POSITIVE-DEFININTE FUNCTIONS ON FREE SEMIGROUPS

GELU POPESCU

Abstract

An extension of the Naimark dilation theorem [N], [SzF2] to positivedefinite functions on free semigroups is given. This is used to extend the operatorial trigonometric moment problem [A] to a non-commutative setting and to characterize the classes $\mathcal{C}_{\rho}(\rho>0)$ of all n-tuples of operators that have a ρ-isometric dilation (see [SZF2] for the case $n=1$). It is also shown that $\mathcal{C}_{\rho} \subset \mathcal{C}_{\rho^{\prime}}$ and $\mathcal{C}_{\rho} \neq \mathcal{C}_{\rho^{\prime}}$ for $0<\rho<\rho^{\prime}<\infty$.

The von Neumann inequality $[\mathrm{vN}],[\mathrm{Po} 2]$ is extended to the classes \mathcal{C}_{ρ}. This is used to prove that any element in \mathcal{C}_{ρ} is simultaneously similar to an element in \mathcal{C}_{1}.

1. Introduction and preliminaries. Let us consider the full Fock space [E]

$$
F^{2}\left(H_{n}\right)=\mathbf{C} 1 \oplus \bigoplus_{m \geq 1} H_{n}^{\otimes m}
$$

where H_{n} is an n-dimensional complex Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ if n is finite, or $\left\{e_{1}, e_{2}, \ldots\right\}$ if $n=\infty$. For each $i=1,2, \ldots, S_{i} \in$ $B\left(F^{2}\left(H_{n}\right)\right)$ is the left creation operator with e_{i}, i.e., $S_{i} \xi=e_{i} \otimes \xi, \xi \in F^{2}\left(H_{n}\right)$. We shall denote by \mathscr{P}_{n} the set of all $p \in F^{2}\left(H_{n}\right)$ of the form

$$
\begin{equation*}
p=a_{0}+\sum_{\substack{1 \leq i_{1}, \ldots, i_{i} \leq n \\ 1 \leq k \leq m}} a_{i_{1} \cdots i_{k}} e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}, \quad m \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

where $a_{0}, a_{i_{1} \cdots i_{k}} \in \mathbf{C}$ and the sum contains only a finite number of summands. The set \mathscr{P}_{n} may be viewed as the algebra of polynomials in n non-commuting indeterminates, with $p \otimes q, p, q \in \mathcal{P}_{n}$, as multiplication. Define F_{n}^{∞} as the set of all $g \in F^{2}\left(H_{n}\right)$ such that

$$
\|g\|_{\infty}:=\sup \left\{\|g \otimes p\|_{2}: p \in \mathcal{P}_{n},\|p\|_{2} \leq 1\right\}<\infty
$$

where $\|\cdot\|=\|\cdot\|_{F^{2}\left(H_{n}\right)} .\left(F_{n}^{\infty},\|\cdot\|_{\infty}\right)$ is a non-commutative Banach algebra [Po2]. We denote by \mathcal{A}_{n} the closure of \mathcal{P}_{n} in $\left(F_{n}^{\infty},\|\cdot\|_{\infty}\right)$. The Banach algebra F_{n}^{∞} (resp. \mathcal{A}_{n}) can be viewed as a non-commutative analogue of the Hardy space H^{∞} (resp. disc algebra); when $n=1$ they coincide.

Let $\left(B(\mathcal{H})^{n}\right)_{1}$ denote the unit ball of $\left(B(\mathcal{H})^{n}\right)_{1}$, i.e.,

$$
\left(B(\mathcal{H})^{n}\right)_{1}=\left\{\left(T_{1}, \ldots, T_{n}\right) \in B(\mathcal{H})^{n}: \sum_{i=1}^{n} T_{i} T_{i}^{*} \leq I_{\mathcal{H}}\right\}
$$

For any sequence $T_{1}, T_{2}, \ldots, T_{n} \in B(\mathcal{H})$ and $p \in \mathcal{P}_{n}$ given by (1.1) we denote by $p\left(T_{1}, \ldots, T_{n}\right)$ the operator acting on \mathcal{H}, defined by

$$
p\left(T_{1}, \ldots, T_{n}\right)=a_{0} I_{\mathcal{H}}+\sum a_{i_{1} \cdots i_{k}} T_{i_{1}} \cdots T_{i_{k}} .
$$

The von Neumann inequality $[\mathrm{vN}],[\mathrm{SzF} 2]$ for $\left(B(\mathcal{H})^{n}\right)_{1}$ (see [Po2]) asserts that if $\left(T_{1}, \ldots, T_{n}\right) \in\left(B(\mathcal{H})^{n}\right)_{1}$ and $p \in \mathcal{P}_{n}$, then

$$
\begin{equation*}
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq\left\|p\left(S_{1}, \ldots, S_{n}\right)\right\|=\|p\|_{\infty} \tag{1.2}
\end{equation*}
$$

According to [Po2] the mapping

$$
\Psi: \mathcal{A}_{n} \rightarrow B(\mathcal{H}) ; \quad \Psi(f)=f\left(T_{1}, \ldots, T_{n}\right)
$$

is a contractive homomorphism.
2. Positive-definite kernels. A positive-definite kernel on a set Σ is a map

$$
K: \Sigma \times \Sigma \rightarrow B(\mathcal{H})
$$

with the property that $K(\sigma, \omega)=K(\omega, \sigma)^{*},(\sigma, \omega \in \Sigma)$ and for each $k \in \mathbf{N}$, for each choice of vectors h_{1}, \ldots, h_{k} in \mathcal{H}, and $\sigma_{1}, \ldots, \sigma_{k}$ in Σ the inequality

$$
\sum_{i, j=1}^{k}\left\langle K\left(\sigma_{i}, \sigma_{j}\right) h_{j}, h_{i}\right\rangle \geq 0
$$

holds.
A Kolmogorov decomposition for K is a $\operatorname{map} V: \Sigma \rightarrow B(\mathcal{H}, \mathcal{K})$, where \mathcal{K} is a Hilbert space, such that $K(\sigma, \omega)=V(\sigma)^{*} V(\omega)$, for any $\sigma, \omega \in \Sigma$. If $\mathcal{K}=\bigvee_{\sigma \in \Sigma} V(\sigma) \mathcal{H}$ the decomposition is said to be minimal and it is a standard fact that two minimal decompositions are equivalent in an appropriate sense [PS].

