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Abstract

Pseudoeffect (PE-) algebras generalize effect algebras by no longer being necessarily commutative. They
are in certain cases representable as the unit interval of a unital po-group, for instance if they fulfil a
certain Riesz property.

Several infinitary lattice properties and the countable Riesz interpolation property are studied for
PE-algebras on the one hand and for po-groups on the other hand. We establish the exact relationships
between the various conditions that are taken into account, and in particular, we examine how properties
of a PE-algebra are related to the analogous properties of a representing po-group.
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Keywords and phrases: pseudoeffect algebras, po-groups, cr-complete PE-algebras, monotone a-
complete PE-algebras, orthogonally cr-complete PE-algebras, PE-algebras with countable Riesz interpo-
lation.

1. Introduction

Effect algebras, which play an important role in quantum physics, were introduced to
model the set of quantum effects, that is, the set of positive operators of some Hilbert
space lying below identity [10]. They were recently generalized to pseudoeffect
algebras, or PE-algebras, basically by dropping the axiom of commutativity [5].

The standard effect algebra is the unit interval of the partially ordered group of all
self-adjoint operators in Hilbert space, the unit being given by the identity operator.
The PE-algebras which are meant to be prototypical arise in an analogous manner;
they are given by the unit intervals of po-groups with a strong unit, where these groups
are just no longer assumed to be abelian.
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The question is then natural when a PE-algebra is actually apo-group interval. As a
sufficient condition a certain property of Riesz kind has been found in [6]. Moreover,
PE-algebras fulfilling this condition and po-groups fulfilling an analogous condition,
together with their respective homomorphisms, are categorically equivalent. We shall
recall these basic facts in the introductory Section 2.

Now the relation between such a pair of a PE-algebra of Riesz kind and its repre-
senting po-group was already studied in [6], as far as several finitary properties are
concerned, that is, lattice order, certain Riesz properties, commutativity and linearity.

In this paper, these studies are continued, and properties are taken into consideration
that possibly involve infinitely many elements at a time. So in Section 3, the following
properties of PE-algebras, which concern their order, are introduced: completeness,
cr-completeness, and monotone cr-completeness. Furthermore, we are concerned with
orthogonal completeness and orthogonal cr-completeness. Finally, also the countable
Riesz interpolation property is included in the discussion.

In the first step, the exact relations between all these conditions are established under
different assumptions; all implications that hold are proved, and for any implication
that does not hold, a counterexample is given, which is chosen in a way as simple as
possible.

In the second step, in the subsequent Section 4, similar properties are defined
for po-groups; in this case, we generalize or recall definitions given elsewhere, in
particular in [14] and [12]. Then, also for po-groups, the exact relationships between
these conditions are given.

By our third step, we finally arrive at the main scope of this paper. In Section 5,
we see how the property of a PE-algebra of Riesz kind is related to the correspond-
ing property of its representing po-group. Namely, we will see (in this order) that
countable Riesz interpolation, monotone cr-completeness, cr-completeness, orthogo-
nal completeness, orthogonal cr-completeness, and completeness is preserved from a
PE-algebra to the group and vice versa.

2. PE-algebras and their po-group representation

Pseudoeffect algebras have been introduced in [5] as partial additive algebras.
They have basically the same properties as effect algebras, which have been studied
in recent years intensively [10, 4]. But they differ in one respect: They are no longer
commutative. Once commutative, a PE-algebra is the same as an effect algebra. [5] is
the basic reference for PE-algebras; their theory is further developed in [6, 7, 8]. The
forthcoming paper [9] makes use of some results obtained here.

We recall from [5] that a pseudoeffect algebra, or a PE-algebra for short, is a
structure (E; +, 0, 1), where + is a partial binary operation and 0, 1 are constants,
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such that, for all a,b,ce E, (PE1) (a + b) + c is defined if and only if a + (b + c) is
defined, in which case these elements are equal, (PE2) there is exactly one d e E and
exactly one e e E such that a + d = e + a = \, (PE3) in the case that a + b exists,
there are d, e e E such that a + b = d + a = b + e, (PE4) in the case that 1 + a or
a + 1 exists, we have a = 0.

A partial order is defined for a PE-algebra E by letting a < b if for some c e E
we have a + c = b. By (PE3), this order is two-sided: a < b holds if and only if for
some d e E we have d + a = b.

By (PE2), we may associate to any a e E a right complement a~ and a left
complement a"; that is, we may define unary operations ~, ~ on E such that

(1) a + a~ = a~+a = l.

PE-algebras arise in particular from intervals in partially ordered groups; our axioms
are actually designed so as to include this important case. We generalize in this respect
again effect algebras; in particular, the standard effect algebra is the unit interval of
the abelian po-group of self-adjoint Hilbert space operators.

