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Abstract

A radical class 31 of rings (not necessarily associative) is called an n-radical class if it has the
property that a ring is in & if and only if every subring generated by sS n elements is in 31. A transfer
theorem is proved, relating n-radical classes in two universal varieties which share the same
=£ n-generator rings. Partially through the use of this result, we obtain information about extension-
closed subvarieties of various universal varieties of power-associative rings.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 21.

In this paper we continue the investigation begun in Part I (Gardner (1979)) of
local radical classes of rings, and preserve the notation and terminology of that
paper. We begin in Section 1 with a theorem on extension-closed varieties (or,
equivalently, direct product-closed local radical classes), showing that such classes
can in many instances be dealt with in terms of rings of prime characteristic. It is
an open question whether a local radical class which is closed under direct products
must be an n-radical class for some n, and it is not clear what the radical filter
would look like if such a class were not an n-radical class. However, for n-radical
classes, closure under direct products turns out to be equivalent to closure of the
corresponding n-radical filter under arbitrary intersections (Section 2). It can happen
that for two distinct universal varieties ^l and "W the free rings on n generators (for
some n) coincide. This leads to strong connections between n-radical classes in the
two settings; this matter is discussed in Section 3. In Section 4, the result in Section
3 is applied to extension-closed varieties in power-associative universal varieties;
this section also contains more detailed information about extension-closed
varieties (= semi-simple radical classes) of alternative and Jordan rings, the latter
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[2] Local radicals 275

furnishing examples of extension-closed varieties which are not 1-radical classes.
The result of Section 3 is finally used, in Section 5, to extend to alternative rings
results obtained by Freidman (1958) for associative rings with nil commutator ideals.
All rings considered are power-associative

1. Extension-closed varieties

When the universal class if is a variety, a subvariety of if is a radical class if
and only if it is closed under extensions in H?~ (see Gardner (1975), Wiegandt (1974)).
In this section we prove a theorem which reduces the problem of finding extension-
closed varieties of rings (in many cases) to the corresponding problem for algebras
over a finite prime field.

If, for a variety f , there are subvarieties i/~l, ...,'^"II such that every ring in f
is uniquely expressible as a direct product At x ... x An, with AteY',, ~V is called
the product oiiri,...,'ir

n and for this we use the notation

r = ~rxx...x*rn.
As before, F denotes a free iF-ring on a countably infinite set of generators. For
each n, let F", as usual, denote the subring of F generated by all words of length
2s n.

THEOREM 1.1. Let •W be such that f\F" = 0, and let 1^#{O} be an extension-
closed variety in "fV.

(i) / / there is a ring Ae^ such that A2 = OjtA, then "T = iT".
(ii) If'Vi^'W, there are finitely many primes pt, ...,pn, and finitely many extension-

closed subvarieties ir
i,...,i

r
n of "V such that

"T = TT1x...xiril

and every ring in "V t has characteristic p{.

PROOF, (i) This is just Corollary 1.9 of Gardner (1975).
(ii) By (i), f can contain no zerorings. Hence if O^aeAe'f, we have

<a>/<a>2eV and so <a> = <a>2 and a = Y^=2nia% f ° r some integers n2,...,nk.
By Theorem 13.2, p. 321 of Osborn (1972), A is a direct sum of periodic rings of
prime characteristic. Suppose infinitely many prime characteristicspup2, ••• occur
in this way throughout "K. Let Bt # 0 be a ring in "V with characteristic ph for each i.
Then f j B( is in f , but it is not a torsion ring—a contradiction. Thus there are only
finitely many primes/?!, ...,/»„ involved, and using the primary decomposition, we
have y = Yx x ... x irv where

= 0} = {Ae-V\A has a/»rprimary additive group},

and so each "V {is both a radical class and a variety.
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276 B. J. Gardner [3]

Thus in studying extension-closed varieties we can effectively restrict our
attention to varieties of rings with prime characteristics. If rings of certain charac-
teristics are in some sense exceptional, as often happens with 2 or 3, we can still
obtain partial results by excluding from consideration varieties where the trouble-
some characteristics are involved and without the necessity of changing from rings
to algebras over a ring containig \ or \ and so on.

