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Notation

Let S � Spec�R� be the spectrum of a characteristic 0 complete discrete valuation
ring R with algebraically closed residue ¢eld k of characteristic p > 0 and fraction
¢eld K . s, Z and Z denote, respectively, its closed point, its generic point and a geo-
metric generic point, corresponding to an algebraic closure K of K . Let G be
the Galois group of K over K .

We ¢x a prime number l 6� p and let L be one of the rings Z=lnZ, Zl orQl . To any
¢nitely generated L-module M with a continuous action of G, we associate its Swan
conductor sw�M� which is a ¢nitely generated L-module (see Section 2 for the
de¢nition). Any G-equivariant endomorphism of M induces an endomorphism
of sw�M�.

We work in the category of separated schemes of ¢nite type over S. The subscripts
s and Z, associated with an object in this category, denote, respectively, its closed and
its generic ¢bers. Associated with a morphism, they denote the induced morphisms
over the closed and the generic ¢bers.

Let X be a separated scheme of ¢nite type over S. The group of cycles
Z�X � � �nZn�X � and the Chow group A�X � � �nAn�X � are graded by the absolute
dimension over S. The latter is the sum of the relative dimension over S and the
dimension of S. In this paper, dimension stands for the absolute dimension over
S. Notice that if X is proper over S, the absolute dimension coincides with the Krull
dimension.

The group of n-bivariant classes associated with a map X ! Y is denoted
An�X ! Y � ([7] chapter 17).
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If i : X ! Y is a closed immersion with ideal sheaf I , we denote N XY � I=I2 its
conormal sheaf and SXY �

L
nX 0 I n=In�1 the graded algebra giving its normal

cone.
An arithmetic scheme over S stands for a regular integral scheme proper and £at

over S. An arithmetic scheme of dimension 2 is an arithmetic surface. One such
is semi^stable if its closed ¢ber is a reduced divisor with normal crossings.

If X is an arithmetic scheme and s is an S-automorphism of X , we denote
H�et�Xz;Q`� for z � s or Z the `^adic ëtale cohomology groups of respectively its
closed and its geometric generic ¢bers. We use the short-hands tr�s�jH�et�Xz;Q`�
where z � s or Z and tr�s�jsw�H�et�XZ;Q`�� for the alternating sum of the traces
of s.

1. Introduction

The study of cycles on arithmetic schemes was pioneered by S. Bloch. The idea
behind his approach was to overcome the lack of a ground ¢eld for these schemes
by providing functorial constructions of cycle classes over their special ¢bers. In
[3], Bloch associates with an arithmetic scheme X over S of relative dimension
d, a kind of Euler characteristic which measures its arithmetic complexity. The `-adic
ëtale cohomology of the geometric generic ¢ber of X can produce such an invariant.
But a good candidate should also have an analogue on the cycle level. For instance,
the Euler characteristic of a proper smooth variety over a ¢eld coincides with
the degree of the top Chern class of its tangent bundle. In a ¢rst approach, one
can consider the top Chern class of the sheaf of relative differentials O1

X=S. Since
A0�S� is trivial, we cannot get any relevant information from this class.

Any zero-cycle class on X can be represented by a cycle on the closed ¢ber ofX . In
term of Chow groups, the push^forward map A0�Xs� ÿ!A0�X � is surjective, but it is
far from being injective. In the special case of cd�1�O1

X=S� \ �X � 2 A0�X �, the graph
construction of Fulton and MacPherson [7] provides a canonical lifting. More
precisely, this construction gives a bivariant class cXd�1;Xs

�O1
X=S� 2 Ad�1�Xs ! X �

which re¢nes the usual Chern class cd�1�O1
X=S�. Bloch [3] de¢nes the localized Euler

characteristic of X to be the degree of �ÿ1�d�1cXd�1;Xs
�O1

X=S� \ �X �, which is a zero
cycle class on the closed ¢ber Xs. He conjectured that the localized Euler charac-
teristic is minus the Artin conductor of the arithmetic scheme. The main result
of his paper is a proof of this conjecture for arithmetic surfaces. Later, many works
have emphasized the importance of this invariant [4, 16, 17].

In this paper, we develop a general theory which includes Bloch's approach. His
main result turns out to be a special case of a Lefschetz ¢xed point formula in this
theory. The latter was conjectured by K. Kato, S. Saito and T. Saito for any relative
regular curve over an excellent henselian discrete valuation ring ([10] conjecture
(1.5)), and proved by them in the geometric case (i.e. the equal characteristic case).
Finally, we give an application of our formula to a conjecture of Serre on the exist-
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ence of Artin's representations for two-dimensional regular local rings in the unequal
characteristic case.

In the following, we describe the results of this paper in more detail. In the spirit of
Fulton's theory [7], we develop a localized intersection theory adapted to the
localized Chern classes. Our theory works for general arithmetic schemes but
the main theorems are proved only for arithmetic surfaces. For this reason, we
restrict the introduction to the case of an arithmetic surface X over S. Let
DX ! X �S X be the diagonal closed immersion. We associate with any ¢ber square:

whereV is a scheme of pure dimension k, a �kÿ 2�-cycle class in the closed ¢ber ofW ,
called localized intersection product of DX with V , and denoted
�DX :�V ��loc 2 Akÿ2�Ws�. The formation of this class is compatible with proper
push-forward and £at pull-back, and it satis¢es an excess formula. Moreover, it
is uniquely determined by these properties. In this theory, the localized Euler
characteristic occurs as the self-intersection of the diagonal: �DX :DX �loc �
cX2;Xs
�O1

X=S� \ �X � 2 A0�Xs�.

1.1. LEFSCHETZ FIXED POINT FORMULA FOR ARITHMETIC SURFACES

Let X be an arithmetic surface over S, s be an S-automorphism of X , and
G � X �S X be its graph. The localized intersection product �DX :G�loc is a 0-cycle
class in the closed ¢ber of X . Therefore, we can take its degree which is equally
denoted �DX :G�loc.

THEOREM1.1. Let X be an arithmetic surface over S and s be an S-automorphism of
X. Then,

�DX :G�loc � ÿtr�s�jsw�H�et�XZ;Ql�� � tr�s�jH�et�Xs;Ql� ÿ tr�s�jH�et�XZ;Ql�: �1�

The Swan conductors sw�H�et�XZ;Ql�� vanish when the action of the Galois group G
of K over K on H�et�XZ;Ql� is tame. Hence, for a semi-stable arithmetic surface
X , the Lefschetz ¢xed point formula becomes

�DX :G�loc � tr�s�jH��Xs;Ql� ÿ tr�s�jH��XZ;Ql�: �2�

Formula (1) for s 6� id was conjectured, in a different formulation, by K. Kato,
S. Saito and T. Saito for any relative regular curve over an excellent Henselian dis-
crete valuation ring ([10] conjecture 1.5), and proved by them in the geometric case.
We prove in remark 10.1 that equation (1) is equivalent to their formulation.
The formula for s � id was proved by Bloch [3]. Our proof closely follows his, even
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if the technical details are more involved. To avoid large intersections with Bloch's
article, we will restrict the study to non-trivial automorphisms. The reader should
consult this article for a proof of the theorem in the case s � id.

We outline the proof of Theorem 1.1. We proceed in two steps. In the ¢rst step, we
prove the theorem for semi-stable surfaces. The vanishing cycles for these surfaces
can be computed explicitly. In particular, the difference of the alternating traces
of s can be expressed in term of its action over the singular points in the special
¢ber. Then, we prove that �DX :G�loc is given by the same expression. For this purpose,
we establish a residual formula for the localized intersection theory.

