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Abstract

Let £ =-A + V be a Schrodinger operator on R”, n > 3, where V is a potential satisfying an appropriate
reverse Holder inequality. In this paper, we prove the boundedness of the Riesz transforms and the
Littlewood—Paley square function associated with Schrodinger operators £ in some new function spaces,
such as new weighted Bounded Mean Oscillation (BMO) and weighted Lipschitz spaces, associated with
L. Our results extend certain well-known results.
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1. Introduction

In this paper we consider the Schrodinger operator defined by £ = —A + V, which is
a Schrodinger operator acting on L*(R") (n > 3), where V is a nonnegative potential
in the reverse Holder class B, for some g > n/2. Recall that given 0 <V € quoc(R”)
with 1 < g < oo,V is said to be in the reverse Holder class B, if there exists a constant
C = C(gq,V) > 0 such that the reverse Holder inequality

(G fyv) <5 fyve
—_— .x X
1Bl Js =73

holds for every ball B ¢ R".

In recent years, the theory of singular integrals related to Schrodinger operators has
attracted a great deal of attention of many mathematicians; see [2-7, 9, 10, 12—
15, 18, 20, 23] and references therein. For the classical case of V = 0, the Riesz
transforms are bounded on LP(w) for all 1 < p < co and w € A, where A, is the
Muckenhoupt class of weights, and bounded on the weighted BMO spaces BMO#(w)
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for a suitable index 8 and a suitable weight w; see [16, 17]. When V is a nonnegative
polynomial, the L” boundedness of Riesz transforms was obtained in [23]. Later,
Zhen investigated the boundedness of the Riesz transforms for Schrédinger operators
with potentials in the class B,. The boundedness of the Riesz transforms on the
weighted Bounded Mean Oscillation (BMO) spaces was obtained in [2]. The condition
V € B, for some 1 < g < oo is essential in the theory of singular integrals related to
Schrodinger operators.

In particular, when V € B,», the theory of new weights for singular integrals related
to £ was introduced in [3]. Let us recall its brief definition as follows (see [18]).

Let V € B,j». The critical radius function p(-) is defined by

1
P(x)=sup{r>0: — V() dy < 1}, xeR"
rn

2 B(x,r)

Following [3], for 8 > 0 and 1 < p < oo, the class of weights Af’g is defined as those
weights w such that

I/p 1/p
(fwdz) (fw”(p”dz) < C|B|¥Yy(B)
B B

for every ball B = B(x, r), where W4(B) = (1 + r/p(x))’.
When p = 1, the class A]L’g is defined as those weights w such that

1
ﬁ fwdz < Cw(y)¥¢(B) ae.yeB
B

for every ball B = B(x, r).
For p > 1, they define the class

Lo _ L6
AL~ =| Jate.
60

Note that the classes A[f’g are necessarily increasing with 6 and, if 8 = 0, they
coincide with the Muckenhoupt class A,. In general, the class Alf’g is strictly larger
than the class A, when 6 > 0; see [3].

It was proved in [3] that the Riesz transform R = V.£~!/? and the Littlewood—Paley
square function defined by

~ : dr\!/2
Gr(H() = ( fo 2 Le L f ()P {) (1.1)

are bounded on L”(w) for w € Aﬁ"x’, 1 < p < o0, and of weak type (1,1) forw € AIL"X’.

The purpose of this paper is to prove the boundedness of the Riesz transform and
the Littlewood—Paley square function related to £ on new weighted BMO spaces and
new weighted Lipschitz spaces with more general weights than A;f’“’. To proceed, we
first define the new weights in what follows.
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DeriniTion 1.1. Let 6 >0 and 1 < p < co. A function w: R" — R is said to be
in the class fo’g if there exists a constant C = C(w) > 0 such that, for every ball
B=B(x,r)cR"and t > 1,

w(tB) < Ct""w(B)¥y(B),
where tB denotes the ball with the same center as B and ¢ times its radius, and
w(E) = fE w(x) dx for E C R".

For 1 < p < o0, we set

L0 _ L0
D* -LJDP.
6>0

Dermition 1.2. For 0 << 1, § >0, and for a weight w € LIIOC(R”), the weighted
BMO spaces BMO%H(W) are defined for every function f € LIIOC(R”) satisfying the
inequalities
flf — fgldy < Cw(B)|BfF""  when r < p(x) (1.2)
B

and
fm@swwwW%@ when r > p(x) (1.3)
B

for every ball B = B(x, r) in R", where fp stands for the mean of f over B. The norm
[ - ||BMOB.9(W) can be defined as the maximum of the two infimums of the constants that
L

satisfy (1.2) and (1.3).
Notice that, when w € A, and 6 = 0, the space BMO’ZQ(W) has been introduced
in [1]. Moreover, if w € A;f’“’ for some p > 1, then w may not satisfy the doubling

condition and thus our BMO’ZH(W) space is a significant extension of those in [1].
On the other hand, for >0 and w € L' (R"), as in [1], the Lipschitz-type space

loc
Afz(w) can be defined as the set of all functions f € Llloc(R”) such that there exist
positive constants C; and C; satisfying the inequalities

1f () = fFOI < CLlWp(x, 1x = y1) + We(y, Ix = yD],
provided that |x — y| < p(x), and

f |f1dy < CalB(x, p()"w(B(x, p(x))
Blxp(x))

w()
WxJ:f My,
plsn) B [y = X" Y

for all x € R”, where

This paper is devoted to proving the boundedness of the Riesz transform
and the square function on the new weighted spaces BMOBL(W) and A’i(w) (see
Theorems 5.2 and 5.4). Note that when w satisfies the doubling condition, we have
Ai(w) = BMOBL(W); see [1, Proposition 4]. Thus, Theorem 5.2 is an extension
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of [2, Theorem 1]. It should be emphasized that the method used in [2] is based on
the BMO[ZH(W)—boundedness of V(-=A)™!72, (=A)"'2V when w € A,, and 6 = 0. This,

however, may not be applicable to our setting due to the new weights w € D§’°°.