So let a po-group G and a positive element u e G be given; in case that u is a
strong unit, we call the pair (G, u) a united po-group. Then (F(G, w);+, 0, u) is a
PE-algebra, where T(G, u) = {g e G+ : g < «}, + is the partial binary operation
that is the restriction of the group addition to those pairs of elements of F(G, «)
whose sum lies again in F(G, u), and 0 is the neutral element of G. A PE-algebra
E is called an interval PE-algebra if there is a po-group G such that E c G+ and

We are interested in the exact algebraic conditions under which a PE-algebra is
an interval PE-algebra. This problem, while somewhat difficult to handle in general,
gets treatable under a certain condition that may be compared to the Riesz properties
known for po-groups. We recall from [5] the following definitions.

We say that a PE-algebra fulfils

if for any au a2, b\,b2 e E such that ax + a2 = b\ + b2 there are
dud2,di, d* € E such that (i)di+d2 = audi+di = a2,d\+d3 = bu

d2 + di = b2, and (ii) every d'2 < d2 commutes with every d'3 < d^\

(RDPo) if for any a,b{,b2 € E such that a < b\ + b2 there are d\, d2 6 E such
that dx < bu d2<b2 and a = d\ + d2;

(RIP) if for any ax, a2, bub2 e E such that ait a2 < bub2 there is a c e E
such that a\, a2 < c < b\,b2.

We note that the following implications hold, and that their converses do not hold
[5, Proposition 3.3 (i)]: (RDP,) -> (RDP0) -> (RIP).

Now, the most important result for the sequel is the following [6, Theorem 5.7],
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THEOREM 2.1. Let ( £ ;+ , 0, 1) be a PE-algebra fulfilling (RDP,). Then there is
an, up to isomorphism unique, unital po-group (&(E), 1) such that (E; +, 0, 1) =

), 1); +, 0, 1); that is, E is an interval PE-algebra.

REMARK 2.2. For such a pair E and Sf (E), w^ note the following [6, Proposi-
tion 6.3]. The order of £ as a PE-algebra and the one induced from &(E) coincide.
Moreover, the infimum or supremum of finitely many elements which exists in E also
exists in &(E), and it is the same if calculated in E or in # (£ ) . Similarly, the infimum
or supremum of any subset of E which exists in Sf (£) also exists in E, and it is the
same if calculated in E or in

For a PE-algebra E fulfilling (RDP,), we will in the sequel refer to (#(£), 1)
simply as the extension of E to its representing unital po-group. It is the relationship
between such a pair E and &(E) which we shall examine in this article.

As a first example of a property preserved from E to &(E), (RDPO may serve. It is
possible to define (RDPO as well as (RDP0) and (RIP) forpo-groups in exact analogy
to PE-algebras; see [5] for explicit definitions. We then have [5, Proposition 4.2 (i)]:
(RDP,) - • (RDP0) «+• (RIP).

Now, we have the following theorem, which contains the statement that (RDP,)
holds in an interval PE-algebra if and only if it holds in the representing unital po-group
[6, Theorem 7.4].

THEOREM 2.3. The map that associates with a PE-algebra E fulfilling (RDPi) its
representing group (&(E), 1), defines an equivalence between the category of PE-
algebras fulfilling (RDPi) together with their homomorphisms and the category of
unital po-groups fulfilling (RDPi) together with their homomorphisms.

REMARK 2.4. In view of the theorems that will follow, Theorem 2.3 means in
particular the following. Anything holding for a pair of a PE-algebra E fulfilling
(RDP]) and the extension of £ to its representing group C&(E), 1) may be reformulated
from the point of view of the theory of partially ordered groups. Namely, Theorem 2.3
implies that we may equivalently assume to be given the pair of a unital po-group
(G, u) fulfilling (RDPi) and the PE-algebra arising from its unit interval T(G, u) =
{g € G :0 < g < u}.

Let us continue by exhibiting a certain subclass among the interval PE-algebras
as particularly important. We will actually see within the subsequent sections, how
our results specialize to this class. Namely, the lattice-ordered PE-algebras fulfilling
(RDPi) are of special interest, since they may be identified with the pseudo-MV
algebras. We refer to [13] for the definition and to [3] for the group representation of
pseudo-MV algebras.
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The identification is done in the following simple manner [6]. Given a PE-algebra
(£; +, 0, 1) of the mentioned kind, we may extend the partial operation + to a total one,
ffi, by defining a © b = a + (a~ Ab) fora, b e E. Then (£";©, 0, 1, ~, ~) isapseudo-
MV algebra, and all pseudo-MV algebras arise in this way. From (E; ©, 0, 1, ~, ~),
we may recover the underlying PE-algebra by defining a + b = a © bit b < a~; the
operations ~, ~ then fulfil (1). The order, defined for pseudo-MV algebras in a similar
way as for PE-algebras, is in both cases the same.