The second step is a reduction to the semi-stable case. By the semi-stable reduction
theorem, there exists a ¢nite £at totally rami¢ed Galois extension T of S such that
X �S T has a semi-stable regular model V . The automorphism s extends to a
uniquely determined T -automorphism of V . Then, the main problem is to compare
the Lefschetz numbers of s over X and over V . Inspired by the classical intersection
theory and Bloch's work [3], we solve this problem by a projection formula. This
formula relates the Lefschetz number of s over X to the sum of the Lefschetz
numbers of s � t over V , where t runs over the Galois group of T over S. The
projection formula is the basic ingredient in the proof of Theorem 1.1. But its import-
ance should be emphasized as an independent result.

1.2. PROJECTION FORMULA

Let f : X ! Y be a morphism of ¢nite degree n between arithmetic surfaces over S.
Given two S-automorphisms s of X and t of Y such that t � f � f � s, we would
like to compare the Lefschetz numbers of s and t. For this purpose, we consider
the Cartesian diagram

where W is the intersection of Gs with X �Y X . On the one hand, X �Y X has pure
dimension 2. Its localized intersection with Gs is a cycle class of dimension 0 over
Ws. On the other hand, the localized intersection of Gs with DY is also a cycle class
of dimension 0 over Ws. We expect that these cycle classes are the same:

�Gs:�X �Y X ��loc � �DY :Gs�loc 2 A0�Ws�:
We call this formula a projection formula because we think of X �Y X as the
pull-back of DY . To prove the Lefschetz ¢xed point formula, we need to consider
the projection formula only for morphisms f such that fZ : XZ! YZ is ëtale. This
case will be treated in Section 6 for non-trivial automorphisms. The trivial
automorphism case was proved by Bloch [3]. We would like here to emphasize
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an other aspect of this formula, namely a relation with a Hurwitz formula for arith-
metic surfaces.

Given a morphism f : X ! Y of ¢nite degree n between two arithmetic surfaces,
we ask for a formula relating the localized Euler characteristics of X and Y and
the rami¢cation of f in the spirit of the usual Hurwitz formula. The equation

fs��DX :�X �Y X ��loc � n�DY :DY �loc 2 A0�Ys� �3�
may be a good candidate for a Hurwitz formula. Indeed, we decomposeX �Y X into
its irreducible components, �X �Y X � �Pr

i�1 ni�Vi�. The diagonal DX occurs as one
component with multiplicity one, put V1 � DX . Then, formula (3) reads

fs��cX2;Xs
�O1

X=S� \ �X �� ÿ ncY2;Ys
�O1

Y=S� \ �Y � � ÿ
Xr
i�2

ni fs��DX :Vi�loc 2 A0�Ys�:

For i > 1, the scheme theoretic intersection DX \ Vi is contained in the rami¢cation
divisor of f , and �DX :Vi�loc should be understood as its contribution to the Hurwitz
formula. We lack a general proof of this formula. But at least two reasons stand
for it. First (3) holds if fZ : XZ! YZ is ëtale, and second it holds in A0�Y �.

1.3. ON SERRE'S CONJECTURE ON THE EXISTENCE OFARTIN'S REPRESENTATIONS

Let A be a regular local ring with maximal ideal m and G be a ¢nite group of
automorphisms of A. For s 2 G, let Is be the ideal of A generated by
faÿ s�a�; a 2 Ag. Assume

(i) AG � fa 2 A; a � s�a� 8s 2 Gg is a Noetherian ring and A is ¢nitely generated
AG-module;

(ii) for each s 2 Gÿ f1g, A=Is has ¢nite length;
(iii) the map AG=�AG \m� ! A=m is an isomorphism.

Then, de¢ne the function aG : G! Z by

aG�s� � ÿlengA�A=Is� if s 6� 1;

aG�1� � ÿ
X

s2Gÿf1g
aG�s�:

Serre conjectured that aG is the character of aQl-rational representation ofG for any
prime number l which is invertible in A ([19], chapter 6). This conjecture was proved
in dimension 1 by Artin, Arf and Serre [18, 19] and in dimension 2 and equal charac-
teristic case by K. Kato, S. Saito and T. Saito [10]. As a corollary of the Lefschetz
¢xed point formula (1), we can prove Serre's conjecture for some 2-dimensional
regular local rings in the unequal characteristic case. A proof in this case was
announced by Kato [8, 9] but has not been published.
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LEMMA 1.2. Let X be an arithmetic surface over S and s be an S-automorphism of X.
Assume that the scheme of s-¢xed points over X consists of one closed point x, and let
Is be the ideal of OX ;x generated by s�a� ÿ a for a 2 OX ;x. Then,

�DX :Gs�loc � Leng�OX ;x=Is�:
We deduce the following from Theorem 1.1 and Lemma 1.2 (the proof is given in
Section 10):

COROLLARY 1.3. Let X be an arithmetic surface over S and G be a ¢nite group of
S-automorphisms of X. Assume that there exists a closed point x in X which is
the unique s-¢xed point of X for any s 2 Gÿ f1g. Then, Serre's conjecture holds
for the regular local ring OX ;x.

2. Swan Conductors

In this section, we recall the de¢nition of Swan conductors [10, 18, 19]. Let L=K be a
¢nite Galois extension of Galois group G�L=K�. Let p be a uniformizing element in L
and v be the discrete valuation of L. For s 2 G�L=K� ÿ f1g, put i�s� � v�s�p� ÿ p�.
Then, de¢ne the function swL=K : G�L=K� ! Z by the following:

swL=K �s� � 1ÿ i�s� if s 6� 1;P
t 6�1�i�t� ÿ 1� if s � 1:

�
This is clearly a central function over G�L=K� and we have the fundamental result
[18^20]:

THEOREM 2.1 (Artin, Arf, Serre). For any prime number l 6� p, there exists a
Zl �G�L=K��^projective module SwL=K such that SwL=K 
Zl Ql has swL=K as a
character. This module is unique up to isomorphism.

Let G be the Galois group of K over K . Fix a prime number l 6� p and let L be one
of the rings Z=lnZ, Zl or Ql . Let M be a ¢nitely generated L-module with a con-
tinuous action of G. We associate to M the L-module sw�M� de¢ned as follows:

(1) If L � Z=lnZ, then the action of G over M factors through G�L=K� for a ¢nite
Galois extension L over K. Put sw�M� � HomG�L=K��SwL=K ;M�: It is a ¢nitely
generated L-module which does not depend on L.

(2) If L � Zl, put sw�M� � lim
n
 ÿ

sw�M=lnM�:
(3) If L � Ql, take a Zl-lattice B of M stable under the action of G (which exists by

the compactness of G), and put sw�M� � sw�B� 
Zl Ql :

Hence, sw�M� is ¢nitely generated overL, and sw is an exact functor which sends free
modules to free modules. If the action of G on M is tame then sw�M� � 0.
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We now consider M a ¢nite dimensional Ql-vector space on which G operates
continuously and s a Ql �G�-linear map on M. Let P be the p-Sylow subgroup of
G. By compactness of G, the group P acts on M through a ¢nite quotient. Let
L be a ¢nite Galois extension of K contained in K such that P acts on M by its
quotient P�L=K� in the Galois group G�L=K� of L over K (i.e. P \ GL acts trivially
on M where GL denotes the Galois group of K over L). Then,

tr�s�jsw�M� � 1
#G�L=K�

X
t2P�L=K�

swL=K �t�tr�st�jM �4�

� 1
#G�L=K�

X
t2G�L=K�

swL=K �t�tr�st�jM: �5�

The group G�L=K� does not act onM. The meaning of (5) is that swL=K �t� vanishes if
t 62 P�L=K�.

