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Evaluating L-functions with few known coefficients

David W. Farmer and Nathan C. Ryan

Abstract

We address the problem of evaluating an L-function when only a small number of its Dirichlet
coefficients are known. We use the approximate functional equation in a new way and find that
it is possible to evaluate the L-function more precisely than one would expect from the standard
approach. The method, however, requires considerably more computational effort to achieve a
given accuracy than would be needed if more Dirichlet coefficients were available.

1. Introduction

L-functions are central to much of contemporary number theory. Two celebrated conjectures,
the Riemann hypothesis and the Birch and Swinnerton–Dyer conjecture, are about values of
L-functions and were discovered as a result of the explicit computation of the Riemann zeta
function and the Hasse–Weil L-function associated to an elliptic curve, respectively. These
L-functions are, respectively, of degree one and degree two and it is interesting to verify
analogous conjectures about special values and zeros for higher degree L-functions. Conjectures
such as Böcherer’s conjecture [5, 17] and the Bloch–Kato conjecture [3] are about the central
values of degree four and degree three L-functions, and the Grand Riemann hypothesis asserts
that all nontrivial zeros of an L-function, of any degree, lie along the critical line.

In addition to these conjectures, there are a number of other conjectures for the statistical
behavior of L-functions, arising from the interplay between random matrix theory and number
theoretic heuristics [6, 7, 10]. One of the main reasons those conjectures are believable is that
large-scale calculations of the value distribution and the zeros of L-functions yield data that
support those conjectures.

The L-functions we consider here are associated to Siegel modular forms. Our examples will
use the first non-lift Siegel modular form on Sp(4,Z). The form has weight 20 and is usually
denoted Υ20. Background information beyond what we mention about Siegel modular forms
can be found in [2, 11, 18]. For this paper the relevant information is that a Siegel modular
form is acted on by Hecke operators T (n), which have eigenvalues λ(n). It is the eigenvalues
λ(p) and λ(p2), for p prime, which are used to define the L-functions associated to the modular
form. For Υ20 the eigenvalues λ(p) have been computed for p 6 997, and the eigenvalues λ(p2)
for p 6 79 [12]. These data are available at [19].

There is an L-function L(s, F, ρ) of degree n for each n-dimensional representation ρ of the
dual group of PGSp(4), namely Sp(4,C). Associated to a Siegel modular form F is a sequence
of L-functions, of degrees 4, 5, 10, 14, 16, etc. The degree 4, 5, and 10 L-functions are called,
respectively, the spinor, standard, and adjoint, and are denoted L(s, F, spin), L(s, F, stan), and
L(s, F, adj). Proposition 2.1, taken from [9], summarizes the properties of those L-functions
for a weight k Siegel modular form on Sp(4,Z).

The degree 4 and 5 L-functions were shown by Andrianov [1] and Böcherer [4] to have an
analytic continuation and satisfy a functional equation. The degree 10 L-function was only
recently shown by Pitale, Saha, and Schmidt [14] to have an analytic continuation and satisfy
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a functional equation. Those properties for the L-functions of degree 14 and above are still
conjectural.

1.1. Evaluating L-functions

We are concerned with numerically evaluating L-functions. The standard tool, which is used in
available open-source computational packages [8, 15], is the approximate functional equation.
See Proposition 3.1 for the precise formulation.

There are two main difficulties in evaluating high-degree L-functions. The first is that if the
L-function L(s) has degree d, evaluating L( 1

2 + it) using the approximate functional equation

requires � (1 + |t|)d/2 Dirichlet series coefficients. Here the implied constant depends on the
L-function and the desired precision in the answer. For example, estimating the implied
constant from the calculations in § 4, to find the first one million zeros of L(s,Υ20, adj),
the degree 10 L-function associated to Υ20, would require using the approximate functional
equation with around 1030 Dirichlet series coefficients. Note that one million zeros is not even
a large sample; for example it is probably not sufficient for testing various conjectures about
the lower-order terms in the distribution of spacings between zeros.

The second difficulty is that current methods are incapable of producing a large number of
Dirichlet coefficients of the standard and adjoint L-functions of a Siegel modular form. The
Fourier coefficients indexed by quadratic forms with discriminant up to 3 000 000 have been
computed for Υ20 [12]. These Fourier coefficients are used to compute the Hecke eigenvalues.
Examination of formulas on [18, p. 387] shows that to find the eigenvalue λ(n) of T (n),
for n = p2, requires the Fourier coefficients indexed by quadratic forms of discriminant up
to n2 = p4.