2. Filters associated with extension-closed varieties

Since a local radical class is strongly hereditary and homomorphically closed,
such a class is closed under direct products if and only if it is an extension-closed
variety. We now examine the n-radical filters associated with n-radical classes
which are closed under direct products. The next theorem is analogous to Theorem
2.1 of Jans (1965) dealing with the filter of left ideals associated with a TTF class.

THEOREM 2.1. Let 8% be an n-radical class with associated n-radical filter 2F. The
following conditions are equivalent.

(i) & is closed under direct products.
(ii) 3F is closed under intersections.

PROOF. (i)=>(ii): Let {/JAe A } £ ^ \ Then for each ke A, there is a ring Ax

with elements a\, ...,a* such that Ix = In(a\, ...,a*). Now (a\, ...,a^)e3i for each
A, so F U A <a{, . - , a i > e ^ . Letp = p(xu ...,xn) be in F. Then

so that p({a\)A, ...,(a*)A) = 0 if and only if p(a\, ...,fl£) = 0 for each Ae A, that is

IJL(a*)A, ...MM = C\xeAln« ...,fli) = f W * But (af)A, ...,

(ii)=>(i): Let{Ax\!e A} be a set of rings in 0t and let bx = (a\)s,...,bn = (a^)A be
m n^A^A- Then as above,

Jn(bu...,bn)=
XeA

since, for each X, a\,...,a*eAxe&. This being so for all (blt ...,&„), we have

I
If i% is an n-radical class which is closed under direct products, then in particular

its n-radical filter has a smallest member.

THEOREM 2.2. Let!% be an n-radical class which is closed under direct products and
let !F be the associated n-radical filter: Then 3%, as a variety, js defined by n-variable
identities and the corresponding T-ideal of Fn is the intersection Jo of all the ideals
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PROOF. Let A be a ring satisfying all the n-variable identities which hold on Si.
Then every subring B generated by <n elements is a homomorphic image of the
relatively free ^-ring on n generators and so Be&. Since 0t is an n-radical class,
A is in 0t. Thus 3& is defined by n-variable identities. Now Jo is the set of n-variable
polynomials vanishing on all rings in ^ and so Jo is the n-variable T- ideal associated
with ^ , as asserted.

3. A transfer theorem

If H and iV are two universal varieties containing the same ^ n-generator rings,
for some n (as happens, for instance, when n = 2, 11 is the variety of associative,
#" the variety of alternative, rings) then in particular they have the same n-generator
free rings, and an n-radical filter in one of the universal varieties is an n-radical
filter in the other. This leads to a connection between n-radical classes in the two
varieties. We can do a little better than this, however. We have seen examples of
n-radical classes which can be described in terms of sets O of polynomials: for a
ring to belong to such a class, each of its subsets of cardinality <n must satisfy
one or several polynomial identities defined by O. It turns out that if the n-radical
class associated in 11 with an n-radical filter !F is describable in this way, then the
n-radical class associated with !F in ~W admits exactly the same description.
If the set O of polynomials has some suitable composition-closed property, it is
of course clear at least that it will define a radical class in both 11 and iV. It may
be, however, that there is no such closure property, but that internal properties of
H (say) must be invoked before we can show that O defines a radical class in H.
Use of the transfer theorem which we shall next prove, obviates the necessity for
a similar internal argument in W.

The following notation will be useful. Let O be a set of polynomials in x,,..., xn,
& a set of subsets of O. Let A be a ring such that for every subset 5 of A with
\S\^n, there is a set ¥ in £/> such that

p{su ...,sn) = 0 for aliped and $,, ...,sneS.

We denote this situation as follows: A~y.