In particular, the MV-algebras, which are the commutative pseudo-MV algebras, are
thus identifiable with the lattice-ordered commutative PE-algebras fulfilling (RDPi).

A pseudo-MV algebra (E;(&,0, 1, ~, ~) is, in accordance with Theorem 2.1,
extendable to some unital *!-group (^(£), 1), as proved in [3]. We have then
(£; ffi, 0, 1, ", ~) = (!"(#(£), 1); ©, 0, 1, ~, ~), where the operations on T(5f (£), 1)
are defined by the po-group operations as follows: a®b = (a + b)Al and a~ = I —a,
a~ = -a + 1 for a, be T(^(E), 1).

For an MV-algebra, the representing group is abelian, see [17] or [4].
Another subclass of PE-algebras, in this case actually effect algebras, is constructed

in a particularly simple manner. This kind of PE-algebra will be used for examples
within the subsequent sections. Let X be some set and E a collection of subsets of X
such that (i) E contains the empty set, (ii) E is closed under complements, and (iii)
for any pairwise disjoint sets A j , . . . , An € E such that A\ U • • • U An — X, we have
A,• U Aj e E for all i, j . Then (£ ;U,0 ,X) i sa PE-algebra, where U is defined for a
pair of disjoint sets as the set theoretical union whenever this leads to a result in E.

To any such a PE-algebra (£; U, 0, X), we may associate a representing po-group
in the obvious manner. Namely, let E' be the set of characteristic functions XA of all
A e E\ and let G be the smallest group of functions / : X —> Z which contains E'.
Then we may define G+ as the subsemigroup of G generated by E', since this is easily
be seen a positive cone. (G, 1) is then a unital po-group, where 1 is meant to be the
constant one function.

We claim that (£; U, 0, X) = T(G, 1). It is indeed evident that t : E -+ G, A H>-
XA is an injective mapping preserving U and the constants, i is also surjective; indeed,
if 0 < / < 1 in G, then f = XA for some A C X such that A = A,U • • • i)Am

and X \ A — A\Q • • • UA'n, where Ax, . . . , Am, A\, ... , A'n € E; by assumption it
follows A e E. Moreover, if for A, B e E, i(A) + i(B) exists in T(G, 1), then
t(A) + t (B) = XA+XB= XAUB = t(AUfi).

3. Infinitary order properties and countable interpolation for PE-algebras

The fact that certain properties, which may hold in a PE-algebra, are preserved
in its representing po-group, has been already shortly mentioned in the preceding
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introductory Section 2. As seen from Theorem 2.3, this applies for example to the
Riesz property (RDPO; and it is, when we assume (RDPi), also true for a lattice-
ordering as well as for commutativity and linearity [6].

The properties that have been taken into account by now were first-order statements
and hence involved, so to say, only finitely many elements at a time. The properties
discussed in this article may be characterized by involving possibly infinitely many
elements at a time, sometimes even subsets of the ground set.

In this section, we consider certain kinds of order completeness and the countable
Riesz interpolation for PE-algebras. The first four notions which we will introduce
are defined analogously to abelian po-groups; see for example [14] and [12]. The last
two notions parallel similar conditions for MV-algebras, proposed in [16].

We shall see first of all how these conditions are interrelated; in the subsequent
sections, we will relate them to the analogous properties of po-groups.

DEFINITION 3.1. Let (E; 0, +, 0,1) be a pseudoeffect algebra.

(i) We say that E is complete, if any subset of E has an infimum and a supremum.
(ii) We say that E is a-complete, if any countable subset of E has an infimum and

a supremum.
(iii) We say that E is monotone a-complete, if any countable set of elements

at,a2,... e E such that ax < a2 < • • • possesses a supremum.
(iv) We say that E fulfils the countable Riesz Interpolation Property, or (a-RIP)

for short, if for any two countable sets a\, a2,... , bu b2,. • • 6 E such that a, < bj
for all i, j , there is a c e E such that at < c < bj for all i, j .

(v) We say that E is orthogonally complete, if any set A c E such that aAb = 0
for any a,beA possesses a supremum.

(vi) We say that E is orthogonally a-complete, if any countable set A c E such
that a A b = 0 for any a, b e A possesses a supremum.

Since the map ~ on a PE-algebra E is an order-antiautomorphism, we clearly may
define £ to be monotone a-complete equivalently by requiring that every decreasing
sequence of elements possesses an infimum.

The interrelation between any pair of conditions among the six ones defined in
Definition 3.1, the property of being lattice-ordered, and (RIP), shall be seen now.

PROPOSITION 3.2. Let E be a PE-algebra. The following implications hold.

monotone
a-complete

t / . \
complete —• a-complete —> , —> (RIP)

4, |
orthogonally orthogonally

complete a-complete
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There are no more implications holding in general between any pair of the mentioned
conditions than those derivable from the scheme.