Let $\Sigma=\mathbf{F}_{n}^{+}$be the unital free semigroup on n generators: s_{1}, \ldots, s_{n}. A kernel K on \mathbf{F}_{n}^{+} is called Toeplitz if it has the following properties: $K(e, e)=I_{\mathcal{H}},(e$ is the neutral element in \mathbf{F}_{n}^{+}) and

$$
K(\sigma, \omega)= \begin{cases}K(w, e) ; & \text { if } \sigma=\omega w \text { for some } w \in \mathbf{F}_{n}^{+} \\ K(e, w) ; & \text { if } \omega=\sigma w \text { for some } w \in \mathbf{F}_{n}^{+} \\ 0 ; & \text { otherwise }\end{cases}
$$

Let K be a positive-definite Toeplitz kernel on \mathbf{F}_{n}^{+}. We say that K has a Naimark dilation if there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a sequence $V_{s_{1}}, \ldots, V_{s_{n}}$ of isometries on \mathcal{K}, with orthogonal ranges, such that

$$
K(e, \sigma)=\left.\mathcal{P}_{\mathscr{H}} V_{\sigma}\right|_{\mathcal{H}}, \quad \text { for any } \sigma \in \mathbf{F}_{n}^{+},
$$

where for any $\sigma=s_{i_{1}} \cdots s_{i_{k}} \in \mathbb{F}_{n}^{+}, V_{\sigma}=V_{s_{i_{1}}} \cdots V_{s_{i_{k}}}$, and if $\sigma=e$ then $V_{\sigma}=I_{\mathcal{K}}$. The Naimark dilation is called minimal if $\mathcal{K}=\bigvee_{\sigma \in \mathbf{F}_{n}^{+}} V_{\sigma} \mathcal{H}$. The sequence $\left\{V_{s_{1}}, \ldots, V_{s_{n}}\right\}$ is called the minimal isometric dilation of K.

In what follows we present an extension of the Naimark dilation theorem [Theorem 7.1, pg. 25, SzF2] to free semigroups. The proof of this result uses the ideas of the classical result.

THEOREM 2.1. A Toeplitz kernel on \mathbb{F}_{n}^{+}is positive-definite if and only if it admits a minimal Naimark dilation. In this case its minimal Naimark dilation is unique up to an isomorphism.

Proof. Assume $K: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})$ is a positive-definite Toeplitz kernel. Let \mathcal{K}_{0} be the set of all finitely supported sequences $\left\{h_{\sigma}\right\}_{\sigma \in \mathbf{F}_{n}^{+}}$in \mathcal{H}. Define the bilinear form $\langle\cdot, \cdot\rangle$ on \mathcal{K}_{0} by

$$
\left\langle\left\{h_{\omega}\right\}_{\omega \in \mathbf{F}_{n}^{+}},\left\{k_{\sigma}\right\}_{\sigma \in \mathbf{F}_{n}^{+}}\right\rangle:=\sum_{\omega, \sigma \in \mathbf{F}_{n}^{+}}\left\langle K(\sigma, \omega) h_{\omega}, k_{\sigma}\right\rangle_{\mathcal{H}} .
$$

Since K is positive-definite $\langle\cdot, \cdot\rangle$ is positive semi-definite. Consider $\mathcal{N}=\left\{k \in \mathcal{K}_{0}\right.$: $\langle k, k\rangle=0\}$ and $\left.\mathcal{K}_{0}\right|_{\mathcal{N} .}$. Let \mathcal{K} be the Hilbert space obtained by completing $\left.\mathcal{K}_{0}\right|_{\mathcal{N}}$ with the induced inner product. Let us define the operators $V_{s_{i}}(i=1,2, \ldots, n)$ on \mathcal{K}_{0} by

$$
V_{s_{i}}\left(\left\{h_{\sigma}\right\}_{\sigma \in \mathbf{F}_{n}^{+}}\right)=\left\{\delta_{s_{i} \sigma}(t) h_{\sigma}\right\}_{t \in \mathbf{F}_{n}^{+}},
$$

where $\delta_{s_{i} \sigma}(t)=1$ if $t=s_{i} \sigma$ and $\delta_{s_{i} \sigma}(t)=0$ otherwise. One can prove that $\left\{V_{s_{1}}, \ldots, V_{s_{n}}\right\}$ extend by continuity to isometries on \mathcal{K} with orthogonal ranges. Indeed, since

$$
\begin{aligned}
\left\langle V_{s_{i}}\left(\left\{h_{\omega}\right\}\right), V_{s_{i}}\left(\left\{h_{\sigma}^{\prime}\right\}\right)\right\rangle & =\sum_{s, t \in \mathbf{F}_{n}^{+}}\left\langle K(s, t) \delta_{s_{i} \omega}(t) h_{\omega}, \delta_{s_{i} \sigma}(s) h_{\sigma}^{\prime}\right\rangle \\
& =\sum_{\sigma, \omega \in \mathbf{F}_{n}^{+}}\left\langle K\left(s_{i} \sigma, s_{i} \omega\right) h_{\omega}, h_{\sigma}^{\prime}\right\rangle=\sum_{\sigma, \omega \in \mathbf{F}_{n}^{+}}\left\langle K(\sigma, \omega) h_{\omega}, h_{\sigma}^{\prime}\right\rangle \\
& =\left\langle\left\{h_{\omega}\right\},\left\{h_{\sigma}^{\prime}\right\}\right\rangle
\end{aligned}
$$

the operators $\left\{V_{s_{i}}\right\}_{i=1}^{n}$ extend by continuity to isometries on \mathcal{K}. Moreover, since $K\left(s_{i} \sigma, s_{j} \omega\right)=0$ for any $i \neq j, \sigma, \omega \in \mathbb{F}_{n}^{+}$, it follows that they have orthogonal ranges.

