
Canad. Math. Bull.Vol. 35 (2), 1992 pp. 204-213 

CHARACTERIZATION OF EIGENFUNCTIONS 
BY BOUNDEDNESS CONDITIONS 

RALPH HOWARD AND MARGARET REESE 

ABSTRACT. Suppose {fk(x)}k°^_00 is a sequence of functions on R" with Afk = fk+[ 

(where A is the Laplacian) that satisfies the growth condition: \fk(x)\ < Mk{\ + \x\)a 

where a > 0 and the constants have sublinear growth -£ —• 0 as k —> ±oo. Then 
A/b = —fo- This characterizes eigenfunctions/* of A with polynomial growth in terms 
of the size of the powers Akf, —oo < k < oo. It also generalizes results of Roe (where 
a = 0, Mk — M, and n = 1 ) and Strichartz (where a = 0,Mk = M for n). The analogue 
holds for formally self-adjoint constant coefficient linear partial differential operators 
onR". 

1. Introduction. Let A = Ĵ - + • • • + J^ be the Laplacian operator onR". Recently 
Strichartz [8] has given a characterization of the bounded solutions of Af = —f in terms 
of bounds on the iterates Akf, where k G Z; more precisely, if (/^)^_0O is a doubly 
infinite sequence of functions on Kn with Afk — fk+\ and \fk(x)\ < M, for some M, then 
A/b = —/o. If n = 1, this is Roe's theorem [6]: If (/Â:}^_00 is a sequence of real-valued 
functions with ^(/*(*)) = fk+\(x) and |/^(JC)| < M, then/oW = A sin(;c + a). (See also 
the paper by Burkill [2] and the paper [3] for generalizations of Roe's theorem.) 

This does not characterize all solutions of Af — - / o n R " because many are un
bounded. For example, let Tj be the vector space of all complex-valued polynomials in x 
and y of degree at most/ For reasons of dimension the linear map p i—> pxx+pyy+2ipx from 
(Pj to 2J-_i has nontrivial kernel. Let p be a solution of degree j to pxx + pyy + 2ipx = 0. 
Then u(x,y) = p{x,y)elx satisfies Au = — u and has polynomial growth at infinity. In 
Fourier analysis the functions with polynomial growth are interesting because they are 
exactly the ones that can be viewed as tempered distributions (i.e., as elements of the 
dual of the space 5(tHn) of rapidly decreasing functions (see [4], Chapter 1)). As such 
they have Fourier transforms that are also tempered distributions. The following gives a 
characterization of solutions to Af = —f of (at most) polynomial growth in terms bounds 
on the power A*/ for — oo < k < oo. 

THEOREM 1. Let a > 0 and let {fk)^°oo be a sequence of complex-valued functions 
on Kn that satisfy 

&fk =fk+\ 

and 

\fk(x)\ <M*(i + i*ir 
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where the constants Mk have sublinear growth: 

n i\ v Mk v M~k n (1.1) hm — = hm = 0 
k—>oo k &—>oo k 

Then Af0 = -f0. 

Conversely iff is of polynomial growth |/(JC)| < M(l + \x\)a and satisfies Af = 

- / , thenfk = Akf = ( -1 )* / satisfies |/*(*)| < M(l + \x\)a. The growth condition 

(1.1) is as weak as possible if polynomial growth of the functions is to be allowed. For 

example (in one dimension) if/*(jt) = (— 1)*(JC — 2ki)elx then j^fk — fk+\ and |/*(JC)| < 

(1 + 2|fc|)(l + |JC|) but ^j/o 7̂  —fo- Even in the one dimensional case this gives the 

strengthening of Roe's theorem due to Burkill [2]: If (fk)%o satisfies fk(x) = fk+\ (x) and 

|/*(*)| < M{\ + \x\)a, then/oW = A sin(jc + a). 