PROOF. It is evident that all the implications which are shown in the scheme hold.
To exclude that anything more can be shown, the following statements, are sufficient.

From monotone a-completeness, neither orthogonal cr-completeness nor (RIP)
follows, as seen from Examples 3.5 and 3.9, respectively.

By (cr-RIP), neither monotone cr-completeness, nor orthogonal cr-completeness,
nor lattice ordering is implied, as seen in the first case from Example 3.6 and in the
latter two cases from Example 3.5.

From cr-completeness, orthogonal completeness does not follow, as seen from
Example 3.4.

E being lattice ordered, neither implies monotone cr-completeness, nor (cr-RIP),
nor orthogonal cr-completeness, as seen in the first two cases from Examples 3.8 and
in the latter case from Example 3.3. Orthogonal completeness does not imply (RIP),
as may be seen from Example 3.10. •

EXAMPLE 3.3. Let X be a countably infinite set and E = {A c X : card A <
Ko or card(X \ A) < No}. Then (£; U, 0, X) is a PE-algebra in the sense of what was
noted at the end of Section 2. £ is a lattice. Furthermore, E is not orthogonally a-
complete; the set of singletons from a set A c X such that card A = card(X \A) = Ko

has no supremum.

EXAMPLE 3.4. Let X be an uncountable set and E = {A c X : card A <
No or card(X \ A) < Ko}. Then (£; U, 0, X) is again a PE-algebra. E is cr-complete.
But E is not orthogonally complete; the set of singletons from a set A c X such that
card A = card(X \ A) > No has no supremum.

EXAMPLE 3.5. Let X be a set and A, B, C pairwise disjoint subsets of X such
that X = A U B U C; assume further that card A = cardfl = cardC > No. Let
E = {MAN : M = 0, A, A U B . B U C , C, orX;card# < No}. Then (£;U, 0, X)
is again a PE-algebra. E is monotone cr-complete and fulfils (cr-RIP). But E is no
lattice: A U B and BUCdo not have an infimum; A and C do not have a supremum.
In particular, E is not orthogonally cr-complete.

EXAMPLE 3.6. As in the previous example, let X be some set, A, B, C c X
pairwise disjoint such that X = A U B U C, and card A = cardB = card C > No-
Let now E = {MAN : M = A, A U B, B U C, or C and cardN < No; or M =
0 or X and card A' < No}. Then the PE-algebra (£; U, 0, X) is no longer monotone
cr-complete, but still fulfils (a-RIP). E is again no lattice, and E is not orthogonally
a-complete.
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EXAMPLE 3.7. Similarly to the previous examples, let X be some set, A, B <z X
disjoint such that X = /4 UB, and card .A = cardB > Ko. Let now £ = {MAN : M =
A or B and cardN < Ko; or M = 0 or X and cardN < Ko}. Then the PE-algebra
(f; U, 0, X) is lattice-ordered and fulfils (cr-RIP). E is not orthogonally o -complete.

EXAMPLE 3.8. Let £ be the PE-algebra corresponding to the Chang MV-algebra;
compare [4, Example 5.2.39]. So let E = {0, 1, 2, 3 , . . . , 3,2, 1,6}, and define the
addition as follows: For n, m = 0, 1, 2 , . . . , let the sum n + mbe the usual sum of
natural numbers, and let n + m = m + n = m—n for n < m.

E is linearly ordered, so in particular lattice-ordered and orthogonally complete. It
is not monotone a -complete, since 0 , 1 , . . . do not possess a smallest upper bound,
and it does not fulfil (<r-RIP).

EXAMPLE 3.9. Let E be the standard effect algebra of all self-adjoint operators
in Hilbert space lying between 0 and identity. E is monotone cr-complete; see for
example [18, Proposition 4.5.2]. If the dimension of the space is at least 2, then E is
not lattice-ordered; the exact condition for a pair of effects that their infimum exists
was established in [1], see also [4]. E does not even fulfil (RIP); see for example [5,
Example 3.8].

EXAMPLE 3.10. Similarly to the previous example, consider the set S£(//)sa of all
bounded self-adjoint operators in some at least two-dimensional Hilbert space H.
Define now for a self-adjoint operator T to be strictly positive, or T >s 0, if it is zero
or else bounded away from zero; that is, let

(2) T>s0 if 7 = 0 or, for some e > 0, T>EI,

where / is the identity operator. Let E = {T e -£?(//).» -0 <s T <s I], and let + be
the usual addition of operators whenever this leads to a result in E. Then (£; +, 0, /)
is an effect algebra.

Then E is an antilattice, so in particular orthogonally complete. Indeed, assume
for some A, B, C € E that C = A As B. Then we have C <s A and C <s B, and if
not C = A or C = B, we have for some e > 0 that C + el < A,B. But this means

| / - A>B a n d s o C <s C+^I <SA,B.