Embed \mathcal{H} in \mathcal{K} by setting $\left.h=\left\{\delta_{e}(t) h\right)\right\}_{t \in \mathbf{F}_{n}^{\mathcal{F}}}$ where

$$
\delta_{e}(t)= \begin{cases}1 ; & \text { if } t=e \\ 0 ; & \text { if } t \neq e\end{cases}
$$

This identification is allowed since it preserves the linear and metric structure of \mathcal{H}. Indeed, we have

$$
\begin{aligned}
\left\langle\delta_{e} h, \delta_{e} h^{\prime}\right\rangle_{\mathcal{K}} & =\sum_{t, s \in \mathbf{F}_{n}^{\boldsymbol{+}}}\left\langle K(t, s) \delta_{e}(s) h, \delta_{e}(t) h^{\prime}\right\rangle_{\mathcal{H}} \\
& =\left\langle K(e, e) h, h^{\prime}\right\rangle_{\mathcal{H}}=\left\langle h, h^{\prime}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

For any $h, h^{\prime} \in \mathcal{H}$ and $\sigma \in \mathbb{F}_{n}^{+}$we have

$$
\left\langle V_{\sigma} h, h^{\prime}\right\rangle_{\mathcal{K}}=\left\langle\delta_{\sigma}(t) h, \delta_{e}(t) h^{\prime}\right\rangle_{\mathcal{K}}=\left\langle K(e, \sigma) h, h^{\prime}\right\rangle_{\mathcal{H}}
$$

which implies $\left\langle P_{\mathcal{H}} V_{\sigma} h, h^{\prime}\right\rangle_{\mathcal{H}}=\left\langle K(e, \sigma) h, h^{\prime}\right\rangle_{\mathcal{H}}$. Therefore $K(e, \sigma)=\left.P_{\mathcal{H}} V_{\sigma}\right|_{\mathcal{H}}$ for any $\sigma \in \mathbb{F}_{n}^{+}$. Let us observe that every element in \mathcal{K}_{0} can be considered as a finite sum of terms of type $\left\{\delta_{\sigma}(t)\right\}_{t \in \mathbf{F}_{n}^{+}}$and hence every element $k \in \mathcal{K}_{0}$ can decomposed into a finite sum of terms of the type $V_{\sigma} h, \sigma \in \mathbb{F}_{n}^{+}, h \in \mathcal{H}$. This implies $\mathcal{K}=\bigvee_{\sigma \in \mathbf{F}_{n}^{+}} V_{\sigma} \mathcal{H}$, i.e., the Naimark dilation is minimal.

To prove the uniqueness let $\left\{V_{s_{1}}^{\prime}, \ldots, V_{s_{n}}^{\prime}\right\}$ be another minimal dilation of K on a Hilbert space $\mathcal{K}^{\prime} \supset \mathcal{H}$. One can prove that there is a unitary operator $W: \mathcal{K} \rightarrow \mathcal{K}^{\prime}$ such that $W V_{s_{i}}=V_{s_{i}}^{\prime} W$, for any $i=1,2, \ldots, n$, and $\left.W\right|_{\mathcal{H}}=I_{\mathcal{H}}$. To see this, it is sufficient to define

$$
\begin{equation*}
W\left(\sum_{\substack{\sigma \in \mathbf{F}_{n}^{\prime} \\|\sigma| \leq m}} V_{\sigma} h_{\sigma}\right)=\sum_{\substack{\sigma \in \mathbf{F}_{n}^{\prime} \\|\sigma| \leq m}} V_{\sigma}^{\prime} h_{\sigma} \quad\left(h_{\sigma} \in \mathcal{H}\right) \tag{2.1}
\end{equation*}
$$

for any $m=0,1,2, \ldots$ Here $|\sigma|$ stands for the length of σ, i.e., $|\sigma|=k$ if $\sigma=s_{i_{1}} \cdots s_{i_{k}}$. Since

$$
\begin{aligned}
\left\langle V_{\omega} h, V_{\sigma} h^{\prime}\right\rangle_{\mathcal{K}} & =\left\langle\delta_{\omega}(t) h, \delta_{\sigma}(t) h^{\prime}\right\rangle_{\mathcal{K}} \\
& =\sum_{t, s \in \mathfrak{F}_{n}^{+}}\left\langle K(s, t) \delta_{\omega}(t) h, \delta_{\sigma}(s) h^{\prime}\right\rangle_{\mathcal{H}}=\left\langle K(\sigma, \omega) h, h^{\prime}\right\rangle_{\mathcal{H}}
\end{aligned}
$$

the operator W defined by (2.1) is correctly defined, isometric, and in view of minimality, it extends to a unitary operator between \mathcal{K} and \mathcal{K}^{\prime}.

Conversely, let $V_{s_{1}}, \ldots, V_{s_{n}}$ be a sequence of isometries on $\mathcal{K} \supset \mathcal{H}$ with orthogonal ranges. Assume that $K: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})$ is the kernel defined by

$$
K(e, \sigma)=\left.P_{\mathcal{H}} V_{\sigma}\right|_{\mathcal{H}}, \quad \text { for any } \sigma \in \mathbb{F}_{n}^{+}
$$

Since for any finitely supported sequence $\left\{h_{\omega}\right\}_{\omega \in \mathbf{F}_{n}^{+}} \subset \mathcal{H}$

$$
\begin{aligned}
\sum_{\sigma, \omega \in \mathbb{F}_{n}^{+}}\left\langle K(\sigma, \omega) h_{\omega}, h_{\sigma}\right\rangle & =\sum_{\sigma, \omega \in \mathbb{F}_{n}^{+}}\left\langle V_{\sigma}^{*} V_{\omega} h_{\omega}, h_{\sigma}\right\rangle \\
& =\left\|\sum_{\sigma \in \mathbf{F}_{n}^{+}} V_{\sigma} h_{\sigma}\right\|^{2} \geq 0
\end{aligned}
$$

we infer that K is a positive-definite Toeplitz kernel. The proof is complete.
COROLLARY 2.2. Let $T_{1}, \ldots, T_{n} \in B(\mathcal{H})$. Then the operator matrix $\left[T_{1}, \ldots, T_{n}\right]$ is a contraction if and only if the Toeplitz kernel

$$
K_{c}: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})
$$

defined by $K_{c}(e, \omega)=T_{\omega}, K_{c}(\omega, e)=T_{\omega}^{*}$, where for any $w=s_{i_{1}} \cdots s_{i_{k}}, T_{w}:=T_{i_{1}} \cdots T_{i_{k}}$, is positive-definite.