It gets worse. By (2.2) and (2.4), the pth Dirichlet coefficient of the standard or adjoint
L-function requires both λ(p) and λ(p2). Thus, to determine the first n Dirichlet coefficients
of those L-functions requires Fourier coefficients of the Siegel modular form of index up to
approximately n4. The extensive calculations in [12] are not even sufficient to determine the
83rd Dirichlet coefficient of the standard or adjoint L-functions of Υ20.

Of course, one could determine more Dirichlet coefficients by first finding more Fourier
coefficients of the cusp form. But the n4 relationship makes this quite expensive, so with
current methods it is not feasible to determine many more Dirichlet coefficients than currently
known. It is possible that new methods will be developed to determine the Hecke eigenvalues
without extensive computation. The real problem will still remain: how to compute high-degree
L-functions without requiring an enormous number of Dirichlet coefficients.

That brings us to the theme of this paper: how accurately can one compute an L-function
given a limited number of Dirichlet coefficients? As the above discussion indicates, this is a
practical problem and there are many L-functions for which it is not currently possible to
determine a reasonably large number of Dirichlet coefficients.

As we describe in this paper, even without knowing many Dirichlet coefficients, we were able
to evaluate the L-functions to surprisingly high accuracy (surprising to us, anyway). In fact, we
were not able to establish that there is an absolute limit to the accuracy one can obtain from
only a limited number of coefficients. However, our method is computationally expensive, much
more expensive than evaluating the L-function in a straightforward way if more coefficients
were available. If one could find an efficient way to determine the unknown parameters in our
method, that could make it possible to quickly evaluate high-degree L-functions. See § 6 for a
discussion.

In the next section we describe the L-functions we consider here, and in § 3 we recall the
approximate functional equation and how it is used to compute an L-function. In § 4 we
state the underlying problem and then describe our experiments evaluating L(s,Υ20, stan)
and L(s,Υ20, adj). In § 5 we describe a second method that performs a little better than the
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method in § 4 and show how this second method can be used to approximate unknown Dirichlet
series coefficients.

2. The L-functions

The L-functions associated to a Siegel modular form are most conveniently described as Euler
products. The local factors of the Euler product can be expressed in terms of the Hecke
eigenvalues λ(p) and λ(p2), but it is more convenient to express them in terms of the Satake
parameters, α0,p, α1,p, and α2,p, given by

p2k−3 = α2
0α1α2,

A = α2
0α

2
1α2 + α2

0α1α
2
2 + α2

0α1 + α2
0α2,

B = α2
0α

2
1α

2
2 + α2

0α
2
1 + α2

0α
2
2 + α2

0,

(2.1)

where

λ(p)2 = 4p2k−3 + 2A+B,

λ(p2) = (2− 1/p)p2k−3 +A+B.
(2.2)

We suppress the p on the Satake parameters when clear from context. See [16] for a discussion
of how to solve this polynomial system of three equations for the three unknowns α0,p, α1,p, α2,p

using Gröbner bases.
We rescale the Satake parameters to have the so-called ‘analytic’ normalization |αj | = 1,

α2
0α1α2 = 1, which is possible if we assume the Ramanujan bound on the Hecke eigenvalues.

This corresponds to a simple change of variables in the L-functions, so that all our L-functions
satisfy a functional equation in the standard form s↔ 1− s.

As an error check for the reader who may wish to extend our calculations, for Υ20 we have
λ(2) = −840 960, λ(4) = 248 256 200 704, and the Satake parameters at 2 are approximately

{α0, α1, α2} = {−0.901 413 + 0.43 296i, 0.630 904− 0.775 861i,−0.211 226 + 0.977 437i}. (2.3)

Here and throughout this paper, decimal values are truncations of the true values.