3. Localized Chern Classes

The construction of these bivariant classes is based on the graph construction of
Fulton and MacPherson ([7], chapter 18). We recall in the following a variant intro-
duced by Bloch [3].

3.1. THE GRAPH CONSTRUCTION

For the beginning of this section, we work in the category of separated schemes of
¢nite type over an arbitrary regular Noetherian base scheme S. Let X be a closed
subscheme of a scheme Y and E: be a bounded complex of locally free OY -modules
of ¢nite ranks:

0 � En�1 ÿ!
dn�1 En ÿ!dn Enÿ1ÿ!� � � � � � ÿ!E1 ÿ!d1 E0 ÿ!d0 Eÿ1 � 0:

Let H:�E:� be the homology of this complex and assume that

�P�
�i� Ei � 0 for i < 0;
�ii� Hi�E:� is supported on X for i > 0;
�iii� H0�E:�jYÿX is locally free of rank eX 0:

8<:
We associate with E: localized Chern classes cYp;X �E:� 2 Ap�X ! Y � for all pX e� 1.
We ¢rst construct a map

cYp;X �E:� \ : Z��Y � ! A�ÿp�X �:

Let ei be the rank of Ei, Gi � Grassei �Ei � Eiÿ1� and set G �
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Gn �Y Gnÿ1 �Y . . .�Y G0. Let xi be the tautological bundle of rank ei on Gi, and set

x �
Xn
i�0
�ÿ1�i�pr�i xi� 2 K0�G�;

where pri : G! Gi is the projection. There is a natural closed immersion:

Y �S A1 ÿ!j G�S A1; � y; l� 7!
Y
i

G�ldi� y��; l
 !

;

where G�ldi� y�� � Ei� y� � Eiÿ1� y� is the graph of ldi� y�.
De¢ne integers ki by kn � 0 and by requiring ki � kiÿ1 � ei for 0W iW n. Assume

that Y ÿ X is not empty. Then, ki X 0 for all 0W iW n and k0 � e0 ÿ e. Denote
Hi �Grasski �E i�, and setH � Hn �Y Hnÿ1 �Y . . .�Y H0. There is a canonical closed
immersion t : H ! G de¢ned by

�Ln;Lnÿ1; . . . ;L1;L0� 7! �Ln � Lnÿ1;Lnÿ1 � Lnÿ2; . . . ;L1 � L0; y�;

where y is the projection of L0 to Y (remember thatG0 � Y ). The pull-back of x toH
is t��x� � pr�0y0, where pr0 : H ! H0 is the projection, and y0 is the canonical
quotient bundle of rank e de¢ned over H0 � Grasse0ÿe�E0�. Let H0 be the restriction
of H to Y ÿ X . There is a natural section of H0 over Y ÿ X . It determines a canoni-
cal closed immersion c : �Y ÿ X � ! H0 given by

y 7! �ker dn�y�; ker dnÿ1�y�; . . . ; ker d1�y�; im d1�y��:

Consider now the following non-commutative diagram

�6�

Let a be a cycle on Y and denote by a0 its restriction to Y ÿ X . Choose two
cycles:

(i) a0 on G�S P1 which restricts to j��a�S �A1�� on G�S A1,
(ii) a00 on H �S P1 which restricts to c��a0� �S �P1� on H0 �S P1.

Let g � i�1�a0 ÿ a00�, where i�1 is the Gysin homomorphism relatively to the regular
embedding of the section 1 in P1. Then g is a well de¢ned cycle on G that does
not depend on the choice of a0 and that changes by a cycle on HX � H �Y X
for another choice of a00. As proved in [7] lemma 18.1, g is a cycle on G�Y X .
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Let p : G�Y X ! X be the projection, and for any pX e� 1 set

cYp;X �E:� \ a � p��cp�x� \ g� 2 A��X �:

Since x restricts to a locally free sheaf of rank e onHX , this de¢nition is independent
of the choice of g.

For any h : Y 0 ! Y and X 0 � X �Y Y 0, the complex h�E: satis¢es the conditions
(P) relatively to the closed immersion X 0 ! Y 0. The same construction gives a
map which will be denoted simply:

cYp;X �E:� \ : Z��Y 0� ! A�ÿp�X 0�:
These maps pass to rational equivalence. They are compatible with proper
push-forward, £at pull-back and intersection product:

(C1) if h is proper, let h0 : X 0 ! X be the induced morphism, then for all a 2 Ak�Y 0�,

cYp;X �E:� \ �h�a� � h0��cYp;X �E:� \ a� 2 Akÿp�X �;

(C2) if h is £at of relative dimension d, then for all a 2 Ak�Y �;

cYp;X �E:� \ �h�a� � h0��cYp;X �E:� \ a� 2 Akÿp�d�X 0�;

(C3) if we have a Cartesian diagram

X 0 ÿ! Y 0 ÿ!
i00 # # i0
X ÿ! Y ÿ!

Z0

# i
Z

such that i is a regular embedding of codimension d. Then for all a 2 Ak�Y �,

i!�cYp;X �E:� \ a� � cYp;X �E:� \ �i!a� 2 Akÿpÿd�X 0�;

where i! is the re¢ned Gysin morphism.

It follows from [7] chapter 17 that for any locally freeOY -module of ¢nite rank F , for
any integer mX 0, and for any a 2 Ak�Y �,

cYp;X �E:� \ �cm�F � \ a� � cm�i�F � \ �cYp;X �E:� \ a� 2 Akÿpÿm�X �;

where cm is the mth Chern class of F and i : X ! Y is the closed immersion. We will
use the following propreties of localized Chern classes ([7] proposition 18.1 and
example 18.1.3).

PROPOSITION 3.1. Let i : X ! Y be a closed immersion.
(a) Let j : Y ! Z be a closed immersion and let E: be a complex of locally free
OZ-modules satisfying (P) relatively to the closed immersion X ! Z. Then, for
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all a 2 Ak�Z� and pX e� 1,

i��cZp;X �E:� \ a� � cZp;Y �E:� \ a 2 Akÿp�Y �:

(b) Let 0! E:�1� ! E:�2� ! E:�3� ! 0be an exact sequence of complexes of locally free
OY -modules satisfying (P), and denote by ei the rank of H0�E�i�:�jYÿX (so
e2 � e1 � e3). Then, for any pX e2 � 1,

cYp;X �E:�2�� �
Xp
j�0

c0j�E:�1��c0pÿj�E:�3��;

where c0j�E:�i�� is the localized Chern class cYj;X �E:�i�� if jX ei � 1, and the usual Chern
class if jW ei.

Remark 3.2. Proposition 3.1 implies that cYp;X �E:� depends only on the
quasi-isomorphism class of �E:�. In particular, if E is a coherent sheaf of ¢nite
homological dimension on Y such that EjYÿX is locally free of rank e, then
cYp;X �E� can be de¢ned for pX e� 1 by choosing any resolution of E by locally free
OY -modules.

From now on, we assume that S � Spec�R� is the spectrum of the discrete valu-
ation ring R ¢xed at the beginning of the article. The closed immersions which play
an important role in our theory are of the type Xs ! X where X is a scheme of
¢nite type over S and Xs is its closed ¢ber. For instance, let X be an arithmetic
scheme over S of relative dimension d. The sheaf of relative differentials O1

X=S
has ¢nite homological dimension and is locally free of rank d on the generic ¢ber
XZ. Hence, one can compute cXd�1;Xs

�O1
X=S� \ �X � as a zero cycle class over the closed

¢ber Xs.