Proof. Assume that $\left[T_{1}, \ldots, T_{n}\right]$ is a contraction. According to [Pol] there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a sequence V_{1}, \ldots, V_{n} of isometries on \mathcal{K} such that

$$
\sum_{i=1}^{n} V_{i} V_{i}^{*} \leq I_{\mathcal{H}} \quad \text { and }\left.\quad V_{i}^{*}\right|_{\mathcal{H}}=T_{i}^{*}, \quad \text { for any } i=1,2, \ldots, n
$$

Thus, for any $\omega \in \mathbb{F}_{n}^{+}$we have

$$
K_{c}(e, \omega)=T_{\omega}=\left.P_{\mathcal{H}} V_{\omega}\right|_{\mathcal{H}} \quad \text { and } \quad K_{c}(\omega, e)=T_{\omega}^{*}=V_{\omega}^{*}
$$

Therefore, for any finitely supported sequence $\left\{h_{\omega}\right\}_{\omega \in \mathbf{F}_{n}^{+}} \subset B(\mathcal{H})$ we have

$$
\begin{aligned}
\sum_{\sigma, \omega \in \mathbf{F}_{n}^{\dagger}}\left\langle K_{c}(\sigma, \omega) h_{\omega}, h_{\sigma}\right\rangle & =\sum_{\sigma, \omega \in \mathbf{F}_{n}^{\mathbf{+}}}\left\langle V_{\sigma}^{*} V_{\omega} h_{\omega}, h_{\sigma}\right\rangle \\
& =\left\|\sum_{\omega \in \mathbf{F}_{n}^{+}} V_{\omega} h_{\omega}\right\|^{2} \geq 0,
\end{aligned}
$$

which proves that the Toeplitz kernel K_{c} is positive-definite.
Conversely, assume K_{c} is positive-definite. According to Theorem 2.1 there exists a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a sequence $V_{s_{1}}, \ldots, V_{s_{n}}$ of isometries on \mathcal{K} with orthogonal ranges such that

$$
T_{i_{1}} \cdots T_{i_{k}}=K_{c}\left(e, s_{i_{1}} \cdots s_{i_{k}}\right)=\left.P_{\mathcal{H}} V_{s_{i_{1}}} \cdots V_{s_{i_{k}}}\right|_{\mathcal{H}}
$$

for any $1 \leq i_{1}, \ldots, i_{k} \leq n$.
Therefore,

$$
\sum_{i=1}^{n}\left\|T_{i}^{*} h\right\|^{2} \leq \sum_{i=1}^{n}\left\|V_{i}^{*} h\right\|^{2} \leq\|h\|^{2}
$$

which shows that $\left[T_{1}, \ldots, T_{n}\right]$ is a contraction.
3. Generalized trigonometric moment problem. An $B(\mathcal{H})$-valued semispectral measure on $\mathbf{T}=\{z \in \mathbf{C}:|z|=1\}$ is a linear positive map from $C(\mathbf{T})$, the set of continous functions on the unit circle, into $B(\mathcal{H})$. Since $C(\mathbf{T})$ is commutative μ is completely positive. The operatorial trigonometric moment problem says that, given the operators $A_{k} \in B(\mathcal{H}), k=0,1, \ldots, m\left(A_{0}=I\right)$ there exists a semispectral measure on \mathbf{T} such that $A_{k}=\mu\left(e^{i k t}\right), k=0,1, \ldots, m$ if and only if the block matrix

$$
\left[\begin{array}{cccc}
I & A_{1} & \cdots & A_{m} \\
A_{1}^{*} & I & \cdots & A_{m-1} \\
\vdots & \vdots & & \vdots \\
A_{m}^{*} & A_{m-1}^{*} & \cdots & I
\end{array}\right]
$$

built up on the given operators $\left\{A_{k}\right\}_{k=1}^{m}$ is positive.
In what follows we will find a non-commutative analogue of this problem. The place of the multiplication by $e^{i t}$ is taken by the left creation operators S_{1}, \ldots, S_{n} on the full Fock space $F^{2}\left(H_{n}\right)$, and the place of $C(\mathbf{T})$ is taken by $C^{*}\left(S_{1}, \ldots, S_{n}\right)$, the extension through compact operators of the Cuntz algebra $O_{n}[\mathrm{Cu}]$. Let $\left\{A_{(\sigma)}\right\}_{\sigma \in \mathbf{F}_{n}^{\dagger},|\sigma| \leq m}$ be a sequence of operators in $B(\mathcal{H})$ such that $A_{(e)}=I_{\mathcal{H}}$. Define the operator matrix

$$
\begin{equation*}
M_{m}=(K(\omega, \sigma))_{|\omega| \leq m,|\sigma| \leq m} \tag{3.1}
\end{equation*}
$$

where K is the Toeplitz kernel on $\left\{\sigma \in \mathbb{F}_{n}^{+},|\sigma| \leq m\right\}$ defined by $K(e, \sigma)=K(\sigma, e)^{*}=$ $A_{(\sigma)}$. Notice that M_{m} is an operator on $\oplus_{k=1}^{N} \mathcal{H}$, where $N=1+n+n^{2}+\cdots+n^{m}$.

THEOREM 3.1. Let $\left\{A_{(\sigma)}\right\}_{\sigma \in \mathbf{F}_{n}^{\mathbf{F}},|\sigma| \leq m}$ be a sequence of operators in $B(\mathcal{H})$ with $A_{(e)}=$ $I_{\mathcal{H}}$. Then, there is a completely positive linear map

$$
\mu: C^{*}\left(S_{1}, \ldots, S_{n}\right) \rightarrow B(\mathcal{H})
$$

such that $\mu\left(S_{\sigma}\right)=A_{(\sigma)}, \sigma \in \mathbb{F}_{n}^{+},|\sigma| \leq m$ if and only if the operator matrix M_{m} defined by (3.1) is positive.