Proposition 2.1. Suppose F ∈ Mk(Sp(4,Z)) is a Hecke eigenform. Let α0,p, α1,p, α2,p

be the Satake parameters of F for the prime p, where we suppress the dependence on
p in the formulas below. For ρ ∈ {spin, stan, adj} we have the L-functions L(s, F, ρ) :=∏
p primeQp(p

−s, F, ρ)−1 where

Qp(X,F, spin) := (1− α0X)(1− α0α1X)(1− α0α2X)(1− α0α1α2X),

Qp(X,F, stan) := (1−X)(1− α1X)(1− α−11 X)(1− α2X)(1− α−12 X),

Qp(X,F, adj) := (1−X)2(1− α1X)(1− α−11 X)(1− α2X)(1− α−12 X)

× (1− α1α2X)(1− α−11 α2X)(1− α1α
−1
2 X)(1− α−11 α−12 X), (2.4)

give the L-series of, respectively, the spin, standard, and adjoint L-functions. These
L-functions satisfy the functional equations

Λ(s, F, spin) := ΓC(s+ 1
2 )ΓC(s+ k − 3

2 )L(s, F, spin)

= (−1)kΛ(1− s, F, spin),

Λ(s, F, stan) := ΓR(s)ΓC(s+ k − 2)ΓC(s+ k − 1)L(s, F, stan)

= Λ(1− s, F, stan),
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Λ(s, F, adj) := ΓR(s+ 1)2ΓC(s+ 1)

×ΓC(s+ k − 2)ΓC(s+ k − 1)ΓC(s+ 2k − 3)L(s, F, adj)

= Λ(1− s, F, adj). (2.5)

In (2.5), we use the normalized Γ-functions

ΓR(s) := π−s/2Γ(s) and ΓC(s) := 2(2π)−sΓ(s).

The degree of an L-function is r+2c where r and c are the number of ΓR and ΓC factors in the
functional equation, respectively. The spin, standard, and adjoint L-functions described above
are of degree 4, 5, and 10. The Ramanujan bound for a degree d L-function with Dirichlet
series

∑
n>1 bnn

−s is given by

|bpj | 6
(
d+ j − 1

j

)
. (2.6)

Note that this is equivalent to the assertion that the Satake parameters satisfy |αj,p| 6 1.

3. The approximate functional equation

In this section we describe the approximate functional equation, which is the primary tool used
to evaluate L-functions. The approximate functional equation involves a test function which
can be chosen with some freedom. This will play a key role in our calculations.

3.1. Smoothed approximate functional equations

The material in this section is taken from [15, § 3.2].
Let

L(s) =

∞∑
n=1

bn
ns

(3.1)

be a Dirichlet series that converges absolutely in a half plane, <(s) > σ1.
Let

Λ(s) = Qs
( a∏
j=1

Γ(κjs+ λj)

)
L(s), (3.2)

with Q, κj ∈ R+, <(λj) > 0, and assume that:
(1) Λ(s) has a meromorphic continuation to all of C with simple poles at s1, . . . , s` and

corresponding residues r1, . . . , r`;
(2) Λ(s) = εΛ(1− s) for some ε ∈ C, |ε| = 1;
(3) for any σ2 6 σ3, L(σ + it) = O(exp tA) for some A > 0, as |t| → ∞, σ2 6 σ 6 σ3, with

A and the constant in the ‘Oh’ notation depending on σ2 and σ3.
Note that (3.2) expresses the functional equation in more general terms than (2.5), but it is

a simple matter to unfold the definition of ΓR and ΓC.
To obtain a smoothed approximate functional equation with desirable properties,

Rubinstein [15] introduces an auxiliary function. Let g : C → C be an entire function
that, for fixed s, satisfies

|Λ(z + s)g(z + s)z−1| → 0 (3.3)

as |=z| → ∞, in vertical strips, −x0 6 <z 6 x0. The smoothed approximate functional
equation has the following form.

https://doi.org/10.1112/S1461157013000314 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000314


evaluating L-functions with few known coefficients 249

Theorem 3.1. For s /∈ {s1, . . . , s`}, and L(s), g(s) as above,

Λ(s)g(s) =
∑̀
k=1

rkg(sk)

s− sk
+Qs

∞∑
n=1

bn
ns
f1(s, n) + εQ1−s

∞∑
n=1

bn
n1−s

f2(1− s, n) (3.4)

where

f1(s, n) :=
1

2πi

∫ν+i∞
ν−i∞

a∏
j=1

Γ(κj(z + s) + λj)z
−1g(s+ z)(Q/n)z dz,

f2(1− s, n) :=
1

2πi

∫ν+i∞
ν−i∞

a∏
j=1

Γ(κj(z + 1− s) + λj)z
−1g(s− z)(Q/n)z dz (3.5)

with ν > max{0,−<(λ1/κ1 + s), . . . ,−<(λa/κa + s)}.