DEFINITION 3.3. The localized Euler characteristic of X is

clocd�1�X � � deg��ÿ1�d�1cXd�1;Xs
�O1

X=S� \ �X ��:

3.2. RATIONAL MAPS

Let g : W ! S be a separated scheme of ¢nite type over S and U and V be two
invertible sheaves over W . A rational map U ÿÿ! V is an isomorphism
UZ!� VZ over the generic ¢ber of W . Let m be the maximal ideal of R and
L � g�m be its pull-back.

LEMMA 3.4. Let j : U ÿÿ! V be a rational map over W. Then, there exist a posi-
tive integer n and a morphism c : L
n 
U ! V extending the isomorphism
j : UZ! VZ.

Proof. It follows from [5], proposition 4. &
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Following Saito [16], we use Lemma 3.4 to associate to any rational map
j : U ÿÿ! V , localized Chern classes cWi;Ws

�U ÿÿ! V � 2 Ai�Ws !W �. Let n
be an integer as in Lemma 3.4 and c : L
n 
U ! V be a morphism extending
the isomorphism j on the generic ¢ber. Put

cWi;Ws
�U ÿÿ! V �

� cWi;Ws
�L
n 
U ! V � ÿ

Xiÿ1
k�0

ck�U ÿÿ! V �cWiÿk;Ws
�L
n 
U ! U�;

where ck�U ÿÿ! V � is the usual Chern class �c�V �c�U�ÿ1�dim�k. This de¢nition does
not depend on the integer n and the morphism c.

Remark 3.5. Let U ÿÿ! V be a rational map and de¢ne the inverse rational map
V ÿÿ! U to be the inverse isomorphism VZ ÿ!� UZ. One can prove easily that

cW1;Ws
�U ÿÿ! V � � ÿcW1;Ws

�V ÿÿ! U� 2 A1�Ws !W �:

PROPOSITION 3.6. Let E: be a perfect complex of locally free OW-modules and
det�E:� be its determinant line bundle. Assume that E: is exact off Ws. Then, there
exists a canonical rational section OW ÿÿ! det�E:�, and we have

cW1;Ws
�E:� � cW1;Ws

�OW ÿÿ! det�E:�� 2 A1�Ws !W �:

Proof. It is enough to prove that for any irreducible scheme X of dimension n and
any perfect complex E: of locally free OX -modules which is exact off Xs, we have

cX1;Xs
�OX ÿÿ! det�E:�� \ �X � � cX1;Xs

�E:� \ �X � 2 Anÿ1�Xs�: �7�

This relation is clearly satis¢ed if XZ � ;. So, we can assume that XZ 6� ;.
Let 0! E:�1� ! E:�2� ! E:�3� ! 0 be an exact sequence of perfect complexes over

X which are exact off Xs. It easily follows from the de¢nitions and the additivity
of localized Chern classes that if (7) holds for E:�1� and E:�3�, then it holds for E:�2�.

Fulton ([7], example 18.3.12, see also [15], chapter 4) proved the following splitting
principle: there exists a proper birational map f : eX ! X such that f �E: has a
¢ltration by perfect complexes exact off eXs, with quotients of the form
0! Li ! Liÿ1! 0 where Li and Liÿ1 are invertible sheaves. For such complexes,
relation (7) is obvious.

The referee pointed out a simpler devissage. By normalization, we may assume X
normal. Since the dimension of Xs is nÿ 1, equation (7) for X is equivalent to
the analogue equation for any open neighborhood of the generic points of Xs.
We choose a neighborhood U such that E:jU admits a ¢ltration by perfect complexes
exact offUs, with quotients of the formOU ÿ!:p OU . For such complexes, relation (7)
is obvious. &
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COROLLARY 3.7. Let u : E:! G: be a surjective map of perfect complexes of locally
freeOW-modules which induces a quasi-isomorphism over the generic ¢berWZ. LetF :
be the kernel of u and t : det�E:� ÿÿ! det�G:� be the rational map induced by u on the
generic ¢bers of the determinant line bundles of E: and G:. Then,

cW1;Ws
�F :� � ÿcW1;Ws

�det�E:� ÿÿ! det�G:�� 2 A1�Ws !W �:

Proof. By Proposition 3.6, we have

cW1;Ws
�F :� � cW1;Ws

�OW ÿÿ! det�F :�� 2 A1�Ws !W �:
The rational section OW ÿÿ! det�F :� can be obtained from the rational map t.
Indeed, there exists a canonical isomorphism det�E:� ' det�F :� 
 det�G:�. Combined
with the rational map t, this gives a rational map det�F :� ÿÿ! OW . Its inverse is the
rational section we started with. By the above relation and remark 3.5, we have

cW1;Ws
�det�E:� ÿÿ! det�G:�� � cW1;Ws

�det�F :� ÿÿ! OW �
� ÿcW1;Ws

�OW ÿÿ! det�F :��
� ÿcW1;Ws

�F :� 2 A1�Ws !W �: &

EXAMPLE 3.8 ([16], Lemma 2). Assume that W � Spec�A� is the spectrum of a
discrete valuation ring which is ¢nite and £at over R. Let M1 and M2 be two
invertibleA-modules and t : M1 ÿÿ!M2 be a rational map. Let p be a uniformizing
element of R. There exist an integer jX 0 and a map p jM1!M2 extending the
isomorphism on the generic ¢bers. It is injective with a ¢nite length cokernel C.
De¢ne the order of t to be ord�t� � LengR�C� ÿ dj, where d is the degree of A over
R. This de¢nition does not depend on the integer j. Indeed, ord�t� �
deg cW1;Ws

�M1 ÿÿ!M2� \ �W �.

4. Localized Intersection Product

Let X be a separated scheme of ¢nite type over S, and let S: � �nX 0Sn be a graded
OX -algebra such that S0 � OX and S1 is coherent and generates S: over OX . We
assume that S1 has ¢nite homological dimension over X and is locally free of rank
d over the generic ¢ber XZ, which is assumed to be non-empty. Let Y � Spec�S:�
be the cone of S:,P � Proj�S:�z�� be its projective completion, and q be the projection
P! X . For any h : X 0 ! X , we will construct a map:

cX 0 : A��Proj�h�S:�z��� ! A�ÿdÿ1�X 0s�:

We start by de¢ning cX . Let x be the kernel of the canonical surjection
d : q��S1 �OX � ! OP�1�. Let E: be a resolution of S1 by locally free OX -modules
of ¢nite ranks:

0 � En�1 ! En! � � � � � � ! E1 ! E0 !E S1! 0;
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and let L be the kernel of the surjective morphism d � �E� 1� : q��E0 �OX � ! OP�1�.
We denote by F : the complex of locally free OP-modules

F : :� 0! q�En ! q�Enÿ1! � � � � � � ! q�E1! L! 0:

LEMMA 4.1. The complex F : satis¢es the conditions �P� relatively to the closed
immersion Ps ! P.