Proof. Assume that $\mu: C^{*}\left(S_{1}, \ldots, S_{n}\right) \rightarrow B(\mathcal{H})$ is a completely positive linear map such that $\mu\left(S_{\sigma}\right)=A_{(\sigma)}$ for any $\sigma \in \mathbb{F}_{n}^{+},|\sigma| \leq m$. According to the Stinespring theorem $[\mathrm{S}]$ there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a $*$-representation $\pi: C^{*}\left(S_{1}, \ldots, S_{n}\right) \rightarrow B(\mathcal{K})$ such that

$$
\mu(f)=\left.P_{\mathcal{H}} \pi(f)\right|_{\mathcal{H}} \quad \text { for any } f \in C^{*}\left(S_{1}, \ldots, S_{n}\right)
$$

Let $K: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})$ be the Toeplitz kernel defined by $K(e, \sigma)=\mu\left(S_{\sigma}\right), \sigma \in \mathbb{F}_{n}^{+}$. Since $\pi\left(S_{1}\right), \ldots, \pi\left(S_{n}\right)$ are isometries with orthogonal ranges, by Theorem 2.1 ,we infer that K is positive definite. In particular, the matrix

$$
M_{m}=(K(\omega, \sigma))_{|\omega| \leq m,|\sigma| \leq m}
$$

is positive.
Conversely, assume that the matrix M_{m} is positive. Let \mathcal{K}_{m} be the Hilbert space of all sequences of the form $\left\{h_{\sigma}\right\}_{|\sigma| \leq m}\left(h_{\sigma} \in \mathcal{H}\right)$ with the inner product

$$
\left\langle\left\{h_{\sigma}\right\}_{|\sigma| \leq m},\left\{h_{\omega}^{\prime}\right\}_{|\omega| \leq m}\right\rangle=\sum_{\omega, \sigma \in \mathbb{F}_{n},|\omega|,|\sigma| \leq m}\left\langle K(\omega, \sigma) h_{\sigma}, h_{\omega}^{\prime}\right\rangle
$$

As in the proof of Theorem 2.1 we identify the zero element in \mathcal{K}_{m} with all elements $k \in$ \mathcal{K}_{n} with $\|k\|=0$. Let \mathcal{X} be the subspace of \mathcal{K}_{m} defined by $\mathcal{X}=\left\{\left\{h_{\sigma}\right\}_{|\sigma| \leq m-1}, h_{\sigma} \in \mathcal{H}\right\}$. For each $i=1,2, \ldots, n$ let $T_{s_{i}}: X \rightarrow X$ be defined by

$$
T_{s_{i}}\left(\left\{h_{\sigma}\right\}_{|\sigma| \leq m-1}\right)=P_{X}\left\{\delta_{s_{i} \sigma}(t) h_{\sigma}\right\}_{|t| \leq m}
$$

Embed \mathcal{H} in \mathcal{K}_{m} by setting $h=\left\{\delta_{e}(t) h\right\}_{|t| \leq m}$. As in the proof of Theorem 1.1 one can prove that $\left[T_{s_{1}}, \ldots, T_{s_{n}}\right]$ is a contraction and

$$
\begin{equation*}
K(e, \sigma)=\left.P_{\mathcal{H}} T_{\sigma}\right|_{\mathcal{H}} \quad \text { for }|\sigma| \leq m . \tag{3.2}
\end{equation*}
$$

Let $V_{s_{1}}, \ldots, V_{s_{n}}$ be an isometric dilation of $T_{s_{1}}, \ldots, T_{s_{n}}$ on a Hilbert space $\mathcal{K} \supset \mathcal{X} \supset \mathcal{H}$ ([Pol]). This implies $T_{s_{i}}=P_{X} V_{s_{i}} \mid X$ and by (3.2)

$$
\begin{equation*}
K(e, \sigma)=\left.P_{\mathcal{H}} V_{\sigma}\right|_{\mathcal{H}} \quad \text { for any }|\sigma| \leq m . \tag{3.3}
\end{equation*}
$$

Define $\mu: C^{*}\left(S_{1}, \ldots, S_{n}\right) \rightarrow B(\mathcal{H})$ by

$$
\begin{equation*}
\mu(f)=\left.P_{\mathcal{H}} f\left(V_{1}, \ldots, V_{n}\right)\right|_{\mathcal{H}} . \tag{3.4}
\end{equation*}
$$

According to [Po3], $f \mapsto f\left(V_{1}, \ldots, V_{n}\right)$ is a $*$-representation of $C^{*}\left(S_{1}, \ldots, S_{n}\right)$. Thus, μ is completely positive.

In particular, the relation (3.4) implies

$$
\mu\left(S_{\sigma}\right)=\left.P_{\mathcal{H}} V_{\sigma}\right|_{\mathcal{H}} \quad \text { for any } \sigma \in \mathbb{F}_{n}^{+} .
$$

Hence and using the relation (3.3) we infer that

$$
\mu\left(S_{\sigma}\right)=K(e, \sigma)=A_{(\sigma)} \quad \text { for any } \sigma \in \mathbb{F}_{n}^{+}, \quad|\sigma| \leq m .
$$

The proof is complete.

Corollary 3.2. Let $\left\{A_{(\sigma)}\right\}_{\sigma \in \mathbf{F}_{n}^{+}}$be a sequence of operators in $B(\mathcal{H})$. Then, there is a completely positive linear map $\mu: C^{*}\left(S_{1}, \ldots, S_{n}\right) \rightarrow B(\mathcal{H})$ such that $\mu\left(S_{\sigma}\right)=A_{(\sigma)}$, $\sigma \in \mathbb{F}_{n}^{+}$, if and only if the Toeplitz kernel $K: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})$ defined by

$$
K(\sigma, e)^{*}=K(e, \sigma)=A_{(\sigma)} \quad \text { for any } \sigma \in \mathbb{F}_{n}^{+},
$$

is positive-definite.