In Section 2 we extend Theorem 1 to any formally self-adjoint constant-coefficient 

differential operator. The proof has the flavor of Roe's original proof—using the growth 

conditions to show that the support of the Fourier transform of/o is contained in the 

unit sphere—but concluding that/o is an eigenfunction requires first showing that/o is a 

generalized eigenfunction of À. A nonzero function/ is a generalized eigenfunction of 

A with eigenfunction A if and only if (A — À )Nf — 0 for some N > 1. In one dimension 

the generalized eigenfunctions of A = j ^ were characterized in [3] and [5]. In R n the 

result is 

THEOREM 2. If in Theorem I the sublinear growth condition (LI) is replaced by the 

sub exponential growth condition 

*-K» (1 +e)* * - K » ( 1 +e)k 

for all e > 0, thenfo is a generalized eigenfunction of A with eigenvalue A = — 1. 

We shall extend this to all formally self-adjoint constant-coefficient differential oper

ators in Section 2 (see Theorem 4). Although the following is well known to experts, it 

seems to be interesting enough to record here. 

COROLLARY. A smooth function of polynomial growth is a generalized eigenfunc

tion of A with eigenfunction —I if and only if the support of its Fourier transform is 

contained in the unit sphere { £ : | £ | = 1}. 

Finally, we note that for n > 2 there are many eigenfunctions of A than have greater 

than polynomial growth. For example (when n = 2) 

f(x,y) = e2i*+^ 

satisfies Af — —f and has exponential growth. However, it seems unlikely that it is pos

sible to characterise eigenfunctions of A in the class of functions of exponential growth: 

Let </> be any continuous function on [— 6,6 ] and set 

fk(x) = [* (sin9 +icos6)2ke(sm9+icose)x<j)(6)d6. 
J—s 
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Then4fc=§=/*+ ,and 

\fk(x)\ < f ^"^B^dO <MelsinS)W, 

for all x. But/o is not an eigenfunction. 

2. The general results. Let x\,..., xn be the usual coordinates in R n and i2 = — 1. 
Set 

D - - — 
J i dxj 

The factor of 4 is included to make the operator Dj formally self-adjoint. For a multi 

» 1 indexa = («,,...,<*„) and £ = (£i,. . . ,£„) € R M e t £ a = £"' •••£"" and D a = 
Df -D^.Let 

be a polynomial in £ and let 

(2.1) L = P(D) = J2^aDa 

a 

be the corresponding constant-coeffcient linear partial differential operator. If P is real-
valued then L will be formally self-adjoint. We now state our main result. 

THEOREM 3. Suppose P(£ ) = £ a aa(,
 a is real-valued and L = P(D). Let (fk)^ 

be a sequence of complex-valued functions onKn so that 

Lfk = fk+\ 

and 

(2.2) \fk(x)\<Mk(l + \x\)a, 

where (Mk)^ satisfies the sublinear growth condition 

(2.3) lim - ^ = 0. 
k-^±oo k 

Thenf = f+ +/_, where Lf+ — f+ and Lf- — —/_. 7f 7 for — 1 ) is not in the range of P 
thenU = 0 (orf- = 0). 

If P(£) = —1£ I2 then L — A. Then/0 = / - which yields Theorem 1. For operators 
such as the d' Alembertian • = J^ + • • • + Ĵ - — ^ | j , we see that both/+ ^ 0 

and/_ ^ 0 are possible, (cf. Theorem 3.1 of [61). 
The theorem applies to a class of operators more general than differential operators. 

In 5(RW), the Fourier transform and its inverse are given by 

ÂO=-^-ï [e~*xf(x)dx 
(27T)2 J 

https://doi.org/10.4153/CMB-1992-029-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-029-x


CHARACTERIZATION OF EIGENFUNCTIONS 207 

and 

(2.4) / W = * / > « / ( 0 ^ , 
(Z7r)2 J 

By duality these definitions extend to the space of tempered distributions; i.e., the dual 
space 5(R / I). Then, for the operator in (2.1), we have 

(2.5) Lf(0 = P(Of(0. 