The paper is organized as follows. Section 2 gives some facts about the critical
functions and the new weights. In Section 3 we establish the John-Nirenberg
inequality for BMOi’e(w) and other important properties related to these new spaces.
Section 4 gives some kernel estimates. The boundedness of Riesz transforms and
square functions on BMO%HZ(W) and Ai(w) is established in Section 5.

In this paper, we denote by E° the set R” \ E and by y its characteristic function.
All the positive constants are signified as C although they may be different on the same
line. We write A < B and A ~ B if there exist some positive constants C, C’ such that
A <CBand C'A < B < CA, respectively.

2. Preliminaries

Let us now recall some properties of the critical radius functions (see [18, Lemma
1.4]).

ProposiTioN 2.1. Let V € By,j,. Then there exist C > 0 and ko > 1 such that

|x =yl
p(x)

|x — yl )kO/(k0+1)

)_k° <p0) = Cpo(1+ pree

C_lp(x)(l +

forall x,y e R".

CoroLLARY 2.2. Let V € B,j>. Then there exist C > 0 and ko > 1 such that

R R ko+1
1+ — < (1
" 1+ P(Xo))

for all xy € R" and x € B(xy, R).

We also note that the class of weights Af"” satisfies the following properties (see

[19D).

ProposiTioN 2.3. The following statements hold:

() AR c AL forall1 < p<q<oo;

(i) ifwe Af’oo with p > 1, then there exists € > 0 such that w € Aff:;
(i) we Alf’e if and only if W' € Alf,’e, where 0> 0and 1/p+1/p’ = 1.

The relationship between the classes Alf"x’ and le’“’ is given in the lemma below.

LEmMmA 2.4. Let§ > 0and 1 < p <oo. Ifwe Af’g, then w € D,f{lefe/n)'

Proor. Let r > 1 and B = B(x, r) for some x € R". We have

1 1
(/\/B)B:_fXde:_fXBWI/pW_l/pdx-
C 1Bl Jis tBl J.5
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Applying Holder’s inequality with exponents p and p’,

, 1204
[(¢B)l? S |tB|p(f ngdx)(f wP/p a’x)
tB tB

<1 ( f Xiw dx (B w(tBY Wy (1B)
tB

< w(zB)*‘( f Xow dx)‘I’gp(tB)
tB
< w(tB)'w(B)"P¥y,(B).

Thus,
w(tB) < "7 y(B)W,,(B),

which completes the proof of the lemma. O

3. BMOije(w) space and John—Nirenberg inequality

LetB€[0,1),0>0,and we L (R"). We first define the space Bﬁ\/I\O’ze as the set
of all functions f € LIIOC(R”) satisfying

flf — fsldy < Cw(B)|BF"¥y(B) (3.1)
B

for every ball B = B(x,7) € R". The norm || - |z on BMO'} (w) is defined to be
(W

the infimum of the constants that satisfy (3.1).

Using the same argument as in the proof of [17, Theorem 3], we come up with the
following result.

. Lo L6,
ProposiTiON 3.1. Let 0,601,0, >0, p,oc > 1, and w € Ap NnDZ".
(1) If p =1, then there exist positive constants M and C such that
—Ca

B gz ¥olB)

w(x e B:|f(x)— f3|W_l()C) >a) < Mexp( )W(B)

forany a >0, f e B/W)'iez(w) with 8 € [0, 1), and for any ball B.
(2) If1 < p < oo, then there is a constant K > 0 such that

’

)_p w(B)

+ in d 7
|B|ﬁ ||f||B/M\O/Z"2(W) ¢(B)

w(x € B: 1f(x) = folw™ () > @) < K(l

foranya >0, fe B/M\O'i’ez(w) with B € [0, 1), and for any ball B.

The next results follow from some basic facts (and hence we will skip the proof).
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ToeEOREM 3.2. Let 6,01,60, >0, p,oc>1, and w e Alf’g N Dﬁ’e‘. Then, for every
ve(l,p'l\ {0}, there exists a constant C, > 0 such that

1/v
([ 1= sl ) " < Collflgp, JBP(B) o)

forall B= B(x,r) CR" and forall f € B/W)lzaz(w) with 8 € [0, 1). Here we recall that

b =601k +2) + 6 + 6k + 1), p':Ll.
Py

The next proposition is very crucial and will be used frequently in this paper.

ProposiTion 3.3. Let o > 1, € [0, 1), 61,6, > 0, w € DF", and f € BMO,*(w). Then
there exists a constant C > 0 such that for every ball B = B(x,r),

no—n+f3
[ 1y < Oty @180 By ma1, (2,

provided that o > 1 or 8> 0, and

f £ dy<C||f||BM0592(W)W(B)|B|M"‘PQ2(B)max{l 1+10g2(p( ))}

ifo=1andpB=0.

Proor. In the case of r > p(x), the conclusion can be obtained from (1.3). Now we
consider the case of r < p(x). Let jj be such that

p()

2Jo=1 < pJo,

Then

1 1 Jo—1 1
— | Ifldy < — Ifldy + 'f|)—j|d
|B|f3f Yy |2/0 B 2f03f y JZ_(;|213| - fO) = fasldy
Jo . ' ‘
RS Hf”BMO/Z"Z Z w(213)|213|ﬂ/n—1|1;02 (2/B)
j=0
Jo . -
< Hf”BMo‘z"l Z W(ZJB)|ZJB|'B/"_1.

/=0

By using w € Df,:’g‘ and Wy, (B) < 1, we deduce that

f £1dy % 1/l w(B)BP" Z Qi)

Jj=0

no—n+f
<l BIBP(22)
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as long as o > 1 or 8 > 0. Furthermore, if o = 1 and 8 = 0, then

Jo (x)
D 2dr B = 41 <1 +10g2(p )

r
j=0

Combining these estimates, we obtain the desired estimates. O

Now set B = {B(x,r) CR": x e R", r < p(x)}. We have the following proposition.