It follows A <s B or B <s A.
But E still does not fulfil (RIP), as seen by a similar argument as in [5, Example 3.8].

When assuming (RIP), the picture changes as follows.
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PROPOSITION 3.11. Let E be a PE-algebra fulfilling (RIP). The following implica-
tions hold.

complete —

I
orthogonally

complete

t
> a-complete

I
orthogonally
a-complete

,

There are no more implications holding in general between any pair of the mentioned
conditions than those derivable from the scheme.

PROOF. In view of Proposition 3.2, all we have to show is that from monotone
CT -completeness, (CT-RIP) follows. So let E be monotone a-complete.

Let ahbj e E, i,j > 1, such that a, < bj for all i,j. By (RIP) there are
JCI, x2, . . . 6 E such that

a\,a2 <*i < bub2,a3,xx < x2 < bub2,a4,x2 < x3 < bu b2,... .

Then the set x\, x2,... possesses by assumption a supremum yi, and we have a, <
y\ < bub2.

In this manner we may construct a sequence yi, y2,... 6 E such that

di < Vi < b\, b2, at < y2 < b3, yu at < y} < b4, y2,... for all i.

Let then z be the infimum of yi, y2,...; it follows a, < z < bj for all i, j .

To see that, in general, no more implication hold than those shown in the scheme,
we may in most cases refer to the examples above.

Namely, Example 3.5 shows that monotone a -completeness implies neither lattice-
order nor orthogonal a -completeness. Example 3.6 shows that (a -RIP) does not imply
monotone a -completeness. Example 3.4 shows that a -completeness does not imply
orthogonal completeness. Examples 3.8 and 3.3 show that a lattice ordering implies
neither (CT-RIP) nor orthogonal a -completeness.

Finally, the subsequent Example 3.12 shows that orthogonal completeness implies
neither lattice-order nor (CT-RIP). •

EXAMPLE 3.12. Let E = {(x,y) e [0, 1] x [0, 1] : x = y = Oorx - y =
1 orO < x, y < 1}. Then (£ ;+ , (0, 0), (1, 1)) is an effect algebra, where + is
defined componentwise as the usual addition whenever this leads to result in E. Then
E is an antilattice, so in particular orthogonally complete. E fulfils (RIP), but E is
not a lattice, and E does not fulfil (CT-RIP).

We further see how the picture changes when assuming lattice order.
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PROPOSITION 3.13. Let E be a lattice-ordered PE-algebra. The following implica-
tions hold.

monotone . „,„.
a-complete " * {<J-RIP)

t
complete —*• o -complete

I i
orthogonally _^ orthogonally

complete a-complete

There are no more implications holding in general between any pair of the men-
tioned conditions than those derivable from the scheme. '

PROOF. It is clear that, since E is a lattice, monotone a -completeness implies
CT-completeness. The other implications follow from Proposition 3.11.

To see that, in general, no more implication hold than those shown, we may again
refer to the examples above.

Namely, Example 3.4 shows that a-completeness does not imply orthogonal comp-
leteness. Example 3.7 shows that (cr-RIP) does not imply orthogonal a-completeness.
Example 3.8 shows that orthogonal completeness does not imply (cr-RIP). •

The previous proposition includes in particular pseudo-MV algebras. The notions
involved all are purely order-theoretic and thus take over to pseudo-MV algebras in
a straightforward manner. We have then in particular that a pseudo-MV algebra is
monotone a-complete if and only if it is a-complete, in which case it fulfils (a-RIP).

It would finally be interesting to see what further happens under the assumption of
a-completeness. Out of all considered conditions, only two then do not necessarily
hold, and we obviously have the following.

PROPOSITION 3.14. Let E be a o-complete PE-algebra. The following implication
hold.

, . orthogonallycomplete —*• ,complete

But in this case, we do not know if the converse of the implication holds in general
or not. There might be a connection to the problem if the a-completeness of a PE-
algebra implies its commutativity, which is discussed to some extent in [9]. In contrast
to that, the situation is clear for po-groups; see Proposition 4.2 in the following section.

4. Infinitary order properties and countable interpolation for/70-groups

The properties discussed in the last section for PE-algebras, are now considered for
po-groups. Here, completeness and a-completeness are common notions; compare
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for example [2, Chapter XIII]. Monotone a -completeness is defined similarly as in
[14, Chapter 16]. Countable Riesz interpolation was defined in [12], where it is
called (K0,N0)-Interpolation Property- Orthogonal completeness and orthogonal o-
completeness is defined according to [15].