4. ρ-contractions and similarity.

Let $\mathcal{C}_{\rho}(\rho>0)$ be the set of all n-tuples of operators T_{1}, \ldots, T_{n} on a Hilbert \mathcal{H} for which there exists an n-tuple of isometry V_{1}, \ldots, V_{n} on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} V_{i} V_{i}^{*} \leq I_{\mathcal{K}} \quad \text { and } \quad T_{i_{1}} \cdots T_{i_{k}}=\left.\rho P_{\mathcal{H}} V_{i_{1}} \cdots V_{i_{k}}\right|_{\mathcal{H}} \tag{4.1}
\end{equation*}
$$

for any $1 \leq i_{1}, \ldots, i_{k} \leq n$. In this case the sequence T_{1}, \ldots, T_{n} is called a ρ-contraction and V_{1}, \ldots, V_{n} is a dilation of it.

According to [Pol] we have $\mathcal{C}_{1}=\left(B(\mathcal{H})^{n}\right)_{1}$. A dilation theory for this class was developed in [Pol].

Theorem 4.1. Let A_{1}, \ldots, A_{n} be in $B(\mathcal{H})$. Then $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}_{\rho}(\rho>0)$ if and only if

$$
\begin{equation*}
\sum_{\sigma \in \mathfrak{F}_{n}^{+}}\left\|h_{\sigma}\right\|^{2}+\frac{1}{\rho} \sum_{\substack{\sigma \in \mathfrak{F}_{n}^{+}, \sigma \neq e \\ \beta \in \boldsymbol{F}_{n}^{+}}} \operatorname{Re}\left\langle A_{\sigma} h_{\beta}, h_{\beta \sigma}\right\rangle \geq 0 \tag{4.2}
\end{equation*}
$$

for any finitely supported sequence $\left\{h_{\beta}\right\}_{\beta \in \mathbf{F}_{n}^{+}} \subset B(\mathcal{H})$.
Proof. Let $K_{\rho}: \mathbb{F}_{n}^{+} \times \mathbb{F}_{n}^{+} \rightarrow B(\mathcal{H})$ be the Toeplitz kernel defined by

$$
\begin{equation*}
K_{\rho}(e, e)=I_{\mathcal{H}}, K_{\rho}(e, \omega)=\frac{1}{\rho} A_{\omega}, \quad \text { and } \quad K_{\rho}(\omega, e)=\frac{1}{\rho} A_{\omega}^{*} . \tag{4.3}
\end{equation*}
$$

According to the definition it is easy to see that $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}_{\rho}$ if and only if there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a sequence of isometries $V_{s_{1}}, \ldots, V_{s_{n}}$ on \mathcal{K} with orthogonal ranges such that

$$
\frac{1}{\rho} A_{\omega}=\left.P_{\mathcal{H}} V_{\omega}\right|_{\mathcal{H}}, \quad \text { for any } \omega \in \mathbb{F}_{n}^{+}, \quad \omega \neq e
$$

Applying Theorem 2.1, we deduce that $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}_{\rho}$ if and only if the Toeplitz kernel K_{ρ} is positive-definite. Since

$$
\sum_{\sigma, \omega \in \mathbb{F}_{n}^{+}}\left\langle K_{\rho}(\sigma, \omega) h_{\omega}, h_{\sigma}\right\rangle=\sum_{\sigma \in \mathbf{F}_{n}^{+}}\|h\|^{2}+\frac{1}{\rho} \sum_{\substack{\sigma \in \mathbf{F}_{n}^{+}, \sigma \neq e \\ \beta \in \mathfrak{F}_{n}}} \operatorname{Re}\left\langle A_{\sigma} h_{\beta}, h_{\beta \sigma}\right\rangle
$$

for any finitely supported sequence $\left\{h_{\beta}\right\}_{\beta \in F_{n}^{+}}$in \mathcal{H}, the result follows.
We will show that the class \mathcal{C}_{ρ} is strictly increasing as a function of $\rho(0<\rho<\infty)$. Let us remark that if $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}(\rho>0)$ then $\left\|\left[T_{1}, \ldots, T_{n}\right]\right\| \leq \rho$.

Proposition 4.2. If $\operatorname{dim} \mathcal{H} \geq n+1$, the class $\mathcal{C}_{\rho}(0<\rho<\infty)$ increases with ρ, i.e., $\mathcal{C}_{\rho} \subset \mathcal{C}_{\rho^{\prime}}$ and $\mathcal{C}_{\rho} \neq \mathcal{C}_{\rho^{\prime}}$ for $0<\rho<\rho^{\prime}<\infty$.

Proof. According to Theorem 2.3 we have that $\mathcal{C}_{\rho} \subset \mathcal{C}_{\rho^{\prime}}$ for $0<\rho<\rho^{\prime}<\infty$. Now we construct for every $0<\rho<\infty$ an operator $\left(T_{1}, \ldots, T_{n}\right) \in(B(\mathcal{H}))^{n}$ such that $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}$ and $\left\|\left[T_{1}, \ldots, T_{n}\right]\right\|=\rho$. This will prove the second part of the theorem.

Let $\left\{e_{0}, e_{1}, \ldots, e_{n}, \ell_{\lambda}(\lambda \in \Lambda)\right\}$ be an orthonormal basis of \mathcal{H}. For each $i=1,2, \ldots, n$ let $T_{i} \in B(\mathcal{H})$ be defined by

$$
T_{i} e_{0}=\rho e_{i}, \quad T_{i} e_{j}=0 \quad(j=1,2, \ldots, n) \quad \text { and } \quad T_{i} \ell_{\lambda}=0(\lambda \in \Lambda) .
$$