ProposiTioN 3.4. Let € [0,1), p,o =1, 6,01,0, >0, and w € Alf’g N Dﬁ’gl. Assume
that f € BMO?Z(W). Then, for each v € [1, p’] \ {c0}, there exists a constant C, > 0
such that

1 IR )
(—W(B)j;lf—fngl dy) SCV||f||BMd292(W)|B|ﬁ/, Be B

and

1 v, 1-v Wy /n
(W(B) fBV w dy) < Cillfllgyopn ) Vo BIBI", B¢ B. (3.2)

Proor. By the continuous inclusion BMO[ZHZ(W) C B/M\Olzaz(w), it suffices to prove that
the left-hand side of (3.2) is dominated by || f HBMO/B’HZ e
L

Since Aﬁ’e C Af’g with 1/v + 1/v' =1, for every ball B ¢ 5,

e v 1/v f e v 1/v WI—V(B) 1/v
W(B) f ' = [ 1= fa )+ 11 v )

< ||f||BMO¢az(w)|BV*/”[T¢(B>
+ w(B)'"” (W' (B)"”| B ¥y, (B)]
S 1 gtz oy | BE ¥ (B),

where the second inequality follows from Theorem 3.2 and thus we complete the proof
of the proposition. O

ProposiTiON 3.5. Let p,o > 1, 6,0,,6, >0, and w € Alf’e al Dﬁ’al. Then, for each
ve[l, p']1\ {eo}, there exists C, > 0 such that:

1) ifo>1lorB>0, then
lv no—n+f
f|f|” " de) = C”f”BMo“z(w)W(B)I/V|B|ﬂ/n‘P¢(B) maX{ (p(r )) }

for every ball B = B(x,r) and f € BMO%GZ(W);
(i) ifo=1andB =0, then

1/v
f|f|v 1- vdy) <C||f”BM0692(W)W(B)I/V|B|ﬁ/"‘{’¢(3) maX{l 1+10g2(p( ))}

for every ball B= B(x,r) and f € BMO%QZ(W).
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Proor. Let f € BMO%@(W) and B be a ball in R". In the case of r > p(x), our
conclusion can be deduced from (3.2). If r < p(x), we can write

Jo—1

F=F=fa+ ) (up = fanp) + Frop
j=0

where 207! < p(x)/r < 2%, This implies that

1/v 3
Al dy) <N'1,

where

n=( fB 1 = fol '™ dy)”v,

Jo—1

L= BN > U fus - forsl
Jj=0

L= B0 sl

The first term can be estimated easily by using Proposition 3.4. For the second term,
since w € Af’g and Wy(B) < 1,

) 18]
W' (B)1"" < BT
This implies that
1 ’jo*l 1
L < |Bw(B)™" ; BB o [~ sl dy
Jjo—1

—1/v i /n—1 P
< BB Il ) 12/BE" w2B)
j=0

Jo—1
< |B|ﬁ/nW(B)l/vllfHBMO‘zgz(w) Z 2](ﬁ+mrfn)'
j=0

fg>0o0ro>1,

()C) no+p-—n
B S 1B W) Wl C2)

Ifg=0ando > 1,

Iy BBl 1+ 0222}

r
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On the other hand, by r2/0 > p(x),
, . . 2Jop\62
Iy < |Bw(B)™" w(2103)|2103|ﬂ/"—1(1 ; —")
p(x)

< |B|ﬁ/nW(B)l/v2jo(,B+n0'—n)
B+no—n
stmmW@@) .

-

Here we has used 2/°r ~ p(x). Finally, by combining these estimates, we obtain the
desired result. O

4. Some kernel estimates
In what follows, we denote by k;(x, ) the kernel of ¢"£ with ¢ > 0. Some estimates

of k; are presented below. The following lemma is essentially taken from [8].

Lemwma 4.1. Suppose that V € B, for some q > n. For every N > 0, there exist constants
C > 0and c > 0 such that for all x,y e R" and t > 0,

1+i+i)_N.

IV, (x, y)| < Crm+D/2g-hsr /c,(
t P p()

By [11], we have the following lemma.

Lemma 4.2. Suppose that V € B, for some q > n/2. For every N >0, there exist
constants C > 0 and ¢ > 0 such that for all x,y e R" and t > 0,

Vi Ny
1+M+@) .

The following proposition plays an important role in proving the BMO boundedness
of the Riesz transform.

mmm+m&mw50ﬂ%“wm(

PropositioN 4.3. Suppose that V € B, for some q > n. For every N, M > 0, there exist
constants C > 0 and a > 0 such that for |h| < MN1,0 <6 <1 -n/q,

|h|6—12——2t Vi Vi
IVky(x + h,y) — Vk(x, ) sC(—) £ /215 /“(1 TR LA —) .
' VTR Vi P p(y)
Proor. Fix ¢ > 0 and x,y € R". We now consider the equation
o+ Lu=0. 4.1

By [8, page 18], there exist C > 0,mg > 1 such that for any solution u to (4.1),

1/q R \™o
( f |V2u|q) sCR"/q‘z{(—) i 1} sup |ul + CR4 sup |,ul.
B(x.R) p(x) B(x2R) B(x2R)
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Taking u(x, t) = k,(x,y) and then using the imbedding theorem of Morrey, we deduce
that

1 2 lq
IVki(x + £,y) — V(x| < I ‘"/q( f V2, (2, )l dz)

B(x,R)

~ (|§| )1 /a1 [{(pgc ) )’"" N 1}&;&3@ (2, )|

2

R
o sup 0k
I 2eB(x2R)

for all x,y € R", |£] < 2R.
We now consider three cases.