Proof. The sheaf S1 is locally free over XZ. Therefore, the complex

0! q�En! � � � � � � ! q�E1 ! q��E0 �OX � ! q��S1 �OX � ! 0

is exact over the generic ¢ber of P. It follows that for i > 0, Hi�F :� is supported on
the closed ¢berPs, and thatH0�F :�jPZ

� xjPZ
is locally free of rank d over the generic

¢ber of P. &

Put

c : Ak�P�ÿ!Akÿdÿ1�Xs�
a 7!qs���ÿ1�d�1cPd�1;Ps

�F :� \ a�:

LEMMA 4.2. The map c does not depend on the resolution E: of S1 over X.
Proof. Let E:�1� and E:�2� be two resolutions of S1. Without loss of generality, we

assume that E:�1� dominates E:�2�. Let G: be the kernel of E:�1� ! E:�2�, it is an exact
complex of locally free OX -modules. We denote by F :�1� and F :�2� the complexes
over P deduced respectively from E:�1� and E:�2� as before. The following sequence
of complexes over P

0ÿ!q��G:�ÿ!F :�1�ÿ!F :�2�ÿ!0

is exact. Hence F :�1� and F :�2� are quasi-isomorphic and de¢ne the same localized
Chern classes. &

For any h : X 0 ! X , we de¢ne cX 0 by

c � cX 0 : Ak�Proj�h�S:�z���ÿ!Akÿdÿ1�X 0s�
a 7!q0s���ÿ1�d�1cPd�1;Ps

�F :� \ a�;
where q0 : Proj�h�S:�z�� ! X 0 is the projection.

DEFINITION 4.3. A closed immersion i : X ! Y , de¢ned by an ideal sheaf I on Y ,
is said to be a �-closed immersion of codimension d if the conormal sheaf
N XY � I=I2 has ¢nite homological dimension over X and is locally free of rank
d over the generic ¢ber XZ, which is assumed to be non empty.

Let i : X ! Y be a �-closed immersion of codimension d with conormal sheaf
N XY � I=I2, where I is the ideal sheaf of X in Y . Denote
SXY � �nX 0In=In�1 and let C � CXY � Spec�SXY � be the normal cone to X
in Y and P � Proj�SXY �z�� be its projective completion. Let E: be a resolution
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of N XY by locally free OX -modules. We construct F : the complex of locally free
modules over P from the complex E: as before. Let V be a purely k-dimensional
scheme and f : V ! Y be a morphism. Form the ¢ber square

�8�

so W � X �Y V . Let J be the ideal sheaf of W in V . There is a surjection over W

�nX 0 g�In=I n�1 ! SWV � �nX 0 J n=J n�1! 0:

It determines a closed immersion j which ¢ts in the diagram:

�9�

Since Proj�SWV �z�� is a purely k-dimensional scheme, it gives a k-cycle on
Proj�g�SXY �z��. De¢ne the localized intersection product �X :V �loc to be the image
of this cycle by cW

�X :V �loc � ps���ÿ1�d�1cPd�1;Ps
�F :� \ �Proj�SWV �z���� 2 Akÿdÿ1�Ws�:

Let V1 . . .Vr be the irreducible components ofV and ni be the multiplicity of Vi in V .
Put Wi � Vi �X Y , then �Proj�SWV �z��� �Pi ni�Proj�SWiVi�z���. It follows that
�X :V �loc �

P
i ni�X :Vi�loc.

DEFINITION 4.4. For any Y 0 ! Y and X 0 � X �Y Y 0, de¢ne the localized Gysin
homomorphism to be

i!loc : Zk�Y 0� ! Akÿdÿ1�X 0s�X
i

ni�Vi� 7!
X
i

ni�X :Vi�loc:

Remark 4.5. Consider the ¢ber square (8) where i is a �-closed immersion of
codimension d with conormal sheaf N XY and V is a purely k-dimensional scheme.
If WZ � ;, then

�X :V �loc � fg��c�N XY ��� \ s�W ;V �gkÿdÿ1 2 Akÿdÿ1�Ws� � Akÿdÿ1�W �;
where the c� �� means to multiply the term ci by �ÿ1�i, g��c�N XY �� is a notation for
the total Chern class of the complex g��E:� for any resolution E: of N XY by locally
free OX modules, and s�W ;V � is the total Segre class of the closed immersion
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W ! V ([7] chapter 4). Indeed, the cycle de¢ned by Proj�SWV �z�� is contained in the
special ¢ber. So, we do not need to localize the Chern classes and the result follows
exactly as in [7] proposition 6.1-a).

PROPOSITION 4.6. Consider a Cartesian diagram

�10�

with i a �-closed immersion of codimension d.

(a) If h is proper, and a 2 Zk�Y 00�, then
i!loch��a� � ls��i!loca� 2 Akÿdÿ1�X 0s�:

(b) If h is £at of relative dimension n, and a 2 Zk�Y 0�, then
i!loch

��a� � l�s �i!loca� 2 Ak�nÿdÿ1�X 00s �:

Proof. (a) We may assume that a � �Y 00� and h�Y 00� � Y 0. Consider the diagram

�11�
With the same notation as before, we have

i!loc��Y 0�� � q0s���ÿ1�d�1cPd�1;Ps
�F :� \ �Proj�SX 0Y 0�z����:

The ¢rst equality follows from:

l1��Proj�SX 00Y 00�z��� � deg�Y 00=Y 0��Proj�SX 0Y 0�z���:

(b) Wemay assume a � �Y 0� and h�Y 00� � Y 0. As h is £at, SX 00Y 00 � l�SX 0Y 0. Hence,
l�1 �Proj�SX 0Y 0�z��� � �Proj�SX 00Y 00�z���, which implies the needed relation. &
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THEOREM 4.7 (Localized Excess Formula). Consider the Cartesian diagram (10)
where i is a �-closed immersion of codimension d. Assume that i0 is a regular
embedding of codimension d 0 and let J be the ideal sheaf of X 0 in Y 0 and
M � �J =J 2�_ be the normal bundle on X 0. Assume that Y 00 has pure dimension k.
Let E: be a resolution of N XY by locally free OX-modules and let F : be the complex
of locally free OX 0 -modules

0! g��En� ! g��Enÿ1� ! . . . . . . g��E1� ! F ! 0;

where F is the kernel of the surjection g�E0! J =J 2 (called an excess complex). Then
F : satis¢es conditions (P) relatively to the closed immersion X 0s ! X 0 and we have

�X :Y 00�loc �
Xd�1
j�e�1
�ÿ1� jcX 0j;X 0s

�F :� \ fc�l�M� \ s�X 00;Y 00�gk�jÿdÿ1 2 Akÿdÿ1�X 00s �;

where e � d ÿ d 0, c�l�M� is the total Chern class of the locally free OX 00 -module l�M,
and s�X 00;Y 00� is the Segre class of the closed immersion X 00 ! Y 00.