THEOREM 3.1. Let 11 and W be varieties which, for some n, have the same free
ring Fn on {*,, ...,xn}. Then every n-radical filter for 11 is an n-radical filter for
'W, and conversely. If, moreover, for some n-radical filter $F there is a set O of
polynomials in Fn and a set £f of subsets of O such that

{Ae1l\A~SP}

is the n-radical class in H associated with 3P', then

is the n-radical class associated with !F in iV.
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PROOF. The first assertion being clear, we proceed to the second. Let 9t, 3t
be the n-radical classes associated with !F in "U, iV respectively. If J&SF, then
J ~ In(au ...,aB) for some at, ...,aBeAe!%, so

= FJIn(al,...,an)^au...,an>e!%.

On the other hand, if K<\Fn and FJKe@, then In(Pt + K, ...,pn+K)e& for each
/?!, ...,PneFn. Since (by the first defining property of n-radical filters) Fne!F, the
third defining property for «-radical filters implies that K is in &. Thus

& = {J<\Fn\FJJe®} = {J<\Fn\FJJe<M'}.

Hence

& ={AeiT\al,...,a.eA=>IJLal,...,aJe*}

= {Aeir\a1,...,aneA=>FJIn(al,...,an)e®}

= {Aeif\al,...,aneA=>FJIn(au...,an)~Sr}

4. Applications to 1-radical classes

We now apply Theorem 3.1 to produce some examples of direct product-
closed 1-radical classes in power-associative universal varieties. In the sequel
we denote the variety of associative (resp. commutative associative, resp. power-
associative) rings by s/ (resp. <gs/, resp ZPs/). Note that <£$$, &si and any inter-
mediate variety share the same one-generator free rings.

THEOREM 4.1. Let if be a variety of rings such that <£s/ £ i F £ &s/. The following
conditions are equivalent for a proper subclass •f jt {0} of W.

(i) f is a subvariety of W which is closed under extensions (in if) and is defined
by one-variable identities.

(ii) "V is a direct product-closed l-radical class in #".
(iii) There exists a finite set P of primes, and for each peP there exists a finite

set N(p) of integers > 1, such that •V is the subvariety of IV defined by the
identities

Y[{p\peP}x = 0; pxY[{x""-l-\\neN(p)} = 0 for each peP,..., (*)

where p = nfal?e^\{p}}, or 1, if P = {p}.

PROOF. The equivalence of (i) and (ii) follows from Theorem 1.4 of Gardner
(1975) and the closure properties of local (and in particular 1-) radical classes.
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(ii) => (iii): Let & be the 1-radical filter associated with -f. By Theorem 2.1, there
exists an ideal Jo of F1 such that

Let f ' denote the 1-radical class defined by & in ^ . By Theorem 2.1, 1 "̂ is
closed under direct products, so then by results of Gardner and Stewart (1975),
V is the variety (in s/) defined by a set of identities of the form (*). But then
Theorem 3.1 implies that ir is defined in if by this set of identities.

(iii) => (ii): Let "f be the variety defined in if by a set of identities of the form
(*), and let "f' be the variety defined in s4 by these identities. Then by results of
Gardner and Stewart (1975), ir' is a radical class, and thus a direct product-
closed 1-radical class in sf. Let & be its 1-radical filter, and le t^ be the 1-radical
class associated in if with &. By Theorem 3.1,

01 = {Aeif\aeA => a satisfies (*)} = 1T.

THEOREM 4.2. Let if be a variety with st'Zif^&si. Then for every non-trivial
extension-closed variety *% in if, either there exists a set of identities of the form(*)
defining a variety "f such that W^-f, or s/^<W.

PROOF. If % contains a ring A such that A2 — 0^=A, then A es/r\<%, so by Corol-
lary 1.9 of Gardner (1975), <8rrW = s4. If, on the other hand, there is no such A
in <#, then for aeRe^l we have <a>/<a>2 e?U, so that a e ( o ) 2 and thus every ring
in <% is periodic (see Osborn (1972), pp. 318-322). Now <a> is associative (and
periodic) for each aeRe% and so (if a # 0 ) is a direct sum of a finite number of
finite fields (Stewart (1970), Theorem 3.4). Let JT be the set of fields occurring in this
way as R varies over °U. Clearly Jf is strongly hereditary. Arguing as in the proof
of Theorem 4.3 of Stewart (1970), one can show that Jf is finite. Let P be the set of
characteristics of fields in JT, and for e a c h p e P , let

N{p) = {n\ JT contains the field of order />"}.