Case 1: |x—y| >Vt Let R=+1/8. If z€ B(x,2R), then |z —y| > |x — y| — |x — 2| >
lx — ¥yl — /4. Since |x — y|/Vi > 1,

—yP P2 _ _P
Sl S N 2| R IR el R
t t 24/t 16 2t 16

Using Lemma 4.2,

1-n/q -y mg
Yk + h,y) = Vh(x, )l < (%) gty i) [(i) o]
t

P/ Np(x)
s(@) _<n+1)/ze-|x-y|2/m(1 + pi(yf))_y(l + %)m 4.2)

Note that 1+ Vt/p(z) + Vt/p(y) > 1 + Vt/p(z) = C(1 + Vt/p(x)/®*D for all z €
B(x,2R). This along with Lemma 4.2 implies that

—(y/(ko+1)+mg)
i) L @43)

Vk X V. | | r +1)/2 — 12 Jat
| ( h, ) k (x )l < ( ) (n+1)/ e [x=yI*/a (1
! y ! y \/_ p(if)

Setting A(y) = mm(y, v/ (ko + 1) + mg), we note that (1 + vVt/p(x))(1 + Vt/p(y)) >
1+t t/p(x) + \/_ t/p(y). We then multiply side by side of (4.2) and (4.3) to find that

\/' Vi ) A)+mo /2

|7 —(n+1)/2 —x—yl*/at
|Vk,(x + h,y) = Vk(x,y)| S (\/—) e (1 o(x) p(y)

Choosing y such that A(y) —my/2 > N,
NV )‘N

|h| £+ D/2 gl 1 fat
|[Vk(x + h,y) — Vk,(x, )’)|<(\/—) e (1 p(x) p(y)
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Case 2: |x—y| < Vtand || < |x - y|/4.
Let R = |x —y|/8. If z € B(xp,2R), then |z — y| ~ |[x — y|. Using Lemma 4.2,

h 1-n/q t t -2y
Vk,(x + h, y) — Vki(x, y)| < (L) N ,—<n+1>/2e—2|x—y\2/m(1 + i)

lx =yl |x =yl p(y)

o[

o

S( |A] ) \/; t—(n+1)/26—\x—ylz/me—lx—y\z/m
lx = yl/ lx =yl

t\Y t\7 t \"

e 2

1+ — —- -
o) o) p(x)

where we used |A|/|x — y| < 1,]x — y|/V? < 1 in the second inequality.
In view of Corollary 2.2,

hl o At
Vhi(x + h,y) = Vki(x, y)] S (—l l |) o AL lz-<"+‘>/2e-'x-y'2/me-‘x-ylz/m
X=YI/ | Xx=Yy

-y —y/(ko+1)+mg
X (1 + %) (1 + %)
pQy px
< (%)6(%)6“ D12 yolxms P fat vy
1) \Ix—y
\/Z -y \/; —y/(ko+1)+mg
X (1 + —) (1 + —) .
P) p(x)

Put A(y) = min(y, y/(ko + 1) — mg). Using the inequality e < C,x" for all x> 1,
n>0,

h|\° e
V(e + h,y) = Vhi(x, )l < (%) izt
t

(v

1+ i + i)_ﬂ(y)
p(x)  p(y)

5 e Vi ViV
(n+1)/2 —x—yP it
) ! e (1 o " p(y)) 4

=

as long as A(y) > N.
Case 3: |x —y|/4 < |h| < V1. By the semigroup property,

ki(x + h,y) — k(x,y) = f kijp v, ko (x + h, 2) = kypo(x, 2)] dz.
Rn
Thus,

IV (x + h,y) = Vki(x, y)| < f kij2(y, 2)IVkija(x + b, 2) = Vka(x, 2)l dz
Rn

=f +f =851+ 5.
|z=x|<4|h]| |z—x|>4|h|
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By Lemmas 4.1 and 4.2,

S < t—(n+1)/2(ﬁ\/|})”(l N pi(;))—zy.

Hence, from the assumption |x — y|/4 < |h| < V1,

S < t‘“”“’z(@)n(l LV )QY

Vi! U7 e
< f(n+1)/2(@)6(1 + i)_zyexyﬂ/atebc“z/ai
Vi pG)
< ,—<n+1)/2(@)6(1 + i)_zye—x—yﬁ/ag
Vi pG)
We now take care of S;. Due to |z — x| > 4|h| > |x — y| and |A| < 212 := MNi]2,
applying (4.4),
h|\? 2
APRS f kija(y, z)(%) DR et g
lz—x|>4/h| t
)
< (1 + i) y(@)(st—mﬂ)/ze—u—yﬁ/m f 2 v=2F et g
p(y) \/; |z=x[>4]h|
< (1 + i)_27(@)ét—mﬂ>/2e—|x—y|2/m.
Ve Wi
Hence,
-2
svesys (10 20 (B oot
oLy t
Using Lemma 4.2,
—y I+ 1)/ |1\ .
S +85 < (1 + i) (1 + i) ! (@) /2 oyl fat
P px) Vt
< (@)6t7(n+1)/267|x7y|2/at(1 + i + i)_N’
Vi PG p(x)
provided that min(y, y/(ko + 1)) > N. This completes our proof. O

Setting g,(x,y) = k(x,y) — p:(x,y), by the Kato—Trotter formula (see [11]),

!
qi(x,y) = f f Ps, 2V (@ki—s(x,2) dz ds.
0 n
Therefore,
!
Vg (x,y) = f f Ps(¥, DV (2)Vki_y(x,2) dz ds.
0 n

From Proposition 4.1, using the arguments in [11, Propositions 2.16 and 2.17], we
have the following results.
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ProposiTioN 4.4. There exist a rapidly decaying function > 0 and C > 0 such that

\/Z 2-n/q |
Vg, (x,y) < C(—) —Y(x -
q:(x,y) o(x) \ﬁwt( y)
forall x,y inR" and t > 0.

ProrosiTion 4.5. For every 0 <6 < 1 —n/q and M > 0, there exist a rapidly decaying
function y and C > 0 such that

h 1
IVai(x + h,y) — Vgu(x,y)] < C(p—@)) FH

forall x,y e R" and t > 0, with |h| < Mp(x) and |h| < |x — y|/4.

5. Boundedness of Riesz transforms and square functions

5.1. Rieszs transforms. Let K (x,y) denote the kernel of R. The following lemma
is essentially taken from [2].

Lemma 5.1. If V € B, with q > n, then for every k there exists a constant C such that

C 1
(1 . Ix—zl)" lx — 2"
p(x)

1K (x, y)l <

Now we are ready to prove the first main result.