This can be used to define an operator L on the space of tempered distributions even 
when P(£) is not a polynomial. Such operators are called multiplier operators or 
translation-invariant pseudo-differential operators. For example convolution operators 
Lf — <j> * / are of this type. We note that for our result to hold it suffices that P(£ ) be 
smooth and that (for each multi-index a) there be numbers C and N with 

\DaP(0\<C(l + \ti\)N. 

Then L (defined by (2.5)) is a linear operator on the space of tempered distributions. 
Although many such functions exist, for example P(£) = Ce~^ , the theorem is most 
interesting when L is a differential operator. 

To prove the theorem we first show that the support of/o is contained in the set { £ : 
I P(€ )| = 1} • Formally from (2.5) and the Fourier inversion formula (2.4) we get 

/*(*) = LkMx) = - i - r [eix<P(OkMOd^ 
(27T)2 J 

If this is to stay bounded (as k varies), the support of/o must be contained in the set 
{ £ : I ̂ (Ol = 1} • More precisely, we have 

PROPOSITION. (A) If a function f satisfies, for k = 0,1,2,. . . 

\Lkf(x)\ <Af*(l + |*|)fl, 

where the constants Mk satisfy the sub exponential growth condition 

(2.6) lim Mk
 h = 0. V } *->oo(l + e)* 

for all e > 0, then 

spt(/)Ç-U:|P(Ol<l}. 
(B) If (fk) k=-oo ™ a seQuence of functions with Lfk — fk+\,for k < — 1, 

\fk(x)\ <Mk(i + \x\y, 

and 

for all e > 0, then 

Unlike in Theorem 3 the function P can be complex valued and the proposition will 
still hold. This proposition is very closely related to the results of Section 3 of Garbardo's 
paper [3]. He shows this is related to the Paley-Wiener-Schwartz theorem. 

lim 

spt(/o) Ç 

^"T = 0, 
(l+O* 

U:|^(Ol>l} 
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LEMMA. Let O and 4> be C°°-functions with <j> compactly supported. Assume 
I^KOl < r < I, for all £ G spt(</>). For any sequence (Mk)^0 of constants satis
fying the sub exponential growth condition (2.6) and, for any multi-index a, 

UmMk\\D
a((t><ï>k)\\L2=0. 

PROOF. By the product rule there are constants C(/3,7 ) > 0 so that 

11 (̂̂ )̂11^ = 1 £ C(/3,7)D7^** 

< £ C(/3,7)||£»7^£»/3<D*||i2 

Since spt(Da <f> ) Ç spt(</> ), we may assume 1€>(£ )| < r < 1 on the support of ^ = D1' <j>. 
It is (thus) enough to show: 

limM,| |V^(O*)| |L 2 = 0. 
&—KX) 

Assume k > \/3\ :— (5\ + • • • + (5n. Writing O* = O • • • O and using the product rule 
gives a sum with k^ ' terms. Each term is a product of k factors, at least k — | /3 | of which 
are O. The other factors are of the form Z)70, where 0 < 171 < | (3 |. Setting 

^ ( J C ) = max £> 7 0(JC) 
\\I\<\P\] J 

and using | 0(JC)| < r on spt(^ ), we get 

|t/;Z^(0*)| <fc l /3||V(-*)| |O(jc)|H/*l*F0(jt) 

< ^1^-1^1 |^(JC)|V/Î(JC). 

Thus 

M,||^^(0/|U2 < llV^H^lA/^-l"!. 

The growth condition (2.6) implies that the right-hand side goes to zero as k —> oo. • 
To prove part (A) of the proposition, it suffices to show (/,</>) = 0 if <f> G C^°(R") 

and spt((/>)n {£ : \P(Ol < 1} = 0- Since spt(</>) is compact, there is some r < 1 so 
that r̂ TTT < r, for all £ G spt((/> ). Then 

= <*&£> 
= < ^ ) A > 

https://doi.org/10.4153/CMB-1992-029-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-029-x


CHARACTERIZATION OF EIGENFUNCTIONS 209 

Choose an integer m with 2m > 2a + n + 1. A calculation, using the hypothesis of the 
proposition and the Cauchy-Schwartz inequality, implies 

i</,*>i<yv/wii(^)> 
W ^ < ' ^ i ( £ ) > 
^/^<*)'(/<'*M !>1(£)AMS 

= M,C1(fl,m,n)(/(l + | x | 2 r | ( ^ ) A | 2 r f x ) ï . 