We note that in the literature often the expression 'Dedekind' or 'conditionally' is
attached to the terms introduced in Definition 4.1 (i)-(iii), (v)-(vi), to underline the
fact that the statements refer to bounded subsets only. We do not do so in this paper,
since we like to have equal names for properties of PE-algebras and of po-groups.
Anyhow, without the restriction to bounded sets, the mentioned definitions would not
make much sense.

We will see in this section that these conditions are similarly related to each other
as in the case of PE-algebras. We discuss in the subsequent section the interrelation of
equally denoted properties of PE-algebras on the one side and po-groups on the other
side.

DEFINITION 4.1. Let (G;+, <) be a directed po-group. A set A c G is called
bounded if, for some at,au € G, we have at < a < au for all a e A.

(i) We say that G is complete, if any bounded subset of G has an infimum and a
supremum.

(ii) We say that G is a-complete, if any countable bounded subset of G has an
infimum and a supremum.

(iii) We say that G is monotone a-complete, if any countable set of elements
a\,a2,... 6 G such that a\ < a2 < • • • < a for some a e G, possesses a supremum.

(iv) We say that G fulfils the countable Riesz Interpolation Property, (a-RIP) for
short, if for any two countable sets a\, a2, •.. , b\, bi,... G G such that a, < bj for
all i, j , there is a c 6 G such that a, < c < bj for all /, j .

(v) We say that G is orthogonally complete, if any bounded set A c. G+ such that
a A b — 0 for any a, b e A possesses a suprenium.

(vi) We say that G is orthogonally a-complete, if any countable bounded set
A c. G+ such that a A b = 0 for any a, b e A possesses a supremum.

Now the six properties just defined, lattice order, and (RIP) are in the case of po-
groups related basically in the same way as it was shown for PE-algebras. We will
not go into details a second time, but just shortly explain the situation.

The implicational schemes of Propositions 3.2, 3.11, and 3.13 hold also in the case
of po-groups. This is in most cases obvious; and in case of Proposition 3.11, the proof
is similar; compare also [14, Theorem 16.10].

Moreover, all the counterexamples given in Section 3 are interval PE-algebras.
This may be checked in the case of Examples 3.3 to 3.7 by the explanations at the
end of Section 2; for Example 3.8, consider the po-group 2 X|ex 1 with strong unit
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(1, 0); for Examples 3.9 and 3.10, consider the group of self-adjoint Hilbert space
operators, together with the usual order or the order defined by (2), respectively; and
for Example 3.12, consider the group R x K with the strong order and the strong unit
(1, 1). Now it may be checked directly or with the help of what now follows, that
these groups still provide appropriate counterexamples.

Finally, Proposition 3.14 reads forpo-groups as follows.

PROPOSITION 4.2. Let Gbeaa -completepo-group. Then the following equivalence
holds.

complete •> orthogonallyr complete

PROOF. It is clear that completeness implies orthogonal completeness.
Conversely, a cr-complete po-group is archimedean (see for example [6, Defini-

tion 6.10]) and directed and thus by [11, Chapter V, Corollary 20] abelian. Now, by
[15, Theorem 4], an orthogonally complete archimedean abelian £-group is complete
if and only if it is a -complete. •

5. Infinitary order properties and countable interpolation
for PE-algebras and its representing po-groups

We shall see in the section how certain of the properties from Definition 3.1 take
over from a PE-algebra fulfilling (RDP0 to its representing unital po-group.

Let us first consider the properties of fulfilling (a-RIP) and of being monotone
cr-complete. Our results are generalizations of those from [14, Chapter 16] to the
non-commutative case.

THEOREM 5.1. Let(E;+,0, \)beaPE-algebrafulfilling(^D?x),andlet{^{E), 1)
be the extension of E to its representing unital po-grcup. Then E fulfils (a -RIP) if
and only if so does

PROOF. Since the order of E coincides with the one of &(E), we have that i
fulfils (cr-RIP), so does E.

Assume now that E fulfils (CT-RIP). We note that, by the remarks of Section 2,
£?(£) fulfils (RDP,) and consequently also (RDP0) and (RIP).

Let now a,-, bj e &(E) be given such that a, < bj, i,j > 1.
Case 1. Suppose that 0 < a,• < 1 and 0 < bj < 2; i,j > 1. Then, due to

(RDP0), bj = djt + dj2 for some djUdj2 6 E, where j > 1. By (RIP), there is for
any i,j an e,j e &(E) such that a,, dj\ < etj < I, bj. So for a fixed j , we have
dj\, e<j < 1, bj, an inequality referring entirely to the interval [dj\,dj\ + 1]. Since
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this interval is order-isomorphic to E, which fulfils (<r-RIP), there is an fj e
such that dji, ey < fj < 1, bj for all i. For any i,j, we then have a, < fj. Again by
(CT-RIP) holding in E = [0, 1], there is a c 6 <S(E) such that a, < c < /,• < bj for
any i , ; .