In our examples L(s) continues to an entire function, so the first sum in (3.4) does not
appear. For fixed Q, κ, λ, ε, and sequence bn, and g(s) as described below, the right side of
(3.4) can be evaluated to high precision.

A reasonable choice for the weight function is

g(s) = eibs+cs
2

, (3.6)

which by Stirling’s formula satisfies (3.3) if c > 0, or if c = 0 and |b| < πd/4, where d is
the degree of the L-function. Rubinstein [15] uses such a weight function with b chosen to
balance the size of the terms in the approximate functional equation, minimizing the loss in
precision in the calculation. In this paper we exploit the fact that there are many choices of
weight function, and so there are many ways to evaluate the L-function. We combine those
calculations to extract as much information as possible from the known Dirichlet coefficients.
This idea is described in the next section.

In the computations we carry out below, we find it more convenient to use the Hardy
Z-function in our computations instead of the L-function itself. The function Z associated to
an L-function L is defined by the properties: Z( 1

2 + it) is a smooth function which is real if t
is real, and |Z( 1

2 + it)| = |L( 1
2 + it)|.

4. Exploiting the test function in the approximate functional equation

If we let g(s) = 1 and s = 1
2 +10i in the approximate functional equation (3.4) for the standard

(degree 5) L-function of Υ20, we get

Z( 1
2 + 10i,Υ20, stan) = − 1835.424− 395.011 b2 + 1012.179 b3 + 1906.603 b4

+ 2226.503 b5 + . . .+ 6.840× 10−9 b82

+ 5.132× 10−9 b83 + . . .+ 3.205× 10−16 b149

+ 2.564× 10−16 b150 + . . . . (4.1)

If instead we let g(s) = e−3is/2 and keep s = 1
2 + 10i then we have

Z( 1
2 + 10i,Υ20, stan) = 1.665 49 + 1.396 43 b2 − 0.658 439 b3 + 0.726 149 b4

− 0.882 27 b5 + . . .+ 1.532× 10−8 b82

+ 1.271× 10−8 b83 + . . .+ 3.514× 10−14 b149

+ 2.309× 10−14 b150 + . . . . (4.2)
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Note that neither of the above expressions appears optimal: the first involves large
coefficients, which will lead to a loss of precision. In the second, the terms do not decrease as
quickly, so one must use more coefficients to achieve a given accuracy. An observation that we
exploit is the fact that the above are just two among a large number of expressions for the
value of the L-function at 1

2 + 10i.
Recall that by [12, 19] we know the Satake parameters of Υ20 for all p 6 79. Therefore we

recognize two types of terms in the approximate functional equation, as illustrated in the above
examples. There are terms for which we know the Dirichlet coefficients, such as b5, b82, and b150.
And there are terms with an unknown Dirichlet coefficient, such as b83 or b149. Actually, there
is a third type of term, such as b166 = b2b83 which is ‘partially unknown’. We can estimate the
unknown terms by applying the Ramanujan bound to the Dirichlet coefficient, and evaluate
everything else precisely. Thus, once we choose a test function, we can evaluate an L-function
at a given point as

Z(s) = calculated value(s)± error estimate(s), (4.3)

where both the calculated value and the error estimate are functions of the test function and
the set of known Dirichlet coefficients. For later use, we write

error estimate(s) =
∑

n: bnunknown

δn(g, s)bn (4.4)

where the δn(g, s) is the coefficient of bn in (3.4). The product of δn(g, s) and the Ramanujan
bound for bn is an upper bound for the error contributed to computation by the unknown
coefficient bn. In the calculations described below, we directly evaluate the contributions from
the first 2000 Dirichlet coefficients. For n 6 2000 we use the calculated value of δn(g, s) and the
Ramanujan bound for bn to estimate the contribution. This is the main source of the error
term in (4.4).

While there are rigorous bounds for the contribution of the tail to the error (see, for example,
[13, Propositions 3.7 and 3.9]) we do not make use of them for two reasons. First, those general
bounds are much larger than what is actually observed in our examples. For instance, in (4.2)
it appears that by the 150th term the contribution is less than 10−13, and this is confirmed by
further computation (to thousands of terms), showing a steady decrease at the expected rate.
But the general bounds of [13] require about 8000 terms before the predicted contribution
drops below 10−13. Second, we consider our method to be experimental and, as such, did not
emphasize being so careful with the bounds and instead, relied on observation and intuition.
We think, as illustrated in examples below, the fact that we were able to obtain consistent
values for our calculations of L-functions is evidence that the results are correct and in principle
could be made rigorous.