By a standard estimate (cf. [4], Chapter 1), there is a constant C2(m, n) with 

( / ( l + | x | 2 r | / ( x ) | 2 d x ) ' < C 2 Y, WfWu-

Using this in the above leads to 

I </,</>} I <C3(m,n,a)Mk £ K ( 4 ) L • 
|cr|<m ^ 2 

By the lemma the right-hand side of this goes to zero as k —* oo, and so (/,</>) = 
0. This completes the proof of part (A); part (B) is similar. Let </> G Cg°(Rw) so that 
spt(0 ) H { £ : | P(0\ > 1} = 0. We shall show that (/0, <£ ) = 0. Then, for some r < 1, 
the inequality | P(£ )| < r holds for all £ in spt((/> ). Thus 

</o,̂ > = < ^ * ^ > 

The rest follows as in part (A). 
We now prove Theorem 3. We first assume that —1 is not a value of P(£), and show 

that Lf0 = /0. Let S = {£ : P(0 = 1}. That spt(/o) Q S follows from the growth 
conditions on the sequence ( / * ) ^ , the proposition, and the assumption that P(£ ) ^ — 1. 

The topology on the space 5(Rn) is defined by the seminorms 

11011*,» = sup E (l + \x\)m\Da<l>(x)\. 
x \a\<N 

Therefore, since/o is a continuous linear functional on 5(Rn), there is a constant C and 
integers m and TV so that 

(2.7) | (/(),</>> | <C||(/>|U,m, 

for all (j) G 5(R n). Therefore (as a distribution)^ is of order < N. 
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CLAIM. For this N, 

(2.8) ( P - l f + 1 / o = 0. 

To simplify notation set h := (P — 1). Then we need to show, for any compactly 
supported C°° function <f>, that 

{hN+%<p):=(f0,h
N+l$)=0. 

Let g: R —• [0,1] be a C°° function with g = 1 on [ -1 /2 ,1 /2 ] and g = 0 outside 
(-1,1). Set 

Letting 5 = max{ \g(k)(t)\ : f G [-1,1], k < N}, we have 

(2.9) 1^(01 < ^ < ^ 

for all k < N. Set 
Hr = gr(h)hN+l<l>. 

Then// r = /̂ +1</> in a neighborhood of { £ : fc(0 = 0} = {£ : P(£) = 1} 2 W o -
Thus by (2.7) we have 

</o,̂ +1</>}l = l(/o,tfr>|<C||//r| Af,m-

To verify (2.8), it suffices to demonstrate ||//r|U,m —> 0 as r —> 0. Write Dk for any Da 

with | a | = k and (Dh)k for a product Dj{ h • • • D^/i of /: first order partial derivatives of 
h. Then (ignoring factors of /) and assuming k < N 

Dk(Hr) = Dk(gr(h)hN+l$) 

is a sum of terms of the form 

Tr(ku . . . ,kl+l) = g{k'\h)(Dh)kx(Dk2h) • --(Dklh)hN+]-k2—-klDkM(j) 

where &i + • • • + ki+\ — k. Since the support of <j> is compact, there is a bound K so that, 
for all x G spt(</> ), 

(l + |jc|)m|Da<£(*)| <Kmd\Dah(x)\ <K, 

whenever \a\ < N. Since \h\ < r on the support of Hr, the inequality (2.9) implies that 
on the support of Tr(k\,..., ki+\ ), 

(i +Wr|r r(^, . . .^ / + 1) | < —^l/zl^1-^--"-^^-1^' 

= B\h\N+l~k+kt+lKl+k] 

< BKl+k[
 r

/ V + 1 _^+^+i 
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But k < N so this goes to zero as r —• 0. The sum defining ||//r||/v,m is a finite sum of 
terms of this type and so || Hr\\N,m —> 0 as r —* 0. This completes the proof of the claim. 