This choice of P and the N(p) determines a set of identities of the form (*) and it
is clear that % is contained in the corresponding variety.

It is not known whether the second possibility mentioned in the theorem can
actually occur.

All the examples of extension-closed varieties thus far exhibited have been
1-radical classes. We shall shortly see that there are extension-closed varieties
which are not of this type. This is an appropriate point to mention a result of
Loustau (1971): in &S0, the variety defined by the identities px = 0, xp = x,
where p is an odd prime, consists of associative rings and is thus a minimal variety
(being generated by GF (/>)). (Note that this set of identities has the form (*).)
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280 B. J. Gardner [7]

Thus to get non-1-radical examples of extension-closed varieties involving such
characteristics p, one must let in more fields. For characteristic 2, Loustau's
result ceases to hold, as can be seen from the non-associative division rings satisfy-
ing x2 = x, presented by Fiedorowicz (1974).

For alternative and Jordan rings we can obtain some more precise information
about extension-closed varieties.

THEOREM 4.3. For a non-trivial variety "V of alternative rings, the following
conditions are equivalent.

(i) "V is a semi-simple radical class;
(ii) "V has attainable identities;

(iii) "V is extension-closed;
(iv) "V is defined by a set of identities of the form (*).

PROOF. The equivalence of (i), (ii) and (iii) follows from Theorem 3.3 (proof)
and Corollary 1.12 of Gardner (1975). By Theorem 4.1, we need only prove
(iii) => (iv). By Theorem 1.1, y consists of periodic rings; in particular, no ring in
V has nilpotent elements. By Proposition 3.1 of Ryabukhin (1969a) and Theorem 1.1
of Ryabukhin (1969b) (see also Hentzel (1974)), each ring in V is a subdirect
product of rings without zero divisors. Let R^O be an alternative periodic ring
without zero divisors. If 0=£aeR, then a = a" for some n > 1. If b is any non-zero
element of R, we have a(a"~1 b) = (aa"~ *)b = a"b = ab. Since a is not a zero divisor,
we have a"'1 b = b. Similarly, ba"~1 = b and it follows that a"'1 is an identity foj
R. Then (compare the proof of Lemma 3.2 of Stewart (1970)) a""1e<a> = <a>2

and so an~1e(d>alzRa and an~1ea(a)^aR, which means that R is a division
ring. The Cayley-Dickson/algebras are not periodic and so we conclude that every
alternative periodic ring is a subdirect product of periodic fields. Thus, "V is gene-
rated (as a variety) by fields, and familiar arguments complete the proof.

For Jordan rings the characteristic 2 case presents difficulties, so here we will
discuss only varieties of rings with odd prime characteristic. Theorem 1.1 tells how
to put these together to form more general varieties but, at the same time, to avoid
the troublesome characteristic 2.

THEOREM 4.4. The following conditions are equivalent for a variety f of Jordan
rings such that

for an odd prime p.
(i) "K is a semi-simple radical class;

(ii) •f has attainable identities;
(iii) "V is extension-closed;
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(iv) there is a finite set N(p) of integers > 1 such that "V is contained in the variety
defined by the identities

PROOF, (i) and (ii) are equivalent, as noted above. Also (ii) implies (iii) (see
Mal'tsev (1967) or Gardner (1975), Corollary 1.6).

(iii) =*• (iv): This is a special case of Theorem 4.2.
(iv) ^ (ii): If a eA s'V, then <a>ey and <a> is associative. Since it satisfies the

stated identities, a is a finite direct sum of finite fields and thus periodic. Hence A is
periodic and so "K consists of periodic rings. By Theorem 15.11, p. 354, of Osborn
(1972) each ring in "V is a subdirect product of simple rings and "K is then the
variety generated by the class # of simple rings appearing in this way, that is the
class of simple rings in ~V. Now by the same theorem of Osborn, a simple, periodic
Jordan ring is either a field or a ring of the form

bu]
H = a,b,ceK)

Jb c

where K is a periodic field, — u is not a square and the multiplication is the usual

Jordan product on the ring
K K\

• By
K K\

the argument quoted in the proof of

Theorem 4.2, V can only contain finitely many fields and all of them are finite.
Since the ring H described above has K as a subring, K must be in "K if H is and so
K must then be finite. Since there are only finitely many fields in "V, it follows that
there must be only finitely many simple rings in -V and that each of these is finite.
An application of Theorem 3.3 of Gardner (1975) completes the proof.