Using the known bn and applying the Ramanujan bound (2.6) to (4.1) we get

Z( 1
2 + 10i,Υ20, stan) = 3.039 307 0838± 3.12× 10−8. (4.5)

And for (4.2) we get

Z( 1
2 + 10i,Υ20, stan) = 3.039 307 0808± 7.10× 10−8. (4.6)

In Figure 1 we show the calculated value and error estimate for Z( 1
2 + 10i,Υ20, stan) when

evaluated with test functions of the form g(s) = e−iβs. Note that the vertical axis in the figure
is on a log scale.

As Figure 1 shows, there is a wide range of β for which it is possible to determine
Λ( 1

2 + 10i,Υ20, stan) with some accuracy. With the optimal choice of β the error estimate
is approximately 4× 10−10.
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Figure 1. The solid line is the calculated value and the dashed line is the error estimate in computing
Z( 1

2
+ 10i,Υ20, stan) using the available Dirichlet coefficients with the weight function g(s) = e−iβs

where β is given along the horizontal axis. The vertical axis is log10 of (the absolute value of) the actual
value. For quite a wide range of test functions, the value of the Z-function at 1

2
+ 10i is determined

with some accuracy, achieving around 10 decimal digits of accuracy with the optimal choice of β.

Figure 2. The analogue of Figure 1 for Z( 1
2

+ 5i,Υ20, adj) with the weight function

g(s) = e−iβs+(1/500)(s−5i)2 where β is given along the horizontal axis.

Figure 2 shows the calculated value and error estimate for the adjoint (degree 10) L-function

Z( 1
2 + 5i,Υ20, adj) when evaluated with test functions of the form g(s) = e−iβs+(1/500)(s−5i)2 .

As Figure 2 shows, every test function of the given form leads to an error which is larger
than the calculated value. Thus, we can determine that |Z( 1

2 + 5i,Υ20, adj)| < 0.25, but with
individual test functions of the given form we cannot even determine if the actual value is
positive or negative.

We now introduce a new idea for increasing the accuracy of these calculations.

4.1. Optimizing the test function

In Figure 1 we see that there are many values of the parameters in the test function which
give reasonable results. If there is some degree of independence in the errors, then there is
hope for obtaining a smaller error by combining the results of those separate calculations.
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Write Z(s,Υ20, stan, β) for the output of the approximate functional equation with weight
function g(s) = e−iβs. Consider

Z(s,Υ20, stan) =

J∑
j=1

cβj
Z(s,Υ20, stan, βj) (4.7)

where
∑
cβj

= 1. We make the specific choices

s = 1
2 + 10i,

(β1, β2, β3, β4, β5) =
(

1
10 ,

2
10 ,

3
10 ,

4
10 ,

5
10

)
,

(cβ1
, cβ2

, cβ3
, cβ4

, cβ5
) = (0.031 50, 0.180 61, 0.365 63, 0.314 21, 0.108 01). (4.8)

Recall that all decimal numbers are truncations of the actual values; one requires much higher
precision than the displayed numbers in order to obtain the answers below. With the choices
in (4.8), after substituting the known Dirichlet coefficients and then using the Ramanujan
bound, we find

Z(s,Υ20, stan) = 3.039 307 086 489 527 827 78 + 2.688 · 10−19b83 + . . .− 1.147 · 10−16b107

+ . . .− 5.291 · 10−18b137 + . . .+ 1.216 · 10−23b199 + . . .

= 3.039 307 086 489 527 827± 4.73 · 10−15. (4.9)

Thus, by averaging only five evaluations of the L-function, the error decreased by a factor of
almost 10−5.

The weights cβj in (4.8) were determined by finding the least-squares fit to

∑
n: bn unknown

Ram(bn)2
(∑

j

cβj
δn

(
βj ,

1

2
+ 10i

))2

= 0, (4.10)

where Ram(bn) is the Ramanujan bound (2.6) for bn, subject to
∑
cβj

= 1. Note that in our
actual examples the vast majority of unknown coefficients have prime index, so the Ram(bn)
weighting is not important, but we include it for completeness. For the calculations in this
paper, we use the n < 1000 for which bn is unknown in (4.10).