Inverting the Fourier transform (2.8) yields that 

(2.10) (L-l)N+]f0 = 0. 

This equation implies 

span{/o,/i,/2, • • •} = span{/o, L/o, L2/o,. •.} = span{/0,. • •, L%}. 

We shall now show that we can take N = Oin (2.10). If not then (L - l)/0 ^ 0. Let K be 
the largest positive integer so that (L — \)Kf ^ 0. Clearly K < N. Thus 

/ := (L - lf~lf0 G span{/0,... ,fN} 

will satisfy 

(2.11) ( L - l ) 2 / = 0 a n d ( L - l ) / ^ 0 . 

Write 

/ = ao/b + • • • + aNfN, 

for constants ao,... ya^. Then 

Lf = açfk + • • • + afi/fN+k' 

If Ck — \a$\Mk + • • • + \au\Mk+N, then this and (2.2) imply 

(2.12) \{Lkf)(x)\ <Ck(\ + \x\)a. 

By (2.3) these satisfy the sublinear growth condition 

(2.13) lim -p = 0. 

An induction using (2.11) implies for k > 2 that 

Lkf =kLf-(k-\)f= k(L - \)f +/. 

|((L- l)/)(x)| < I|(L*/Xx)| + ^ < f (1 + |x|)a + ^ 

Letting & —• oo and using (2.13) implies (L — 1)/ = 0. But this contradicts (2.11). 
Consequently, TV = 0 in (2.10). This completes the proof in the case that —1 is not in the 
range of P. 

In the case that +1 is not in the range of P we apply the same argument to —L to 
conclude Lfo = —fy. In the general case, let Lo = L2. Then LQ/"(£ ) = P(£ )2fd ). LQ/*2* = 
f2(k+i) and P ( 0 2 7̂  — 1- Thus we can (as before) conclude, for the sequence (/2*)S-oo 
that 

Wo = Lfo = /0 . 

Set/+ - i(/b + L/o) and/_ - i(/b - L/0). Then/ = /+ +/_, Z/+ = /+, and L/_ = - /_ . 
This completes the proof of Theorem 3. 
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THEOREM 4. If in Theorem 3, we replace (2.3) with 

(2.14) lim ^ ' ' = 0, 

for all k > 0, then the span of(fk) is finite dimensional. Moreover, /o = /++ /_ , where, 
for some integer N, (L - 1)"/+ = 0 and (L + iff- = 0. Thusf+ (orf-) is a generalized 
eigenfunction ofL with eigenvalue +1 (or —I). 

The proof will be based on the following result from linear algebra. 

LEMMA. Let X be a finite dimensional complex vector space, and let A:X —> X 
be a linear map with eigenvalues X\,..., Xp. Then X = X\ ® • • • 0 Xp, where Xj = 
ker((A - Xjf) andN = dimX. 

This can be deduced from the Jordan normal form. (cf. [1], Chapter 10.) 
We first prove Theorem 4 under the assumption that P(£ ) / — 1. Using the growth 

condition (2.14) and the proposition, we may still conclude that spt(/o) Q S = {£ : 
P(£) = 1}. But then, as before, we can conclude that (2.10) holds. But this is enough 
to complete the proof in this case. A similar argument shows that if P(£) ^ 1, then 
( L + i y % = 0. 

In the general case we again let L0 = L? and P0 — P2. Then PoiO ^ —1 and the 
span of (fzk) is finite dimensional. The map L takes the span of (y^) onto the span of 
(fzk+i ) • Thus X is finite dimensional. Any/ G X will have spt(f) inside the set defined by 
P(£ ) = ±1 . From this it is not hard to show the only possible eigenvalues of L restricted 
to X are +1 and —1. The result now follows from the last lemma. 
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