COROLLARY 4.5. Letp be an odd prime, N(p) a finite set of integers > 1. The follow-
ing set of identities is attainable for Jordan rings:

{px = 0, xUixr-1 -l\neN(p)} = 0, (xy)z-x(yz) = 0}.

PROOF. Let "V be the variety defined by the first two identities; the fields in Y
generate the variety defined by all three.

COROLLARY 4.6. In the universal variety of Jordan rings there are 3-radical
classes which are closed under direct products and which are not l-radical classes.

5. An application to 2-radical classes

Let Jf denote the class of nil associative rings, # the class of commutative
associative rings. As noted in Section 4 of Part I, the class

JTo<€ = {A\A has an ideal itJf with AIIe<€),
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or, equivalently, the class of rings with nilpotent commutators in which the set of
nilpotent elements is an ideal, is a 2-radical class. To avoid confusion, in the sequel
we shall denote by Jf (resp. # ) the class of nil (resp. commutative) alternative
rings.

THEOREM 5.1. ^Fo<? is a 2-radical class.

PROOF. The free alternative ring on {xu x2} is associative. Let & be the 2-radical
filter associated with JfoM!, and let SI be the 2-radical class of alternative rings
defined by &.

Ua,beAeM, then <a,by e9t and I2(u, v)e& for each u,ve<a,by. Since <a,by is
associative, this means that <a, by e NcW. Thus if a is nilpotent, ab and ba (being in
(.a, by) are nilpotent, while if a and b are both nilpotent and so is a—b. Finally,
ab—ba (e <a, by e ̂ Yo^) is nilpotent for any a, b. Thus the set of nilpotent elements
of A is an ideal (necessarily JV(A)) containing all commutators and so A e JfcM.

Conversely, if A eJFo'%, the nilpotent elements of A form an ideal containing
all commutators (same proof as for associative rings). The same is true of <a,by
for every a, be A. But {a, by is associative and so (a,byBj/'o(€^M. Since ^ is a
2-radical class, A is in 0t. We conclude that ® = Jfd$.

is, of course, not a 1-radical class.

COROLLARY 5.2. Let A be an J/-semi-simple alternative ring of which every non-
zero homomorphic image has a non-zero commutative ideal. Then A is commutative.

PROOF. Certainly A is in the radical class J^o^?. But J?{A) = 0 and so AeV.

NOTE. This result can also be obtained from a combination of Theorem A',
Section 4 of Slater (1972) and the results of Freidman (1958) which establish the
fact that vVo'tf is a radical class of associative rings. Also, for associative rings,
Osborn (1972), Theorem 11.15 has obtained a more general result, using arbitrary
standard identities in place of commutativity.

COROLLARY 5.3. Let A be an alternative ring such that there is a series

0 = I0<h<h< •• .</.</«+ !<!•••<]/,. = A,

where If = \Ja<f /„ if P is a limit ordinal, and such that Ia+ ,//„ is in Jf\J<€ for all a.

PROOF. IO is in ̂ u < ? c Jpo<f. If IxeJVo'%, then from the exact sequence

with Iae^Vo<i and Ix+l/IaeJFv'g^SVo<%, we see that Ix+1 is in JFo<i. If lx
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[10] Local radicals 283

for all a<a limit p, then I^jFcMi, since the latter is a local radical class. Hence
each /„ is in JFo"f and so A = /M

COROLLARY 5.4. / / an alternative ring A has a commutative ideal J such that
A/J is nil, then A is in JTo<6 (that is
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