In particular, if Y 0 is a purely k-dimensional scheme, then

�X :Y 0�loc � �ÿ1�e�1cX
0

e�1;X 0s �F :� \ �X
0� 2 Akÿdÿ1�X 0s�:

Proof. It's easy to see that F : satis¢es the conditions (P) (see also the proof of
Lemma 4.1). Consider the diagram (11), put P � Proj�SXY �z��, and de¢ne L and
x by the exact sequences

0! L! q��E0 �OX � ! OP�1� ! 0;
0! x! q��N XY �OX � ! OP�1� ! 0:

We denote by G: the complex of locally free OP-modules:

0! q�En! q�Enÿ1! . . . . . . q�E1! L! 0:

Finally we de¢ne a locally free module x0 over P0 � Proj�SX 0Y 0�z�� by

0! x0 ! j�q0��J =J 2 �OX 0 � ! OP0 �1� ! 0:

LEMMA 4.8.We have over Proj�SX 0Y 0�z�� the exact sequence of complexes of locally
free modules

0! j�q0�F :! j�g�1G:! x0 ! 0:
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Proof. The only thing to check is the exact sequence in degree 0

0! j�q0�F ! j�g�1L! x0 ! 0: �12�
Consider the following diagram on P0

0!x0 ! j�q0��J =J 2 �OX 0 � ! OP0 �1� ! 0
" " k

0! j�g�1L! j�g�1q
��E0 �OX � ! OP0 �1� ! 0

The second vertical morphism is a surjection being a composition of two surjections,
and has the locally free module j�q0�F as a kernel. The snake lemma implies that the
¢rst vertical morphism is surjective with kernel j�q0�F , this ¢nishes the proof of
(12). &

The localized intersection product is given by

�X :Y 00�loc � q00s�ts���ÿ1�d�1cloc�G:� \ �Proj�SX 00Y 00�z����;

where cloc�G:� � cPd�1;Ps
�G:�. Proposition 3.1(b) applied to the exact sequence of

Lemma 4.8 implies

cloc�G:� \ �Proj�SX 00Y 00�z���

�
Xd�1
j�e�1

cX
0

j;X 0s
�F :� \ cd�1ÿj�l�2x0� \ �Proj�SX 00Y 00�z���

�
Xd�1
j�e�1

cX
0

j;X 0s
�F :� \ fc�l�2x0� \ �Proj�SX 00Y 00�z���gk�jÿdÿ1:

On the other hand, we have on P0:

c�x0� � c� j�q0�M_�=c�OP0 �1�� � c� j�q0�M_�
X
nX 0

�ÿ1�nc1�OP0 �1��n:

Let d be the projection Proj�SX 00Y 00�z�� ! X 00. The proper push-forward property of
bivariant classes (C1) gives

�X :Y 00�loc � �ÿ1�d�1
Xd�1
j�e�1

cX
0

j;X 0s
�F :� \ d�fc�d�l�M_� \

X
n

�ÿ1�nc1�O�1��n \ �Proj�SX 00Y 00�z���gk�jÿdÿ1

� �ÿ1�d�1
Xd�1
j�e�1

cX
0

j;X 0s
�F :� \ fc�l�M_� \ d��

X
n

�ÿ1�nc1�O�1��n \ �Proj�SX 00Y 00�z����gk�jÿdÿ1

�
Xd�1
j�e�1
�ÿ1� jcX 0j;X 0s

�F :� \ fc�l�M� \ d��
X
n

c1�O�1��n \ �Proj�SX 00Y 00�z����gk�jÿdÿ1:

In order to pass from the ¢rst to the second equality we used the projection formula
for the classical Chern classes. The third equality is only a sign veri¢cation. But
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the Segre class of X 00 ! Y 00 is

s�X 00;Y 00� � d��
X
nX 0

c1�O�1��n \ �Proj�SX 00Y 00�z����:

This ¢nishes the proof of the Theorem 4.7. &

COROLLARY 4.9. Let i : X ! Y be a �-closed immersion of codimension d. Let V
be a purely k-dimensional scheme and h : V ! Y be a morphism. Assume that
W � X �Y V ! V is an isomorphism. Then

�X :V �loc � �ÿ1�d�1cXd�1;Xs
�N XY � \ �V � 2 Akÿdÿ1�Vs�:

As a particular case, we have the localized self-intersection formula: if X has pure
dimension k, then

�X :X �loc � �ÿ1�d�1cXd�1;Xs
�N XY � \ �X � 2 Akÿdÿ1�Xs�:

Remark 4.10. The localized Gysin homomorphism does not pass to rational
equivalence. Consider a diagram (10) where i0 : X 0 ! Y 0 is a Cartier divisors,
and take Y 00 � V to be an irreducible and reduced k-dimensional subscheme of
Y 0. The localized excess formula gives

�X :V �loc � �ÿ1�dcX
0

d;X 0s
�F :� \ �X 0:�V �� � �ÿ1�d�1cX 0d�1;X 0s �F :� \ fs�V \ X

0;V �gk;
where �X 0:�V �� is the usual intersection with the Cartier divisor X 0 on Y 0. The ¢rst
term of the right hand side in this equation passes to rational equivalence, but
the second does not (the Segre class fs�V \ X 0;V �gk � �V � if V � X 0 and vanishes
otherwise).

PROPOSITION 4.11. Let i : X ! Y be a �-closed immersion of codimension d. The
localized intersection product i!loc de¢ned in this section is the unique localized
intersection product compatible with proper push-forward and £at pull-back and
satisfying the localized excess formula in codimension 1 and 0. More precisely, con-
sider a ¢ber square

W !j V
# #
X !i Y

such that V is a purely k-dimensional scheme and j is either an isomorphism or a
regular embedding of codimension 1 (i.e., W is an effective Cartier divisor on
V). A localized intersection product satis¢es the localized excess formula in
codimension 1 and 0 if for any ¢ber square as above, we have:

�X :V �loc � �ÿ1�d�EcWd�E;Ws
�F :� \ �W �;
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where E � 1 if j is an isomorphism and 0 otherwise, and F : is the excess complex con-
structed over W as in Theorem 4.7.

Proof. Let V be an irreducible and reduced k-dimensional scheme and let
W � X �Y V . We will prove that the conditions of the proposition are enough
to compute �X :V �loc. If W is isomorphic to V , the excess formula in codimension
0 gives �X :V �loc. Suppose that W 6� V and denote by eV the blow-up of V along
W and by eW the exceptional divisor:

eW ÿ! eV
p # # r
W ! V
# #
X ! Y

The compatibility with proper push-forward implies that i!loc�V � � ps��i!loc�eV ��. But eW
is a Cartier divisor on eV . Then, the excess formula in codimension 1 gives this
localized product. &

Let X be an arithmetic scheme over S of relative dimension d. The diagonal closed
immersion DX ! X �S X is a �-closed immersion of codimension d. Therefore, we
can associate with any ¢ber square

where V is a scheme of pure dimension k, the localized intersection product
�X :V �loc 2 Akÿdÿ1�Ws�. For V � DX , the self-intersection formula gives:

�DX :DX �loc � �ÿ1�d�1cXd�1;Xs
�O1

X=S� \ �X � 2 A0�Xs�:

Bloch [3] gives this formula as a De¢nition of �DX :DX �loc but did not de¢ne a general
localized intersection theory.

5. Localized Intersection Over Arithmetic Surfaces

LetX be an arithmetic surface over S. We prove in this section a residual intersection
formula for the localized intersection theory associated with the diagonal closed
immersion DX ! X �S X . Then, we use this formula to write the Lefschetz number
of an automorphism over X as a sum of local contributions supported on the scheme
of ¢xed points. We begin by recalling some known facts about the dualizing sheaf of
X over S which will be used later.
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5.1. THE DUALIZING SHEAF

1.^Projective resolution of O1
X=S: Fix an embedding of X in a scheme P smooth over

S. As X and P are regular, this embedding is regular. Hence, it induces a resolution
of O1

X=S by locally free OX -modules

0! E1 � N XP! E0 � O1
P=SjX ! O1

X=S ! 0:

Indeed, the kernel of E1! E0 is locally free (as X is a regular surface) of rank 0.
Let oX=S � Hom�det�N XP�; det�O1

P=SjX �� be the dualizing sheaf of X over S.
There exists a canonical map r : O1

X=S ! oX=S de¢ned locally as follows: given a
local section t of O1

X=S, let et be a lifting of t to O1
P=S, then r is given by

t 7! �a 7! a ^et�.
2.^The semi-stable case: Assume that X is a semi-stable surface over S and let $ be
the set of singular points in Xs. Then, the map r is injective because O1

X=S is
R-torsion-free, and its cokernel is a skyscraper sheaf:

0! O1
X=S ! oX=S !