Notice that $T_{i} T_{j}=0$ for any $i, j=1,2, \ldots, n$. Let \mathcal{K} be the Hilbert space defined by

$$
\mathcal{K}=\mathbb{C} e_{0} \oplus \bigoplus_{m \geq 1} H^{\oplus m}
$$

where $H=\bigvee\left\{e_{1}, \ldots, e_{n}, \ell_{\lambda}(\lambda \in \Lambda)\right\}$. We identify \mathcal{H} with $\mathbb{C} e_{0} \oplus H \subset \mathcal{K}$. Define $V_{i}: \mathcal{K} \rightarrow \mathcal{K}$ to be the left creation operators on \mathcal{K} with $e_{i}(i=1,2, \ldots, n)$ by setting $V_{i} k=e_{i} \otimes k$ (with the convention that $e_{i} \otimes e_{0}=e_{i}$). These are isometries with orthogonal ranges. Let $P_{\mathcal{H}}$ be the orthogonal projection from \mathcal{K} into \mathcal{H}. For each $i=1,2, \ldots, n$ we have

$$
\begin{gathered}
\rho P_{\mathcal{H}} V_{i} e_{0}=\rho P_{\mathcal{H}} e_{i}=\rho e_{i}=T_{i} e_{0}, \\
\rho P_{\mathcal{H}} V_{i} e_{j}=\rho P_{\mathcal{H}}\left(e_{i} \otimes e_{j}\right)=0, \quad \text { for } j=1,2, \ldots, n,
\end{gathered}
$$

and

$$
\rho P_{\mathcal{H}} V_{i} \ell_{\lambda}=\rho P_{\mathcal{H}}\left(e_{i} \otimes \ell_{\lambda}\right)=0, \quad \text { for } \lambda \in \Lambda .
$$

Now, it is clear that

$$
T_{i_{1}} \cdots T_{i_{k}}=\left.\rho P_{\mathcal{H}} V_{i_{1}} \cdots V_{i_{k}}\right|_{\mathcal{H}}
$$

for any $1 \leq i_{1}, \ldots, i_{k} \leq n$ that is, $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}$. The fact that $\left\|\left[T_{1}, \ldots, T_{n}\right]\right\|=\rho$ is obvious. The proof is complete.

Let \mathcal{H} be a Hilbert space and $B(\mathcal{H})$ the set of bounded linear operators on \mathcal{H}. We identify $M_{m}(B(\mathcal{H}))$, the set of $m \times m$ matrices with entries from $B(\mathcal{H})$, with $B(\underbrace{\mathcal{H} \oplus \cdots \oplus \mathcal{H}})$. Thus we have a natural C^{*}-norm on $M_{m}(B(\mathcal{H}))$. If X is an operator
m-times
space, i.e., a closed subspace of $B(\mathcal{H})$, we consider $M_{m}(X)$ as a subspace of $M_{m}(B(\mathcal{H}))$ with the induced norm. Let X, Y be operator spaces and $u: X \rightarrow Y$ be a linear map. Define $u_{m}: M_{m}(X) \rightarrow M_{m}(Y)$ by

$$
u_{m}\left[\left(x_{i j}\right)\right]=\left[\left(u\left(x_{i j}\right)\right)\right] .
$$

We say that u is completely bounded ($c b$ in short) if

$$
\|u\|_{c b}=\sup _{m \geq 1}\left\|u_{m}\right\|<\infty
$$

The von Neumann inequality (1.2) can be extended, in an appropiate form, to the class \mathcal{C}_{ρ}.

Proposition 4.3. If $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}(\rho>0)$ then for any polynomial $p \in \mathcal{P}_{n}$,

$$
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| \leq\|(1-\rho) p(0, \ldots, 0)+\rho p\|_{\infty} .
$$

Proof. Since $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}$, there is a Hilbert space $\mathcal{K} \supset \mathcal{H}$ and a sequence of isometries V_{1}, \ldots, V_{n} on \mathcal{K} with orthogonal ranges such that

$$
T_{i_{1}} \cdots T_{i_{k}}=\left.\rho P_{\mathcal{H}} V_{i_{1}} \cdots V_{i_{k}}\right|_{\mathcal{H}} \quad \text { for any } 1 \leq i_{1}, \ldots, i_{k} \leq n .
$$

Hence, for any $p \in \mathscr{P}_{n}$ we have

$$
\begin{equation*}
p\left(T_{1}, \ldots, T_{n}\right)=\left.P_{\mathcal{H}}\left[(1-\rho) p(0, \ldots, 0) I_{\mathcal{K}}+\rho p\left(V_{1}, \ldots, V_{n}\right)\right]\right|_{\mathcal{H}} \tag{4.4}
\end{equation*}
$$

According to the von Neumann inequality (1.2) we infer that

$$
\begin{aligned}
\left\|p\left(T_{1}, \ldots, T_{n}\right)\right\| & \leq\left\|(1-\rho) p(0, \ldots, 0) I_{\mathcal{K}}+\rho p\left(V_{1}, \cdots, V_{n}\right)\right\| \\
& \leq\|(1-\rho) p(0, \ldots, 0)+\rho p\|_{\infty} .
\end{aligned}
$$

Corollary 4.4. Let $q \in \mathcal{P}_{n}$ such that $q(0, \ldots, 0)=0$ and $\|q\|_{\infty} \leq 1 . \operatorname{If}\left(T_{1}, \ldots, T_{n}\right)$ $\in \mathcal{C}_{\rho}(\rho>0)$ then $q\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}$.

Proof. Let $V_{1}, \ldots, V_{n} \in B(\mathcal{H})$ be an isometric ρ-dilation of T_{1}, \ldots, T_{n}. We have

$$
\begin{equation*}
q\left(T_{1}, \ldots, T_{n}\right)^{k}=\left.\rho P_{\mathcal{H}} q\left(V_{1}, \ldots, V_{n}\right)^{k}\right|_{\mathcal{H}} \tag{4.5}
\end{equation*}
$$

for any $k=1,2, \ldots$. Since $\|q\|_{\infty} \leq 1$ it follows by the von Neumann inequality (1.2) that $\left\|q\left(V_{1}, \ldots, V_{n}\right)\right\| \leq 1$. Thus, there is a unitary operator U on a larger space $\mathcal{U} \supset \mathcal{K}$ such that $q\left(V_{1}, \ldots, V_{n}\right)^{k}=\left.P_{\mathcal{K}} U^{k}\right|_{\mathcal{K}}$ for any $k=1,2, \ldots$. Therefore $q\left(T_{1}, \ldots, T_{n}\right)^{k}=$ $\left.\rho P_{\mathcal{H}} U^{k}\right|_{\mathcal{H}}, k=1,2, \ldots$, i.e., $q\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{\rho}$.