Case 2. Suppose that 0 < a, < 2 and 0 < bj < 2; i,j > 1. Then, due to
(RDP0), at = dt\ + di2 for some dn, da € E, where i > 1. From Case 1 we know
that there is an e e # ( £ ) such that d,i < e < 1, fy for all i,j. By (RIP), we may
choose for every i,j an ftj € ^(E) such that aite < fq < e + I, bj. For every
j , we get again by Case 1 a g, € &(E) such that — e + fi} < gj < I, —e + bj for
all i. Now — 1 < — gj < —fy + e < —a, + g < 1; so once again by Case 1, we
get an h € &(E) such that -gj + 1 < ft < - a , + e + 1 for all i,j. We then have
a, < e + 1 — h < e + gj < bj for any i, j .

Case 3. Suppose that for some v, w e &(E), we have v < a,< < w and v < bj <w
for all i, j . Now the interval [u, w] is order-isomorphic to [0, w — v], which is included
in [0, 2"] for some n > 1. But within this interval, (cr-RIP) holds due to Case 2, which
is easily seen by complete induction on n.

Case 4. Let finally ait bj be not necessarily bounded from below or above. By
(RIP), there are xu x2, • • • e <&{E) such that

ai,a2 < xx < bub2,a3,Xi < x2 < 61,^,04,^2 < buh

Then we have x\ < x2 < • • • < b\, b2. Since &(E) has a strong unit, it is directed; so
by Case 3 there is a y\ G &(E) such that a, < yi <b\,bi for all i.

In this manner we may construct a whole sequence yit y 2 , . . . € &(E) such that

a, < yi < b\, b2, a, < y2 < h, yu a, < y3 < ^4, ^2. • • • for all 1.

So we have at < • • • < y2 < y\- By Case 3, we may construct a sequence Z\, z2,... €
such that

a\, a2 < z\ < yj, a3, zi < z2 < y ; , . . . for all./.

So we have Z\ < z2 < • • • < y2 < y\, and again by Case 3 there is a d € # ( £ ) such
that Zi < d < yj, which means a( < d < bj, for all i, j . •

Before turning to a similar theorem concerning monotone cr-completeness, we
prove the following strengthening of Remark 2.2.

PROPOSITION 5.2. Let (£"; +, 0, 1) be a PE-algebra fulfilling (RDP,) and (a-RIP),
and let ($?(£), 1) be the extension of E to its representing unital po-group. Then
countable infima and suprema are preserved from E to
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PROOF. By Theorem 5.1 we know that &(E) fulfils (cr-RIP).
Let a,ai,a2,... € E, and a = / \ , a, in E. Then a < a, in E and so in &{E) for

all i. Now if a' e &(E) and a' < a, for every i, there is by (a-RIP), holding in # (£ ) ,
& b e &(E) such that a', 0 < b < a, for every i. Since then b < a, also in E, we
have i < a in E as well as in # ( £ ) ; so it follows a < a in # ( £ ) . So we showed that
countable infima are preserved from E to &(E).

Analogously, we see that also countable suprema are preserved. •

THEOREM 5.3. Let(E;+,0, \)beaPE-algebrafulfilling(9J)Vl),andlet{^{E), 1)
be the extension of E to its representing unital po-group. Then E is monotone a-
complete if and only if so is

PROOF. In view of Remark 2.2, we have that if &(E) is monotone cr-complete, so
is£ .

Let now E be monotone a-complete. Since by [5, Proposition 3.3 (i)] E fulfils
(RIP), E fulfils by Proposition 3.11 also (a-RIP). From this we conclude by Theorem
5.1 that &(E) fulfils (a-RIP). Furthermore, we note again that &(E) fulfils (RDP,),
(RDP0) and (RIP).

We now show that every decreasing sequence in [0, 2] possesses an infimum. From
that, we may conclude by complete induction that the same is true for the intervals
[0, 2"], n > 1, by which fact the monotone a -completeness follows.

So let a\, a2,... e # ( £ ) be given such that 0 < • • • < a2 < ax < 2. By (RIP)
there are elements diUda € E, i > 1, such that

ax = du + dn, where du, dn < 1,

a2 = d2x 4- d22, where d2\ < dn and d22 < dX2,

By the monotone a -completeness holding in E, the infima dx = / \ , dn and d2 = / \ ( di2

exist, and by Proposition 5.2, these equation hold also in &(E). We then have

S i n c e fo r a n y p a i r i, j w e h a v e r f t i + d t 2 < d n + d j 2 , where k = m a x { / , j } , w e c o n c l u d e
dx + d2 = A, (dn + di2) = A, «<• D

We note that for PE-algebras fulfilling (RDPi), monotone a-completeness actually
implies commutativity. Indeed, a monotone cr-complete unital po-group is directed
and archimedean and thus commutative; we refer to the forthcoming paper [9] for the
details.
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THEOREM5.4. Let(E;+,0, l)beaPE-algebrafulfilling(RDPx),andlet(&(E), 1)
be the extension ofE to its representing united po-group. Then E is a-complete if and
only if so is

PROOF. In view of Remark 2.2, we have that if Sf (£) is monotone ocomplete, so
is E.