ToeoREM 5.2. Let V € B, and B € (0, 1), 6 > 0 such that 0 <+ 60 < 1 — n/qq, where
qo = sup{q : V € B,}. Assume that the weight function w € DE* n Af,:"x’ for some
p € (1,) and

l-n/qgo-B-06

—

Then the Riesz transform R is bounded from BMO@’G(W) into Ai(w).

l1<o<l1l+

Proor. We use the idea in [1]. Note that

RF() = VLV f(x) = f Vet 9L - f f Vi) 2L p) .
) Vi e o i

Let f € BMOLZGZ(W). We will see that for x and y in R”,

IRF () = RFOI < 1 lgpior o [ W 1x = ) + Wiy, b = yDI, (5.1

provided that |x — y| < p(x), and

fB . IRf)ldu < |If IIBMOzzezp(X)BW(B(x,p(X)))- (5.2)
x,p(x
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Since w € DX® N AL™, there exist 61,65 > 0 and 1 < p < oo such that w € D=% N
Af’93. Thus, w' ™7 € Aﬁ,ﬂ}.
Note that we may choose g > n and 8 + 6, < §y < 1 —n/q such that
6o—B -0
—
Suppose that || f”BMO@‘b = 1; let us start with (5.2). For B = B(x,p(x)), we write

f=h+ fa, with f = fxop. , /
By [3, Theorem 3], R is bounded on L” (w!=?"). Thus,

, AP
f |Rf1|sw(B)”P( f IRfll”w"”)
B B
, AP
sw(B)”P( f 7wr)
2B

S w(B)p(xY’,

where in the last inequality we used Proposition 3.5 and the fact that w € D(}C’e‘ .
Applying Lemma 5.1,

flﬂlesff |K(x,2)f(2)| dzdx
B )e

f f p(x) L @idzax
@By X — Z| -z

f(z)
< p(xg)*" f —
p @By 1xo — 2"

where we used p(x) ~ p(xp) and Ix — zI ~ |xo — 2.
Setting B; = =2/B,duetow € D h

TP S L
—d
f@B)“ lx = Z|'”k Z‘ B, ¥ = 2" )
<o Y 20 [ il

=1 Bj

o<1+

< p( x)—n+ﬁfkw( B) Z 9 —i(n—prk—nc—th)
j=1
Taking k to be sufficiently large, the last sum is finite and hence (5.2) holds true. To
see (5.1), for |x — y| < p(x),

0(x)*
riw-rfol<| [ [ (Vheo - kool
0 e Vi

[Vk(x,2) — Vhi(3, 2)1£(2) dz ﬂ'
p(x)? Vi
=A; + Ao (5.3)

n
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If t > p(x)?, then, from |x — y| < p(x), we have |x — y| < V. By Proposition 4.3,
. dt
Ax < lki(x,2) — ke(y, DI | f () dz —
p(x)? JR! !

* eep sy At
< |X _y|6f f e [x—2| /Cllf(Z)let( n—0)/2 **
P R t

(x)>

forall 0 < 6 < 8.
Moreover, for B = B(x, V1),

[ errpuaes [1aemey, [ MO0,
R B = Jo

apig |x — 2™

for some M > 1 which is fixed later.
Since f € BMO/;”(w) and 1 > p(x)?,

f £ < w(B)E2P,,(B).
B

To deal with the sum in k, we use w € Dﬁ’e‘ to obtain

=0 2k =0 2k+lp

kg |x — 2

< PPy, (Bw(B) ) 2N,
k=0

and the sum being finite for sufficiently large M.
Since |x — y| < p(x) < Vtand —n + B+ no — 6 + 6, < 0, then, by choosing ¢ close to

b0,
® r\" dt
Ay Slx— y|6f w(B(x, \/Z))(L) (02
plxy? lx =yl t
< |x _ y|5—mr—02 W(B(x, |.X _ yl)) t(—n+ﬂ—(5+ncr+92)/2 %
[x=yl

< w(B(x, |x = yD)lx — y[ "+
< Wi(x, |x = y).

In order to deal with the second term of (5.3), we write

o(x)? dt
f [Vk(x,2) = VO, D1 f(@)dz —| < I + J,
0 R" \t

where

P(X)z dt
= [ [ Vo - vao @i
0 " Vi
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and

(x) .
/= fo f . [Vpi(x,2) = Vi (3, D1 f(2) dz —|.

Vi

To estimate /, for B = B(x, 4|x — y|), we write
I1<hL+10L+15,

where

0(x)? dt
I = f | %050 - Va0 D0 d: .

Vi
0(x)*
b= f f V(e ) dz 2 \[

p(x)> v J dt
I = (y, —.
: fo fB Vo Dl ds

We denote B; = B(x, 2/*3|x —y|) and j, as the integer part of log,(p(x)/1x = yI). If
z € B¢, then, by applying Proposition 4.5, for 0 < § < &y, there exists a rapidly decaying
function ¢ such that

p(x)
I <lx— fo f‘”’ )\ fdz

p(x)? — \Oko d
<(B22) 7 (1) ¢t<z—x)|f(z>|dz7t,

and

p(X) p(x)
where the last inequality follows from Proposition 2.1.
Next,
|x_Z| okg s |x_Z| Sk
[ (14550 we-vr@iaz= Y, [ (145 - vl
Be p(x) =0 BB p(x)

where B; = B(x,2/"3|x — y|). Thus, I; < I + 2, where

Ix y| f (X) f |x _ ZI [ dl
I = 12— dz —
" .D(X) Bj\B, P(x) ) Vile = DIf (@] dz t

and jy is the integer part of logz(p(x) [1x = yl).
If j< joandz € B;\ Bj_1, then (1 + |x — z|/p(x))** < 1. Moreover, since ¥,(z — x) <
1?2 J|x — z|"*¢ for some & > 0,

2 .
I <(|x—y|)5 f"“‘) tg/ziti f @,
“\ p(x) 0 1 4= JBB; |x — 2™

S-n—-g _Jo
X —
<=yl

p(x)°¢

for sufficiently small &.

