in the frame of reference of the moving body like the
lee waves but constitute a new family of waves in terms of their distinct features
and appear only when the stratification is non-uniform. Figure 11 shows instantaneous
contours of radial velocity on horizontal planes for the centred profiles 111, 614 and
I1T at different vertical locations. At z/D = —2.5 (figure 1la—c), the contours have
superficial resemblance but they represent fundamentally different waves. For 111, since
there is no nonlinear gradient, Kelvin wake waves are not formed on the horizontal
plane passing through the domain centreline at z/D = 0, (e.g. the previously shown
figure 10a), and so figure 11(a) has the horizontal imprint of only lee waves. However,
for 614 and I1I, the contours at z/D = —2.5 in figure 11(b,c) are mostly the imprints
of the Kelvin wake waves in figure 10(c). For 614, Kelvin wake waves disappear farther
away from the region of nonlinear stratification and the contours transition to those of lee
waves corresponding to Fr = 3.74 (figure 1le,h,k). For I11, once the Kelvin wake waves
disappear, lee waves are not observed since the profile is unstratified outside the pycnocline
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Figure 11. Instantaneous contours of radial velocity for the centred cases on vertically offset horizontal planes
at T =200D/Uy for 111 (a.d,g.j), 614 (b,e,h k) and 111 (c,f,i,]). The vertical offset of each plane increases
from (a—c) to (j-I).

region (figure 11f,i,/). Turning back to case 111, we see the lee waves weakening as z/D is
increased (figure 11d,g.,j) but their pattern is still clear at z/D = —30.

4.3. Wake generated internal gravity waves

The internal gravity waves generated by the turbulent wake are unsteady. These waves
are visualized in figure 12 for case 111 by contours of dw’/dz on the 6 = 90° vertical
plane. The phase lines of the radiated waves in the far field are seen to cluster around a
characteristic inclination angle, which suggests a narrow frequency band in the far field
according to the dispersion relationship, (3.3), for the intrinsic (in a frame where the
background has zero velocity) wave frequency.

Figure 12 also shows solid black lines plotted at an angle of 39° from the vertical, which
also seems to be the angle for the waves (39° & 2°). This gives £2/N = 0.78 £ 0.03.

For profile 614+, the dw’/dz contours on the entire vertical plane (6 = 90° and 270°) are
plotted in figure 13. Phase lines with a dominant inclination angle are seen in the negative
z/D region where the waves with downward group velocity travel in an entirely linear
stratification (Fr = 3.74). The inclination angles in this region of z/D < 0 cluster around
® = 44°, which gives £2/N = 0.72 (note that N here corresponds to the local Fr = 3.74).
The upward moving waves generated by the disk enter a region of nonlinear stratification
where there is significant small-scale variability. As the waves exit the pycnocline layer
from the top, they have near-zero inclination with respect to the vertical, i.e. ® ~ 0°, which
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Figure 12. Instantaneous contours of vertical derivative of vertical velocity fluctuation at 7 = 200D /U
showing wake generated internal gravity waves on the 6 = 90° plane for 111. Black lines are inclined at an
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Figure 13. Instantaneous contours of vertical derivative of vertical velocity fluctuation at 7' = 200D/ U
showing wake generated internal gravity waves on the & = 90° and 180° planes for 614+-.

implies that only the high-frequency near-N (N here again corresponds to the local Fr =
6.13) part of the wake generated waves escapes into the upper region of weak stratification.
Thus, a significant portion of the wake generated waves is trapped within the pycnocline
leading to the small-scale variability in that region.

4.4. Wake characteristics

Wake characteristics, namely, the mean defect velocity and TKE, show qualitatively
different behaviour for the shifted pycnocline cases 614— and 6144 relative to the centred
614 profile. Figure 14 compares the streamwise evolution of centreline mean defect velocity
(Uy/Uso) among all five simulated cases. Recall that, for 6144, the disk is entirely in the
Fr = 3.74 region with its upper edge in the pycnocline and, for 614—, half of the disk is in
the Fr = 6.13 region and half in the pycnocline. Since, for both 614— and 614+, the disk
wake evolves in relatively weaker stratification relative to the Fr = 1 stratification seen by
the disk in 614, there is a faster rate of decay of Uy (x x7933) in these cases (figure 14).
614— has a weaker effective stratification relative to 614+ and, therefore, has a somewhat

956 A5-19


https://doi.org/10.1017/jfm.2022.1084

https://doi.org/10.1017/jfm.2022.1084 Published online by Cambridge University Press

D. Gola, S. Nidhan, J.L. Ortiz-Tarin, H.T. Pham and S. Sarkar

—a— 111 —e— 614 ——1I1I — 614 — 614+

1004

1 5 10 20 40 70
x/D

Figure 14. Evolution of centreline mean defect velocity for the five simulated cases.
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Figure 15. The TKE contours at x/D = 20 for all five cases; (a) 111, (b) 614, (c) 111, (d) 614—, (e) 614+.

lower Uy. It is also worth mentioning that, since the simulation domain is not long enough
in the streamwise direction, the limited data prevent discerning of the x~°-76 decay law in
the late Q2-D regime, which is otherwise observed in Spedding (1997) and can also be
deduced from the drag coefficient as shown by Meunier & Spedding (2004).