A sequence of operators A_{1}, \ldots, A_{n} is called simultaneously similar to a sequence T_{1}, \ldots, T_{n} if there is an invertible operator S such that $A_{i}=S T_{i} S^{-1}$, for any $i=1,2, \ldots, n$. In what follows we extend [SzF 1$]$ to our setting.

THEOREM 4.5. Any sequence $\left(A_{1}, \ldots, A_{n}\right) \in \mathcal{C}_{\rho}(\rho>0)$ is simultaneously similar to a sequence $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{1}$.

Proof. Let V_{1}, \ldots, V_{n} be a ρ-dilation of $\left(A_{1}, \ldots, A_{n}\right)$ on a Hilbert space $\mathcal{K} \supset \mathcal{H}$. According to (4.4), for any polynomial $p_{i j} \in \mathcal{P}_{n} 1 \leq i, j \leq k$ we have

$$
p_{i j}\left(A_{1}, \ldots, A_{n}\right)=\left.P_{\mathcal{H}}\left[(1-\rho) p_{i j}(0, \ldots, 0) I_{\mathcal{K}}+\rho p_{i j}\left(V_{1}, \ldots, V_{n}\right)\right]\right|_{\mathcal{H}}
$$

Denoting by V the isometry $\mathcal{H} \subset \mathcal{K}$, we obtain:

$$
\begin{aligned}
{\left[p_{i j}\left(A_{1}, \ldots, A_{n}\right)\right]=} & {\left[\begin{array}{ccc}
V & \cdots & 0 \\
& \ddots & \\
0 & \cdots & V
\end{array}\right]^{*}\left(\left[\begin{array}{rll}
(1-\rho) I_{\mathcal{K}} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & (1-\rho) I_{\mathcal{K}}
\end{array}\right]\left[p_{i j}(0, \ldots, 0) I_{\mathcal{K}}\right]\right.} \\
& \left.+\left[\begin{array}{ccc}
\rho I_{\mathcal{K}} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \rho I_{\mathcal{K}}
\end{array}\right]\left[p_{i j}\left(V_{1}, \ldots, V_{n}\right)\right]\right)\left[\begin{array}{lll}
V & \cdots & 0 \\
& \ddots & \\
0 & \cdots & V
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|\left[p_{i j}\left(A_{1}, \ldots, A_{n}\right)\right]\right\| \leq|1-\rho|\left\|\left[p_{i j}(0, \ldots, 0) I_{\mathcal{K}}\right]\right\|+\rho\left\|\left[p_{i j}\left(V_{1}, \ldots, V_{n}\right)\right]\right\| . \tag{4.6}
\end{equation*}
$$

According to (1.2) we have that $\left\|\left[p_{i j}(0, \ldots, 0)\right] I_{\mathcal{K}}\right\| \leq\left\|\left[p_{i j}\left(S_{1}, \ldots, S_{n}\right)\right]\right\|$ and $\left\|\left[p_{i j}\left(V_{1}, \ldots, V_{n}\right)\right]\right\| \leq\left\|\left[p_{i j}\left(S_{1}, \ldots, S_{n}\right)\right]\right\|$. These relations together with (4.6) imply $\left\|\left[p_{i j}\left(A_{1}, \ldots, A_{n}\right)\right]\right\| \leq(|1-\rho|+\rho)\left\|\left[p_{i j}\left(S_{1}, \ldots, S_{n}\right)\right]\right\|$. Hence the map $\Phi: \mathscr{P}_{n} \rightarrow B(\mathcal{H})$ defined by

$$
\Phi(p)=p\left(A_{1}, \ldots, A_{n}\right), \quad p \in \mathscr{P}_{n}
$$

can be extended to a completely bounded representation of the disc algebra \mathscr{A}_{n}. Using [Po4, Theorem 2.4] (see also [P]) we infer that there is a contraction $\left[T_{1}, \ldots, T_{n}\right]$ and a invertible operator S such that $A_{i}=S^{-1} T_{i} S$, for any $i=1,2, \ldots, n$. Thus, $\left(A_{1}, \ldots, A_{n}\right)$ is simultaneously similar $\left(T_{1}, \ldots, T_{n}\right) \in \mathcal{C}_{1}$. The proof is complete.

References

[A] N. I. Akhiezer, The classical moment problem, Edinburg, Scotland: Olivier and Boyd (1965).
[Cu] J. Cuntz, Simple C C^{*}-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173-185.
[E] D. E. Evans, On O_{n}, Publ. Res. Int. Math. Sci. 16(1980), 915-927.
[N] M. A. Naimark, Positive definite operator functions on a commutative group, Bulletin Acad. Sci. URSS 7(1943), 237-244.
[PS] K. R. Parthasarathy and K. Schmidt, Positive-definite kernels, continuous tensor products and central limit theorems of probability theory, Lecture Notes in Mathematics, Springer, Berlin 2721972.
[P] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55(1984), 1-17.
[Po1] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316(1989), 523-536.
[P02] \qquad Von Neumann inequality for $\left(B(H)^{n}\right)_{1}$, Math. Scand. 68(1991), 292-304.
[Po3] \longrightarrow, Functional calculus for noncommuting operators, Michigan Math. J. 42(1995), 345-356.
[P04] , Non-commutative disc algebras and their representations, Proc. Amer. Math. Soc., to appear.
[S] W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6(1955).
[SzF1] B. Sz. -Nagy, C. Foias, Similitude des operators de classe C_{ρ} a des contractions, C. R. Acad. Sci. Paris, serie A, 264(1967), 1063-1065.
[SzF2] __, Harmonic analysis on operators on Hilbert space, North-Holland, Amsterdam (1970).
[vN] J. von Neumann, Eine Spectraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4(1951), 258-281.

Gelu Popescu

Division of Mathematics and Statistics,
The University of Texas at San Antonio
San Antonio, TX 78249
U.S.A.
e-mail: gpopescu@ringer.cs.utsa.edu