2 jn+e) f |f@)ldz

Jj= 0
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It follows from Proposition 3.5 and the fact that w € Dﬁ’e‘, in the case o> 1 or

B> 0, that
JZ; i jmﬁ)f flde = Z e e o
T
—

where we used Wy,(2/B) < 1 for all j = 0, jj in the first inequality.
From 1 <o < (0g —B—6)/n+ 1 and |x — y| < p(x), by choosing £ small enough
and ¢ close to ¢y, we have 6 — 8 — no + n — & > 0. Therefore,

_ 0—f—no+n—¢
I < (Ix yl) w(B) < w(B) .
p(x) lx =y # 7 x =yl P
Similarly to the case of 5 = 0 and o = 1, using Proposition 3.5 and the inequality
1 +1log,(t) s /%, t>1/8, (5.4)

we obtain the same estimate of /;; by an argument as above.
Next we estimate /. For M > 6kg + no + 3,

Uiz — x) S M)z — ™M,
Also, if z € B; \ Bj_; for j > jo, then |x — z| > p(x). Therefore,

x — y[\7+0% fp“‘) M-my2 dt ok If (@)l
I SC( ) (M—-n)/ 0.J6ko
2 p(x) 0 Z M

j=jot1 B)\Bjy 12— Xl

Z 275k f @ dz.
B;

J=Jo+1
For j > jo, the radius of B; is 2/*3|x — y| > p(x) and Wy, (B) < 1. Hence,

fB If @)l dz < w(B))|B;IF""¥4,(B))

|X y|5+6k0

p(x)6+(5ko —M+n

< 2707 - yPw(B),
which in turn implies that

112 - (Ix _y| )—M+6ko+6+n W(B) Z —](M Sko—no—B6)

p(x) o=y * o
y ( U )n—na'+6—ﬁ—9 w(B)
N\ p(x) lx — yl"#

w(B)
T e =yl A

with an appropriate choice of 6.
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We next estimate /. Let M > n. From Proposition 4.4, for 1 < p(x)2,

Vgi(x,y) < ( \(ﬁ)) t_(”“)/z(l + |x_\;;z|)M (5.5)

Then we may write I, = I + Iy, where

lx—yI*
I =f f|VQt(X 2| |f(Z)|dZ -

o(x)? d
I = f f Va1 e -

k= JB

and

We consider the case o > 1 or 8 > 0. To take care of Iy, let B, = B(x, Vt) with t < p(x)?
and N be the integer part of log,(4|x — y|/ Vt). Using estimate (5.5),

(50—")/2
f|%(x» Df (@) dz S ! o f If] + tM/2f |f(Z)|M dz)
g ’ B\B lx — 2|
t(5o n)/z i f Q)
d
(x)6° f A+ Z 2/+1B\2/B, |X — Z|M Z)

((G0=n)/2 (N+1 ,
< 2-iM f | f|).
p(x)% ,Z(; 2B,

Since w € Dﬁ’é‘ and Wg,(2/B,) < 1 for all ¢ < p(x)2, j<N+1,

t(6o—no')/2 N+1 "
fB i N dz 5 =g V(B Zz )
{60-nc)/2

s WW(&)
as long as M > n.
Thus,

12

=yl dt
121 Sp(x)_60+no—_n+ﬁf t(éo—mf)/ZW(Bt) 7
0

|x_}'|2 dt
< p(x)—60+n0'—n+ﬁf t(éo—,b’—n0'+n)/2rwﬁ(x’ \/;) e
0 t
s ook 5 2 dt
< plx)onrTh f (OPTIIE Z Wi(x, x = )
0

_ So—pB—no+n
< (Ix yl) 0
p(x)

Wi(x, |x = yD).
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Notice that 69 — 8 — no + n > 0 and |x — y| < p(x). We then have
Ly < Wg(x,|x = yl).

To deal with I5;, we use (5.5) and Proposition 3.5 to obtain

00 d
Iy = f 2 fB Va2l 1@ dz

[x=yl

© dt
<P f R f /1
by t Jp

_ n—-no+6o—f3
< B (k)

T =y P\ p(x)
B
< B capiix -y,
lx —y|"#

where n —no + 6p — B > 0,|x — y| < p(x), and Wy, (B) < 1.
Thus,
I Wp(x, |x = y).

219

Similarly to the case of 8 =0 and o = 1, using Proposition 3.5 and inequality (5.4),

we also arrive at the same estimate of I, by an argument as above.
Using the same argument as above,

I3 < We(x, |x = yl).
Taking the estimates of /1, I, and I3 into account, we find that
I < Wp(x,|x = yD.

We now take care of J. To proceed, observe that

[Vpi(x,2) = Vpi(y,2)1fpdz = 0.

Rﬂ
Hence,
0(x)* dt
J= f f (V6. 2) = Vil D1CF@) — fi) dz 2
0 Ju Vi
where
0(x)? dt
J = f [th<x,z)—th(y,z>1|f<z>—fB|dz—]
0 2B \t
and .
0(x)"
= f f [Vpi(x,2) = Vi D@ — foldz
0 By

with B = B(x, |x — yl).
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For z € (2B)°, we have |y — 7| ~ |x — z|. Applying the mean value theorem,

e—uz/(Ct) wle 2/(Cr)
VP00 = Vi, 2l 5 (S + o e,

with min(|x — z[, [y — z[) < u < max(lx — 2|, |y — zI).
Thus,
=2 /(CD) 2 -lx-2P/(C1)
e |x —z|%e
VP52 = Vi 2l 5 (S + P =l

Using the change of variables s = |x — z|*/Ct,
P =l /(C1) gt

st|x—y|f fo-fl [ Ay
@By B P

L [P e RICn gy
+|X—)’|f @ = fellx —zl j(; tn/T@dZ

<|x—yl 1ft0) = fsl zf e S5 g g
0

By X - Jx— gt

|f(z) — [l dz foo o3 D1 g
0

+ x =yl
apy lx =zt

It is easy to see that the last expression is bounded by

|f(z) = /Bl dz

Clx -yl
ey |x—z"*!