The TKE contours plotted in figure 15 also show that the buoyancy effect is weaker for
the shifted profiles; 614— and 614+ show far higher TKE than the other three cases that
have Fr =1 at the disk centre. Since the bottom half of the disk of 614— is inside the
pycnocline layer, the wake core is not symmetric about the horizontal axis and appears to
be somewhat compressed from the bottom where the effective stratification is higher. The
TKE profile at x/D = 20 is more symmetric for 614+.
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5. Summary and conclusions

We present results from a body-inclusive LES of turbulent wakes in a background
stratification which is nonlinear instead of the linear stratification that is typically
considered. A disk of diameter D is chosen as the canonical bluff body, the relative
velocity is U and the Reynolds number is S000. Four density profiles with a hyperbolic
tangent pycnocline are selected along with a standard constant linear stratification profile.
The nonlinear profiles are 614 (weak upper stratification with Fr ~ 6 and weak lower
stratification with Fr ~ 4 bounding the pycnocline), 111 (no stratification surrounding
pycnocline), 614— (614 density profile vertically shifted by —2.5D) and 614+ (614 density
profile vertically shifted by 3D). The thickness of the hyperbolic tangent profile is fixed
at § = 2D. The Froude number Fr(z) = Ux/N(z)D, which is based on local value of
buoyancy frequency N(z), varies and takes a minimum value of 1 for the cases with
non-uniform N(z) and is set to 1 in the benchmark constant-N case. The inverse of Fr(z)
can be viewed as the local buoyancy frequency, non-dimensionalized with the flow scales,
so that non-dimensional N,y is the same among all cases. The pycnocline thickness
normalized by D is also held constant.

Our main conclusion is that the non-constant N profile studied here substantially alters
both the turbulent wake and the internal wave field. In the first part of the study, results
with the centred nonlinear profiles 614 and I1I are compared with the linear profile 111.
The mean defect velocity (Up/Ux) in the near wake (x/D < 8) is quite different for 111,
which shows an initial oscillation with stronger amplitude than 614 and I1I. This initial
oscillation of the defect velocity is the oscillatory modulation of the wake, which has
been shown to be an imprint of the steady lee wave field in linear stratification (Pal et al.
2017) cases. The I11 case, which is unstratified outside the pycnocline, does not support a
steady lee wave in the far field. Nevertheless, its near wake exhibits oscillatory modulation
(wavelength is slightly larger than that for 111) because of an evanescent steady wave. In
the NEQ regime, which follows the initial oscillation, Uy/Ux, in all three cases was found
to decay as x~ %18, Chongsiripinyo & Sarkar (2020) found the same power-law exponent
of —0.18 in their disk wake, which had an order of magnitude larger Re = 5 x 10 It is
worth noting that the power-law exponent of —0.18 for the disk wake is somewhat lower in
magnitude than that the nominal value of —0.25 for the NEQ stage of the stratified sphere
wake.

The decay law transitions to a faster decay rate at around x/D = 45, suggesting the end
of the NEQ regime and beginning of the regime with Q2-D power law. The Q2-D regime
was not found by Chongsiripinyo & Sarkar (2020) at their lowest Froude number, Fr = 2.

Wakes formed within a pycnocline layer are found here to be more turbulent than in
linear stratification given the same value of N(z) at the disk centre. The TKE for cases
614 and I1I exceeds that for 111 even though N(z) is very similar in the wake core
among the three cases. The difference is specially large in the NEQ regime where 111 has
approximately twice the TKE of 111. The reasons are as follows. First, the most dominant
production term, Py, is higher for 614 and I11. The turbulent momentum flux is sensitive
to the weak stratification, even though the weakening occurs away from and not in the
wake core and, therefore, the suppression of the turbulent flux by stabilizing buoyancy is
weaker in 614 and I11. Second, the internal wave energy flux out of the wake, (p'u,) is
smaller for 614 and I11 because there is a range of internal waves that is generated but
cannot propagate out vertically since their frequency exceeds the smaller N outside the
pycnocline. This wave energy is trapped inside the pycnocline layer. Both of these effects
dominate at the beginning of the NEQ regime, resulting in a more turbulent wake. It is
worth noting that a side lobe of wave radiation forms in 614 and I11 (centre and left panels
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of figure 7a), but the overall integrated wave flux in the NEQ regime is still smaller than
111.