M
x2$

k! 0: �13�

3.^A differential invariant: Here, we do not assume that X is semi-stable. Let D be a
¢nite and £at scheme over S and let g : D! X be an S-morphism. Let t and g be
respectively the kernel and the cokernel of the map induced by r:

0! t! g�O1
X=S ÿ!

rD g�oX=S ! g! 0:

LEMMA 5.1.

(i) The module t is the R-torsion submodule of g�O1
X=S.

(ii) The modules g and t have the same ¢nite R-length. Put

dX �D! X � :� LengR�g� � LengR�t�:
If D is a horizontal effective Cartierdivisorover X, we denote dX �D� � dX �D! X �.

(iii) If X is semi-stable and if D is a horizontal effective Cartier divisor over X, then
dX �D� is the number of singular points of Xs contained in D without multiplicity
(i.e. the cardinality of $ \Ds).

Proof. (i) Let C be the image of rD. We have an exact sequence
0! t! g�O1

X=S ! C ! 0. As C is a submodule of g�oX=S, it is R-torsion-free.
Therefore, t is the R-torsion submodule of g�O1

X=S.
(ii) By pull-back to D, 0! g�E1! g�E0! g�O1

X=S ! 0 is exact and gives a res-
olution of g�O1

X=S by locally free modules. Indeed, the kernel N of g�E1! g�E0
is R-torsion-free because it injects in g�E1 and D is £at over R. Hence N is R-locally
free. But N vanishes on the generic ¢ber of D because O1

XZ=K is locally free. So
N vanishes. We consider rD as a map of complexes rD : g�E:! g�oX=S, where
the second complex is concentrated in degree 0. It is a quasi-isomorphism on
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the generic ¢ber DZ. The rational map t : g�oX=S ÿÿ! g�oX=S induces by rD is the
identity. Then, by example 3.8, we have Leng�g� ÿ Leng�t� � ord�t� � 0.

(iii) One easily proves that the restriction of the exact sequence (13) to the divisor
D is

0!
M

x2$\Ds

k! g�O1
X=S ! g�oX=S !

M
x2$\Ds

k! 0: �14�

4.^Relative differentials: Let f : X ! Y be a dominant morphism of arithmetic
surfaces over S. By [3] Lemma 7.2, there exists an exact sequence

0! f �O1
Y=S ! O1

X=S ! O1
X=Y ! 0:

LEMMA 5.2. Assume that fZ : XZ! YZ is ëtale. Then, there exists a canonical
rational map f �oY=S ÿÿ! oX=S, and

cX1;Xs
� f �oY=S ÿÿ! oX=S� � cX1;Xs

�O1
X=Y � 2 A1�Xs ! X �:

Proof. In [3], Lemma 7.2, Bloch proves that we can ¢nd resolutions of length 1
which ¢t in the exact sequence

The Lemma follows from Proposition 3.6. &

5.2. A RESIDUAL INTERSECTION FORMULA

Let V be an irreducible scheme of dimension k with a map f : V ! X �S X , and W
be the restriction of V to DX :

�15�
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PROPOSITION 5.3. Assume that W 6� V. Then, the localized intersection product
�DX :V �loc 2 Akÿ2�Ws� can be de¢ned as follows:

(1) If W is a Cartier divisor on V, then diagram (15) induces a surjection
g�O1

X=S !OV �ÿW �jW which is an isomorphism over the generic ¢ber of W.
Therefore, we get a rational map g�oX=S ÿÿ! OV �ÿW �jW, and we have

�DX :V �loc � cW1;Ws
�g�oX=S ÿÿ! OV �ÿW �jW � \ �W � 2 Akÿ2�Ws�:

(2) Since V 6�W,we reduce the general case to the ¢rst case by taking the blow^up of V
along W.

Proof. By Proposition 4.6, (2) follows from (1). Let E: be a resolution of O1
X=S as in

Section 5.1. Diagram (15) gives a surjective map g�E:!OV �ÿW �jW where the
second complex is concentrated in degree 0. Let F : be its kernel. By the localized
excess formula 4.7,

�DX :V �loc � ÿcW1;Ws
�F :� \ �W � 2 Akÿ2�Ws�:

Corollary 3.7 implies the Proposition. &

Consider now an irreducible scheme G of dimension 2 with a map G! X �S X .
Let W be the restriction of G to DX , and assume that W 6� G. Consider the diagram

�16�

where H is a Cartier divisor on G and V is the residual scheme to H in W , which
means that V is de¢ned by its ideal sheaf IV � IW 
OG�H� � OG, where IW is
the ideal sheaf of W in G, and OG�H� is the invertible sheaf associated with H ([7]
De¢nition 9.2.1). Let o � g�oX=S and O�H� � j�OG�H�.

PROPOSITION 5.4. Assume that V is vertical (i.e. VZ � ; ). Then, there exists a
canonical rational section o ÿÿ! O�ÿH� over H, and we have:

�DX :G�loc � cH1;Hs
�o ÿÿ! O�ÿH�� \ �H�

� fc�o
O�2H��� \ s�V ;G�gdim�0 2 A0�Ws�;

where c� �� means to multiply ci by �ÿ1�i and s�V ;G� is the total Segre class of the
closed immersion V ! G.

Proof.The existence of the rational sectiono ÿÿ! O�ÿH� follows from diagram
(16) as VZ � ;. Let p : eG! G be the blow-up of G along V , and eV , eH and eW be the
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inverse images ofV ,H andW . Then, the relation eW � eV � eH holds between Cartier
divisors overeG. We have a rational map p�o ÿÿ! O�ÿeW �jeW over eW , and by Prop-
osition 5.3,

�DX :G�loc � ps�c
eW
1;eWs

�p�o ÿÿ! O�ÿeW �jeW � \ �eW �:
Recall that O�ÿeH� � p�O�ÿH�. Hence, we get:

ceW
1;eWs

�p�o ÿÿ! O�ÿeW �jeW � \ �eW �
� ceH

1;eHs

�p�o ÿÿ! O�ÿeW �jeW � \ �eH� � c1�p�o ÿÿ! O�ÿeW �jeW � \ �eV �
� ceH

1;eHs

�p�o ÿÿ! p�O�ÿH�jH � \ �eH�
ÿ c1�p��o
O�2H��� \ �eV � ÿ c1�O�eV �� \ �eV �:

The p-push-forward of this formula gives the Proposition. &

5.3. LEFSCHETZ NUMBERS

Let s be an S-automorphism of X and denote by G � X �S X the graph of s. The
scheme of s-¢xed points fix�s� is de¢ned by the ¢ber square

�17�

The localized intersection �DX :G�loc is a 0-cycle class in the closed ¢ber of X .
Therefore, we can take its degree.

DEFINITION 5.5. The Lefschetz number of an S-automorphism s of X is the
degree of the localized intersection �DX :G�loc 2 A0�Xs�. It is equally denoted
�DX :G�loc.

Assume from now on that s is non-trivial. Let I be the ideal sheaf of fix�s� in X .
Let x 2 fix�s� be a closed ¢xed point and A be the local ring ofX at x. Then s induces
an automorphism of A, and the ideal I is locally generated at x by s�a� ÿ a where a
runs over A. For any a; b 2 A, we have:

s�ab� ÿ ab � s�a��s�b� ÿ b� � b�s�a� ÿ a�: �18�
Hence, by Nakayama's lemma, Ix is generated by s�y1� ÿ y1 and s�y2� ÿ y2 for two
local parameters y1 and y2 of A. Let Y be the Cartier divisor over X de¢ned locally
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by the greatest common divisor of all functions in the ideal sheaf of fix�s� in X , and
denote by R the residual scheme to Y in fix�s�.