The error estimate in (4.9) is an L1 estimate, not the L2 estimate as shown in (4.10), so
actually it is possible to choose slightly better weights than those used in our example. In § 5
we show how to obtain the optimal result that can arise from combining different evaluations
of the L-function, but for now we merely wish to illustrate the seemingly surprising fact that
appropriately combining several evaluations can vastly decrease the error.

4.2. Results

In Figure 3 we plot the error obtained by combining varying numbers of weight functions,
where we evaluate Z( 1

2 + 10i,Υ20, stan) with a weight function g(s) = eiβs with β = j/10
with −10 6 j 6 25. The horizontal axis is the number of terms averaged, where we start with
β = 1

2 and first use those β which are closest to 1
2 . The vertical axis is the error estimate on a

log10 scale. The lowest point on the graph, when we average all 36 evaluations, corresponds to

Z( 1
2 + 10i,Υ20, stan)

= 3.039 307 086 489 528 481 082 460 328 442 225 0910± 2.79× 10−35. (4.11)

It is not clear from Figure 3 whether one would expect to obtain an arbitrarily small error
by combining sufficiently many test functions in the approximate functional equations. This
is discussed in § 6.
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Figure 3. The error obtained from a least-squares minimization of the error for combining n
evaluations of Z( 1

2
+ 10i,Υ20, stan) using the weight functions g(s) = e−iβs with β = j/10. The

horizontal axis is n and the vertical axis is log10 of the resulting error estimate.

We briefly describe the corresponding calculations for Z( 1
2 + 5i,Υ20, adj). Recall that, as

shown in Figure 2, with a single test function of the standard form we are not able to determine
whether that value is positive or negative. Now we combine five evaluations in the analogous
way,

Z(s,Υ20, adj) =

J∑
j=1

cβj
Z(s,Υ20, adj, βj) (4.12)

where
∑
cβj

= 1. Here the weight function is g(s) = e−iβs+(s−5i)2/500.
We make the specific choices

s = 1
2 + 5i,

(β1, β2, β3, β4, β5) =
(
3
5 ,

6
5 ,

9
5 ,

12
5 ,

15
5

)
,

(cβ1
, cβ2

, cβ3
, cβ4

, cβ5
) = (0.035 863, 0.335 04, 0.479 34, 0.138 27, 0.011 46). (4.13)

The result is
Z( 1

2 + 5i,Υ20, adj) = 0.015 56± 0.0049. (4.14)

So we have determined that Z( 1
2 + 5i,Υ20, adj) is positive, but we can only be certain of one

significant figure in its decimal expansion. Using this method, the best result we were able to
obtain, by averaging eleven evaluations, is

Z( 1
2 + 5i,Υ20, adj) = 0.015 587 68± 0.000 16. (4.15)

Averaging more weight function actually makes the result worse. The explanation is simple:
since the adjoint L-function has high degree, the error terms δn decrease very slowly. The
least-squares fit does not properly take into account the contribution of a large number of
small terms, so the least-squares fit actually has a large L1 norm.

In the next section we describe some ‘sanity checks’ on our method, as suggested by the
referee. Then, in § 5, we introduce a different method which avoids some of the shortcomings
in the least-squares method.

4.3. The method applied to known examples

We check that our method gives correct results in some cases where it is possible to evaluate
the L-function using another method.
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First we consider L(s,∆), where ∆ is the (unique) weight 12 cusp form for SL(2,Z), which
satisfies the functional equation

Λ(s,∆) := ΓC(s+ 11
2 )L(s,∆) = Λ(1− s,∆). (4.16)

We will evaluate Z( 1
2 +100i,∆) without using any Dirichlet coefficients, other than the leading

coefficient 1. That is, all we know about the L-function is its functional equation and the fact
that its Dirichlet coefficients satisfy the Ramanujan bound.

In the approximate functional equation we will use the test function gβ(s) =

e−iβs+(s−100i)2/100, for β = − 30
20 ,−

29
20 , . . . ,

69
20 ,

70
20 . That is a total of 101 evaluations. Using

the least-squares method described previously, we find 101 coefficients cβ with
∑
cβ = 1.