Based on the theoretical asymptotic analysis for steady lee waves by Voisin (2007), the
potential flow solution for an oval was used by Ortiz-Tarin et al. (2019) to develop an
expression for the lee wave field of a spheroid in linear stratification. We find that the
disk, along with its separation bubble, can be approximated as a Rankine ovoid and have
used the ovoid shape for the potential flow solution instead of an oval. There is excellent
agreement between the 111 simulation and the analytical expression with regards to both
wavelength and wave amplitude. The 614 simulation has a lee wave field whose wavelength
is well predicted by constant-N linear theory upon using Fr = 6.13 above and Fr = 3.74
below the pycnocline to approximate the steady lee wave in those regions. However, the
simulation amplitude for 614 is higher than that given by this approximation since the
wave-generation region, which includes the pycnocline, has an effective N that is larger
than the constant far-field N and, therefore, a stronger wave field.

In the second part of the study, the influence of shifting the pycnocline layer relative to
the disk centre is found to be strong. In 614—, the upper half of the disk lies in the upper
region of weak (Fr = 6.13) linear stratification and, in 6144, the disk lies entirely in the
lower linearly stratified region (Fr = 3.74) but still very close to the non-uniform-N region.
Overall, the relative shift between pycnocline and disk weakens the buoyancy effect on the
mean wake, since the wake feels a weaker effective stratification. Thus, different from
the 614 centred case, the defect velocity in the shifted cases does not show an oscillation

in x/D < 8 and also decays more quickly (Up ~ x93 instead of x~%13) in the NEQ
stage. The wakes are also more turbulent in 614— and 6144, as shown by the TKE. The
asymmetric placement (with respect to the profile) of the disk in 614— is also clearly
manifested in its TKE contour where the lower half, which is inside the pycnocline layer,
is vertically compressed relative to the upper half.

With regards to the wave field, in addition to the usual steady far-field lee waves
and unsteady wake generated waves, the pycnocline also supports the steady Kelvin
wake waves. The Kelvin wake waves can be analytically described by solving the
Taylor—Goldstein equation as an eigenvalue problem and they take a different form than
the lee waves as visualized by figure 11. Furthermore, shifting the disk alters the modal
wave form. The dominant waveform in 614 corresponds to the mode 2 eigenfunction while
614— and 6144 exhibit a mix of two waveforms, corresponding to mode 1 and mode 2
eigenfunctions. In 614, the disk moves right at the centre of the pycnocline layer, leading
to the symmetry property of the mode 2 wave. Any vertical offset from the centre leads
to the appearance of mode 1 waves. These modal waveforms are well corroborated by the
experiments of Robey (1997) as well as Nicolaou et al. (1995).

Phase lines of unsteady internal gravity waves in the linearly stratified far field are found
to cluster around a characteristic inclination angle which takes the value of 6 ~ 39° in 111.
This result of phase-angle clustering is consistent with several previous studies of wave
radiation from a turbulent flow (Sutherland & Linden 1998; Dohan & Sutherland 2003;
Taylor & Sarkar 2007; Pham ez al. 2009) but it is also worth noting that, as Re increases,
Abdilghanie & Diamessis (2013) find a broader range of wave phase angles. In case 614+,
the wake generated waves that propagate downward do so in a linear stratification and
cluster around 6 ~ 44°. The upward propagating waves have to go through the pycnocline
layer and only the near-N waves are able to propagate in the weak linear stratification
above the pycnocline. Some of the wave energy that reflects off the pycnocline boundaries
is trapped and leads to small-scale variability while a fraction escapes through the sides of
the wake.
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We have explored a limited portion of the parameter space applicable to turbulent
wakes in nonlinear background stratification. Depending on the application and the
environmental setting, there can be wide variability in the non-dimensional pycnocline
thickness (8/D), the shape of the non-uniform stratification and the variability of N(z).
For pycnoclines with weaker stratification in the centre (Fr,,;, > 1), one can expect a more
turbulent wake, stronger wake generated unsteady waves that interact with the non-uniform
stratification and an expanded region of fluctuations whose turbulence/wave properties
remains to be characterized.

Note that Fry, can be changed by either changing the conventional Froude number
defined using reduced gravity (Uso/+/€8D), or by changing the thickness of the pycnocline
(6/D), as seen from (2.7). For the shifted pycnoclines, the effect of the pycnocline layer
on the unsteady internal gravity waves will become less significant as the disk is moved
further away from the pycnocline layer, however, the steady lee waves might still be able
to interact with the pycnocline layer depending on the local stratification strength. Future
examination of this wide parameter space in laboratory experiments as well as simulations
(body-inclusive hybrid spatial or temporal as well as the cheaper body-exclusive temporal
with a good choice for initial conditions) are required.
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