Conversely, let E be cr-complete. Then E is monotone cr-complete, and so, by
Theorem 5.3, &(E) is monotone cr-complete. Furthermore, E is lattice-ordered, and
so, by [6, Proposition 6.4], &(E) is an £-group. It follows that &(E) is cr-complete.

•
In the following way, Theorems 5.1,5.3, and 5.4 specialize to pseudo-MV algebras.

THEOREM 5.5. Let E be a pseudo-MV algebra, and let {&(£), 1) be the extension
of E to its representing unital l-group. Then E fulfils (cr-RIP) if and only if so does
&(E). Moreover, E is monotone a-complete if and only if E is a-complete if and
only if&(E) is monotone a-complete if and only ifS(E) is a-complete.

We will now proceed with the properties of orthogonal completeness and orthogonal
a -completeness.

THEOREM 5.6. Let(E;+,0, l)beaPE-algebrafulfilling(RDPx),andlet(&(E), 1)
be the extension of E to its representing unital po-group. Then E is orthogonally
complete if and only if so is &(E).

Furthermore, E is orthogonally a-complete if and only if so is

PROOF. We prove the first part only; for the second one, we may proceed similarly.
So let &(E) be orthogonally complete. If then any pair of distinct elements of

some set A c E has infimum 0, the same is by Remark 2.2 true with respect to &(E).
Hence A has a supremum in &(E), which again by Remark 2.2 is the supremum also
with respect to E. So £ is orthogonally complete.

Conversely, let E be orthogonally complete. Let {a, : i e /} c &(E)+ be a
bounded set such that a,, A a,, = 0 whenever ix ^ i2. We have to show that V, at
exists in &(E).

Step 1. Assume first that a, < 1, that is, a, e E, for all i. Then a = \Jta,
exists in E; we have to show that a is the supremum of the a, also in #(£)• Clearly,
a, < a holds also in ^ ( £ ) ; let now b e &(E) such that a, < b for all t. By (RDP0),
there are bx,... , bn € E such that b = bx + • • • + bn for some n; we may assume
n > 2. Furthermore, for every i, there are ati < bx,... , ain < bn in E such that
a, = a,, H 1- am. Now by assumption, the suprema a1 = \JtalX, ... ,a" = \/t am

exist in E. We have then in E, and consequently in &(E), a1 < bx, ... ,a" < bn.
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Now, in E, the sum a,, i + a122 exists for all pairs of indices i\, c2 € / ; for this is true
by construction if they are equal, and otherwise the two elements have zero infimum,
whence their sum exists and equals a(|] V anl by [5, Lemma 3.2 (ii)]. It follows in
particular that atl i < a~2 for all 11, t2, so V, ̂ a 5 A(

 aa = (V< at2)~< whence a1 + a2

exists. Using these facts and [5, Remark 1.8], we may calculate in E

aa = \ /K i + a^) = \/(aa + aa).
1| ,«2

By an inductive argument, we see in a similar manner that

a1 + • • • + a" = \/(a,, + • • • + ain) = \Ja, = a.

So in #(£) , we have a = a1 -\ \-a" < bx -\ \-bn = b, which finishes the
proof that a = V, a< m ^ ( ^ ) -

Step 2. Assume now the general case; then for some multiple k of the strong
unit 1, we have a, < k for all i, and we may write a, = ad + • • • + alk for certain
a,i,... , atk e E. By assumption, the suprema V, flii> • • • < V, a<* e x i s t m

Step 1 also in #(E) ; so we have in

(3) \fatl+-+\/atk= \/ (a,,, + • • • + alkk).
i < i u

Now the sum of elements of apo-group whose infimum is 0 equals their supremum;
this is why we may, similarly as above, leave out in (3) all sums in which some pair
of summands has infimum 0. We conclude

(4) \Jaa + ••• + \/a'* = V(a'] + "'' + ^ = V a "

and we have proved that # ( £ ) is orthogonally complete. •

We finally turn to the property of completeness.

THEOREM 5.7. Let(E;+,0, \)beaPE-algebrafulfilling{1RD?x),andlet(^{E), 1)
be the extension of E to its representing unital po-group. Then E is complete if and
only if so is

PROOF. In view of Remark 2.2, we have that if &(E) is complete, so is E.
Conversely, assume E to be complete. Then in particular, E is cr-complete and

orthogonally complete. By Theorems 5.4 and 5.6, also &(E) is a-complete and
orthogonally complete. By Proposition 4.2, &(E) is complete. •
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