Forming the weighted sum of the 101 evaluations of Z( 1
2 + 100i,∆) and estimating the

unknown terms as described previously, we find

Z( 1
2 + 100i,∆)

= −0.233 906 591 556 845 205 706 582 417 137 279 238 114 100 783± 3.28× 10−42. (4.17)

The given digits are correct to the claimed accuracy: the last three digits shown should be 880,
and the actual difference between the calculated value and the true value is 9.66× 10−44.

Next we consider the L-function associated to a weight 24 cusp form for SL(2,Z). Note that
S24(SL(2,Z)) is two dimensional, and every cusp form f in that vector space satisfies the
functional equation

Λ(s, f) := ΓC(s+ 23
2 )L(s, f) = Λ(1− s, f). (4.18)

We will attempt to evaluate Z( 1
2 + 100i, f) using as few coefficients as possible. Because there

is more than one function satisfying (4.18), it seems obvious that we cannot evaluate such an
L-function without knowing any coefficients.

If we assume the cusp form f is a Hecke eigenform, then the Dirichlet coefficient b2 determines
the coefficients b4, b8, etc, and it also allows us to eliminate every even-index Dirichlet
coefficient as an ‘unknown’. Since that does not seem like an adequately strenuous test of
the method, instead we will assume nothing about the Dirichlet series except the functional
equation (4.18) and a bound on the Dirichlet coefficients. We will assume a Ramanujan bound
of the form |bn| 6 Cfd(n), where d(n) is the divisor function and Cf is a constant depending
only on the cusp form f . If f is a Hecke eigenform then Cf = 1, and if f = Af1 +Bf2 where
f1, f2 ∈ S24(SL(2,Z)) are the Hecke eigenforms, then Cf = |A|+ |B|.

Using the same 101 test functions as in the case of L(s,∆), and choosing 101 weights to
minimize the contribution of b3, b4, . . . , we find

Z( 1
2 + 100i, f) = 1.870 426 534 029 268 899 143 339 193 910 896 103 506 087 410 b1

+ 1.125 008 886 302 338 484 473 484 421 487 863 753 620 660 254 b2

±Cf × 2.86× 10−43. (4.19)

Thus, we can evaluate Z( 1
2 + 100i, f) to 42 decimal places, knowing (up to a normalizing

constant) only one Dirichlet coefficient. The values of b2 for the two Hecke eigenforms, in the
analytic normalization, are

b2 =
540± 12

√
144 169

232/2
, (4.20)

and inserting those values finds that (4.19) is correct.
Our third check on the method is to evaluate a degree 10 L-function which can be also

evaluated in an independent way. To give a reasonable match with the case of L( 1
2+5i,Υ20, adj),

we consider L( 1
2 + 5i, f)5, where f is a weight 24 cusp form for SL(2,Z). In other words,
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the same L-function as in the previous example, except that we take its 5th power and evaluate
at 1

2 + 5i. Note that this time there are two L-functions with the given functional equation,
with known values

L( 1
2 + 5i, f1)5 = (−3.052 781 9)5 = −265.142 23, (4.21)

L( 1
2 + 5i, f2)5 = (−0.740 487 9)5 = −0.222 633 1. (4.22)

We will assume that we know the Euler factors up through p = 79, just as in the case of
L( 1

2 + 5i,Υ20, adj). If we only use a single test function of the standard form, then the best
error we can obtain is comparable to what we found in the previous degree 10 case

L( 1
2 + 5i, f1)5 = −265.204± 0.314, (4.23)

L( 1
2 + 5i, f2)5 = −0.221 93± 0.233. (4.24)

Using the test functions gβ(s) = e−iβs+(s−5i)2/500, selecting the seven values of β in the set
{− 10

10 ,−
2
10 ,

4
10 ,

6
10 ,

11
10 ,

17
10 ,

18
10 ,

25
10}, and using the least-squares method to find suitable weights,

we find

L( 1
2 + 5i, f1)5 = −265.142 24± 0.001 17, (4.25)

L( 1
2 + 5i, f2)5 = −0.222 664± 0.001 86. (4.26)

Averaging only seven evaluations decreased the error by a factor of more than 100, and we see
that the calculated values are in fact correct. This confirms that our method gives consistent
results in cases of comparably complicated L-functions for which it is possible to give an
independent check on the calculations.