Since w € Dﬁ’g‘, the above expression is bounded by

|f(z) — J8l 1/
Clx— dz<|x—yl|B™" Yy 27— 2) — fpldz
=3l | g 4 S eI Z BB Sy T~
oo ) 1
Sle—yBm ) 27 —f |f(z) = frpldz
]Z‘ ; 124B| Js o
The last expression is bounded by
o0 j+1 k k
_ —1/n W(2 B)\sz(z B) _ W(2 B) —1/n~kb>
Clx —yllB| Z;z ; |2k B|1-B/n S |Z |2k B! ﬂ/n Bl 2
= -
This implies that
w(2¥B) 16,

J2 S |X yl Z (2k| n+1 /32

< b= " w(B) ¥, (B) Z A
k=1

< W) du = Wpe(x,|x —y).

B |x —ul"P
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To deal with J,, we write

0(x)” e
f f [Vpi(x, 2| f(z) — fBIdZ f 2le s ——1f() - fBle\—/_t-

By using the change of variables s = Ix — zI>/Ct, the last expression is
|f(Z) /5l e_ss((n+1)/2)_1 ds < |/ () — /5l dz
w =z Jy 2 lx—zI"
Setting B; = 27/*1B,

1f(2) - fal fBl f If(z)—fBId
2B |X—Z|n S]Z(; Bj\Bjsi [x — 2" ¢
|1|flf(2) fsldz.

/:0 B;

Hence,

S S b w(B) Y, (By)
Ji S;Z Bk| |f(z) f&'d SZ(;/{Z: |Bk|1—ﬁ/n

=) 2] n— Rl 2] n—-B
B - B\B:
SZQGx-ﬂ) w«,)sé%@x_ﬂ) W(B;\Bju1)
J= J=
st &dzsf &dz—"wﬁ(x = ),
0B X =2l 28 |x — 7" P

where we used Wy,(By) < 1 in the third inequality.
This and the estimate of J, imply that J < ‘Wp(x, |x — yl), which completes the proof
of the theorem. O

5.2. Littlewood-Paley square function. In this subsection, we consider the
boundedness of the Littlewood—Paley square function G, defined in (1.1) on
BM()[ZQZ(W). We assume that Q;(x, y) is the kernel of the operator 2Le L. Tn what
follows, we always set V,.(x) = |B(x, r)| and V(x,y) = |B(x, |x — y|)| for all x,y € R" and
r € (0, 00). By [21], we have the following lemma.

Lemmva 5.3. Let V € B,jy. Then there exist constants € € (0,1], y, 01 € (0, 00), and
0> € (0, 1) such that:

. 1 tV(_P@) Y

@) 10:(x, y)I < Vi(x) + V(x,y)(t+ |x—y|) (Z+p(X)) '

.. ’ 1 |X X| ! 7'
(i1) |Ql(x’y) - O(x ,y)l < V(x) + V(x,y)(f+ |x—y|) (l+ |X_)7|) '
cee t 52

i | onas ()
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Next we prove the second main theorem.

THEOREM 5.4. Assume that V € By, and ¢, 7y, 01,0, are the constants defined as in
Lemma 5.3. Set ® = min(g/3,7v,01,02/3). Let p,oc>1,8€(0,1), 6, 81, 6, > 0 be such

that
O-B-0,-6,

n
and ¢ = 01(ky + 2) + 6, + O(ky + 1), with kg defined in Proposition 2.1. If w € D:E’Q] )
Af’e, then the Littlewood—Paley square function G is bounded from BMO’%H2 (w) into
BMO’ (w).

L+01+6,<0, o<1+

Proor. Recall that . PINT:
G = f oN@E )
0 t
where Q, f(x) = 2 Le "L f(x).

We may assume that || f”BMO/MQ
L
B(xo, r) (r =z p(x9)),

= 1. We first prove that for all balls B =

fB 1G£(F)(X)| < IBF"W(B)Y4(B). (5.6)

For any x € B, we write
1/2

8r d o d
Qz(f)(X)=( fo |Q,<f><x>|27t+ fg 10.(N(0)P {)

o > ([ dr\'
2 2
< fo 2@ S) T+ f 2P )

8r
=Gra(NX) + Gra(Hx).
From the L” (w!~?") boundedness of G, (see [3, Theorem 5]) and Proposition 3.5,

1 1-p ald
f Gra(fxw) < w(B)'!7( f Gi(fx)y w )
B B

, AP
<w(B)'o( f 7w
B

S w(B)IBF"Yy(B). (5.7)
Set B, = B(x,r). For any x € B and t € (0, 8r), by (i) of Lemma 5.3, and 2/*'B c
2/*2B. c 2/3B,

1 t Y
0wl [ gl

)

S| ynny PN

rl = Vo (%) Jaig,
1V . . )

< (_) Z 2-i=0)2i g PBIn=1y,(2IB.).
r/ o
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Bywe D5 andy < 1+ (@ —B—6,)/n),
w(B)|BP/" (1\

10:(fxB)(X)| < T(;) g 2= Jly=no—p+n—0s)

- w(B)IBIﬁ/"(t)Y
~ 1Bl r
From the above inequality, we arrive at

B)|Bf/" 8’ 2 dt
f G 1)) dx g VB f [ f ’ ’ dx
B |B|

< IBP"w(B). (5.8)

Combining (5.7) and (5.8),

f Gr1(f)(x)dx < |BF/"w(B)¥4(B). (5.9

B
Put B, ; := B(x,1). To prove (5.6) with G, we first notice that for all x € B and ¢ > 8r,
1 oy p) \*
ZE () (o) o
10 ()X fRn Vo vaniirr—i) i om lfO)ldy
p(x) )61 S
<(5=) Drre—— | 1rold
( t ; Vair1(x) Jaig,, fONdy
St &
< (@) o N2 i pig, P l2iB, ).
t =
Bywe D™,
x)\01—ba—no+n B X BT
(1 < 18w (22 3 it sns
j=1
01—br—no+n—p
< |B|’8/" 1 (B)(P(X))l h ‘

Then

o 2(61-62—no+n—p)71/2
f gZ(f)(x)'deIBlﬁ/"‘lw<B>f U (@) ] dx
5 BLJISr t

< 1BPI"hw(B),

which together with (5.9) gives (5.6).
For B = B(xy, r) with r < p(xp), we may assume that r < p(x)/8. For all x € B, we
write

8r dt 1/2
Gr(H)x) = [ f 10N )P —+ f 10N ]

8r 12 dr1ii2
s[ f IQf(f)(X)IZ— + f 10N @) —t]
0 f 8r t
= G (N + GralH).
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It suffices to show that for almost every y € B,

fB G (N = GLe(NDNdx 5 |BF"w(B).

Observe that for almost every y € B,

fB 62N = Gra(HOdx < fB G2 (D) + G = Gl O d.

We first prove that
j; G (f)(x)dx < |BF"w(B). (5.10)

We set f=fi + fo+ f3, where fi = (f = fp)xap and fo = (f = fe)x@sy. By the
L” (w'=?")-boundedness of G, (see [3, Theorem 5]),

, ] 1/
f Qr(fl)(x)dsz(B)””( f G ()01 Wi dx) !
B B
/,
sw(B)”P( f |f—fB|1”wl-P’)1 ’
B

< |BP"w(B). (5.11)
For all x € B, by (i) of Lemma 5.3, Wy, 14,(B) < 1, and 2/*'B c 2/*2B,, c 2/*3B,

1 t Y
0= [ o ) O - s

s Z(zj i ) (Vz, 5 ), @ —fBIdz)
<|Bf/ ""W(B)(;) Wo,10,(B) i (j + 2)2-Ir-no—B=62m
=1

t Y
< |B|B/"—1w<B>(—) :
r

which further implies that

8r 2

< [BF"w(B). (5.12)
By (5.11) and (5.12), to prove (5.10), it remains to show that
[ Gt < 5P ie) (5.13)
B

We consider the case § > 0 or o > 1. By Proposition 3.5, we observe that

no—n+f
1l < 18P w222
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For all x € B and 7 € (0, 8r), from (iii) of Lemma 5.3 and the fact that r < p(x()/8, it

follows that
Qi < (t)) Ul < B w222 "+ﬂ(p(;0))62,

which along with t < 8r < p(xp) yields (5.13).

For the case of 8 =0 and o = 1, by the same argument and using the inequality
1 +1log, s < s*/2 for s > 1/8 and sufficiently small u, we also arrive at (5.13).

For x,y € B,

. , di\172
|G £.00(F)(X) = G Lo(HHO < (f; 1Q:(F)(x) = Q(HWI 7) :

For t € [8r, ) and x,y € B, we write

10:(f)(x) = Q (S < jl; 0% 2) = Q0. IS @) = fi, N dz

+ |/,
=J + /o
Note that |x — y| < 2r < /2 for all x,y € B. We deduce from (ii) in Lemma 5.3 that

1 lx—yl 71° t Y
. sz,, V,(x)+V(x,Z)[t+|x—z|] [t+|x—z|] @ = faldz

|f (@) = fB,,1dz

L [Qi(x,2) = Qi(y, )] dz

() V/l,(x) 215,

r |th|ﬂ ( xt) Jly+n—no—L— 02)
<(5) %1+92(Bx,,>j2 B A

By Bx,t C on,2t - Bx,3t and f/P(x) < t/}",

P\ 00 N 1B " w(Bi, 1) -
Ji < (_) 05 05 ) 2—](y+n—no-—,8—62)_
Vs /Z; Y

Using w € D,
t no t no
W(By,) < (—) W, (B) < (—)
r r
Thus,

| e—01—0,—no—p+n
Jy < |BpI" W(B)(t)

n e—0,—-0,—no—L+n

aslongasr<t.

Z( j + 2)2 fortn=no—p-6,)
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We also have

§ [0i(x,2) = Oy, 2)] dz

f 1 lx—yl 71° t Y
< gl el
re Vi) +V(x, )Lt +|x—z|) Lt +|x -2
r\é © ) r\é
<[ - Y < |-
~(l) Zz ~(t)' (5.15)
j=0
By (iii) in Lemma 5.3,

< (5.16)

(o)
t+p(xo))
We consider the case of 8 > 0 or n > 1. Combining (5.15), (5.16), and Proposition 3.5,

2/3 P 52/3
(t + p(xo) )

e

f 9%, 2) = Qu(y, )1 dz

J2 <.,

f [0/(x,2) — 0,3, D) d
Rﬂ

< Bl W(By )W, (B.r) max{l, [

(}" )5/3( r )min(s/3,62/3)( t )min(8/3,52/3)

t t t + p(xp)

3 ¢ 6, p(x) no—£+n r e/3 r min(e/3,5,/3)
<o wem C) (4|50 )
~ | (),t| W( (),l) r ¢ t p(xO)

Using w € De‘,

&/3+n—no—B-6, no+f-n min(g/3,62/3)
) (52 )

r p(xo0)
)s/3+n—n0'—ﬁ—62( r )min(s/3,62/3)—no'—ﬁ+n

hs |B|B/"‘1w(B)(£
)

< |B|B/"-1w(B)(

t p(x0)

)5/3+n—n0'—,8—92

< |B|B/"‘1w(B)(; (5.17)

For the case of 8 = 0 and i = 1, by the inequality 1 + log, s < s*/, for s > 1/8 and u
small enough, we also have that

&/3+n—no—-6,
< 1B w5
By (5.14) and (5.17),
r r\
nsBPwe(5) < Bw)(5)
where Q) =e-60, -6, —noc—-B+n,Q=¢/3+n—-—noc—-L-06,.
Therefore,

Q

)min(Ql ,Qz)

10:(f)(x) — Q(HOI S |B|ﬁ/"‘1w(B>(;

forall x,y € Band t > 8r.
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This implies that

Thus,

oo(,,)z min(Q1.Q2) 7471/2

@mmm—@ammaWWMmU‘ t

8r
< B 'w(B).

fB G £0o(N)X) = G LN dx 5 |BF"w(B).

This together with (5.10) leads to

\D@@m—@ammmaw%w>

for almost every y € B. This completes our proof. O
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