5. Linear programming

In this section we view the evaluation of the L-function as an optimization problem. For
example, we can view the equality of the expressions in (4.1) and (4.2) as a constraint on
the value of the L-function. Thus, the same calculations which were used as input for the
least-squares method described in the previous section can also be used as input to a linear
programming problem.

We set up the linear programming problem in the following way. Let Z( 1
2 +10i,Υ20, stan, gj)

denote the evaluation of Z( 1
2 + 10i,Υ20, stan) using the weight function gj in the approximate

functional equation. One evaluation, Z( 1
2 + 10i,Υ20, stan, g1), is taken as the objective. The

other evaluations are taken in pairs and

Z( 1
2 + 10i,Υ20, stan, g1)− Z( 1

2 + 10i,Υ20, stan, gj) = 0 (5.1)

is interpreted as a constraint. The other constraints come from the Ramanujan bound on the
unknown coefficients.

In the above description there are infinitely many unknowns and constraints. We eliminate
the unknown coefficients bn with n > 1000 by using the Ramanujan bound, replacing the
equality (5.1) by a pair of inequalities. Thus, we have a straightforward linear programming
problem, which we use to determine the minimum and maximum possible values of
Z( 1

2 + 10i,Υ20, stan).
We implemented this idea using the same set of test functions we used for the least-

squares method. The calculations were done in Mathematica [20], using the built-in
LinearProgramming function with the Method -> Simplex option. In all cases the linear
programming method gave better results, but not spectacularly better. Figure 4 shows the
ratio of the errors in the results of the two methods, on a log10 scale. For example, when using
30 equations the error from the linear programming approach was approximately 1/10 the
error from the least-squares method.
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Figure 4. The ratio of the errors in the linear programming and least-squares methods for evaluating
Z( 1

2
+ 10i,Υ20, stan) using n equations. The horizontal axis is n and the vertical axis is log10 of the

ratio of errors.

5.1. Computing unknown coefficients

An interesting side-effect of the linear programming approach is that it allows us to obtain
information about the unknown coefficients. Instead of treating the value of the L-function
as the objective, we can use an unknown coefficient as the objective. Note that all the other
constraints in the problem are unchanged. Using the same method as described above we find
the following coefficients of the standard L-function of Υ20

b83 = 0.488 455 831 272 4± 2.4× 10−12,

b89 = 0.105 617 606 40± 2.7× 10−10,

b97 = 0.468 135 808± 1.5× 10−7. (5.2)

Since the eigenvalues of Υ20 are integral and of a known size, if we were to know b83 to 35
digits, we would determine it exactly. This is computationally expensive but perhaps not as
expensive as if we were to compute more Fourier coefficients of Υ20.

These results can be checked once more Fourier coefficients of Υ20 are computed. By the n4

argument given in the introduction, computing exact values of bp for p 6 97 will take about
twice as much work as it took to compute those for p 6 79.

6. Conclusions and further questions

We have shown that, at the cost of a lot of computation, one can evaluate an L-function to
high precision using only a small number of coefficients. That this is theoretically possible is
not surprising: L-functions are very special objects, and the data we have for the L-function
considered here (the functional equation and the first several coefficients) presumably specify
the L-function uniquely. Thus, in an abstract sense there is no new information in the missing
coefficients. But the question remains as to whether our methods accomplish this in practice.

Question 6.1. Can the method of calculating an L-function by evaluating the approximate
functional equation and then averaging to minimize the contributions of the unknown
coefficients, determine numerical values of the L-function to arbitrary accuracy?
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Because the approximate functional equation requires a huge number of terms to evaluate
a high-degree L-function, it would be significant if the weights we obtained by our methods
could be determined without actually calculating all the terms with unknown coefficients.

Problem 6.2. Devise a method of determining an optimal weight function in the
approximate functional equation without first calculating a large number of terms which
do not actually contribute to the final answer.

Implicit in the above problem is the requirement that one knows the calculated value as well
as an estimate of the error.

Problem 6.3. Is there any meaning to the weights determined by the least-squares method?

The weights which appear in our least-squares method depend on the point at which the
L-function is evaluated. It might be helpful to consider a case where there are two L-functions
with the same functional equation, such as the spin L-functions of Sp(4,Z) Siegel modular
forms of weight k > 22.

Without progress on these problems, or a completely new method, there is little hope of
making extensive computations of high-degree L-functions.

Acknowledgements. We thank the referee for suggesting we include the material in § 4.3.
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