LEMMA 5.6. The closed immersionR! Gs is a regular embedding. Any point x inR
is a singular point of Xs.

Proof. The ideal sheaf I is locally generated by two equations. Therefore, the ideal
sheaf IR of R in G is also locally generated by two equations, namely the quotient of
two equations de¢ning fix�s� by an equation de¢ning the Cartier divisor Y . Since
G is regular and codim�G;R� � 2, the closed immersion R! G is regular (see [7]
the remark after Corollary 9.2.1). We have a canonical surjection O1

X=Sjfix�s� !
Ijfix�s�, which induces the surjective map

fO1
X=S 
O�Y �gjR ! IRjR:

It follows that for any point x of R, dimk�x��O1
X=S�x��X dimk�x��IR�x�� � 2. This

proves the second statement in the Lemma. &

Remark 5.7. Let x be a point in R and l�x� be its multiplicity inR. Then, l�x� is also
the algebraic multiplicity of G along R at x because R is regularly embedded in G ([7]
example 4.3.5-c)).

PROPOSITION 5.8. Let Y � H � V be the decomposition of Y into a horizontal
Cartier divisor H and a vertical one V. Then, there exists a rational section
ojH ÿÿ! O�ÿY �jH over H, and the following formula holds

�DX :G�loc � cH1;Hs
�ojH ÿÿ! O�ÿY �jH � \ �H�

ÿ �o�H � V :V � �
X
x2R

l�x��x� 2 A0�Xs�:

Proof. By Proposition 5.4,

�DX :G�loc � cY1;Ys
�ojY ÿÿ! O�ÿY �jY � \ �Y � � s0�R;G�

� cH1;Hs
�ojH ÿÿ! O�ÿY �jH � \ �H� ÿ �o�H � V :V � � s0�R;G�:

The relation s0�R;G� �
P

l�x��x� follows from the remark above. &

6. A Projection Formula

Let f : X ! Y be a morphism of ¢nite degree n between two arithmetic surfaces over
S, and s and t be non-trivial S-automorphisms, of respectively, X and Y such that
t � f � f � s. Put G � Gs � X �S X and Gt � Y �S Y the graphs of s and t, and
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consider the Cartesian diagram

�19�

where W is the intersection of G with X �Y X . The closed immersions i and j are
�-closed immersions of codimension 1 and conormal sheaves, respectively,
s�O1

X=S and O1
Y=S. On the one hand, X �Y X has pure dimension 2. Its localized

intersection with G is a cycle class of dimension 0 over Ws. On the other hand,
the localized intersection of G with DY is also a cycle class of dimension 0 over
Ws. We expect that these cycle classes are the same:

�G:�X �Y X ��loc � �DY :G�loc 2 A0�Ws�: �20�

A weaker version of this formula consists in the equality of the degrees of the above
cycles:

�Gs:�X �Y X ��loc � n�DY :Gt�loc: �21�

We used in this equation the same notation for a localized intersection product and
its degree.

Let s and s0 be two automorphisms of X such that f � s � f � s0 � t � f . Then,
i � s0 � sÿ1 is an isomorphism of X over Y :

The automorphism �id� i� : X �S X ! X �S X sends Gs onto Gs0 and preserves
X �Y X . So, id� i induces an isomorphism between W and W 0, and we have

�Gs:�X �Y X ��loc � �Gs0 :�X �Y X ��loc 2 A0�Ws� � A0�W 0
s�:

Hence, the projection formula does not depend on the choice of the lifting of t to X .
Unfortunately, the proof we have is based on the existence of a good lifting.

Good lifting of an automorphism over curves. We consider here smooth projective
and irreducible curves over Z � Spec�K�. Let f : D! C be a ¢nite morphism
between such curves, and t be a non-trivial K-automorphism of C. A lifting s
of t to D is a K-automorphism of D such that f � s � t � f . Denote fix�s� � D
and fix�t� � C the schemes of ¢xed points. Then, there exists a canonical closed
immersion fix�s� � fix�t� �C D.

DEFINITION 6.1. A good lifting of t to D is a lifting s such that fix�s� �
fix�t� �C D.
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LEMMA 6.2. Let f : D! C be an ëtale covering of curves and t be a non-trivial
K-automorphism of C.

(i) If fix�t� � ; , then any lifting of t is a good lifting.
(ii) If fix�t� 6� ; , then there exists at most one good lifting of t.

Proof. The ¢rst point is clear. For the second, consider two good liftings s and s0.
Then fix�s� � fix�s0� � fix�t� �C D 6� ;. Therefore, we can ¢nd a point
x 2 fix�s� � fix�s0� � D such that s�x� � s0�x� � x and the automorphisms induced
by s and s0 over K�x� are equal to the identity. As f is ëtale, s � s0 ([12] Corollary
3.13 page 26). &

We consider again a morphism f : X ! Y between arithmetic surfaces and a
non-trivial S-automorphism t of Y . A lifting s of t to X is a good lifting if it induces
a good one over the generic ¢bers.

THEOREM6.3. Let f : X ! Y be amorphism of ¢nite degree n between arithmetic
surfaces such that fZ : XZ ! YZ is ëtale. Let t be a non-trivial S-automorphism of Y
and s be a good lifting of t to X. Assume that W � G \ �X �Y X � is a Cartier divisor
on G. Then, the strong projection formula holds for f .

The rest of this section is devoted to a proof of this Theorem.

6.1. PROOF OF THEOREM 6.3

Fix the notation as follows:

�22�

. a is the closed immersion of W in X �Y X and I is its ideal sheaf.

. p1 and p2 are the ¢rst and the second projection.

. b is the map p1 � a. It satis¢es s � b � p2 � a because of the de¢nition of W .

The map b coincides with the closed immersion W ! G when we identify G with X
by the composed map Gÿ!X �S X ÿ!p1 X , which we will do subsequently. Hence,
b is a closed immersion and makes W a Cartier divisor on X . Let J be the ideal
sheaf de¢ning b. Diagram (22) leads to the following exact sequence:

J =J 2ÿ!I=I 2ÿ!b�s�O1
X=Yÿ!0:

Let P � Proj�LnX 0 In=I n�1� and q : P!W be the canonical projection. Then, P
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has pure dimension 1. Let s � q��P� 2 Z1�W � be the ¢rst Segre class of the closed
immersion a. As WZ is a Cartier divisor on �X �Y X �Z, the cycle ��W � ÿ s� is
supported on the closed ¢ber of W . The morphisms over P:

q�J =J 2! q�I=I2 !O�1� � OP�1�

induce isomorphisms on the generic ¢ber of P. So, the complex q�J =J 2!O�1� is
exact off Ps and we can consider its Chern classes localized in Ps. We now state
a proposition which implies Theorem 6.3.

PROPOSITION 6.4. With the above notation, we have:

qs�fcP1;Ps
�q�J =J 2!O�1�� \ �P�g

� cX1;Xs
�s�O1

X=Y � \ b��W ��
� �c1�J =J 2� ÿ c1�b�s�oX=S�� \ ��W � ÿ s� 2 A0�Ws�:

First, we prove that Proposition 6.4 implies Theorem 6.3. We extend diagram (19):

�23�

where gX�Y X is the blow-up of X �Y X along W and eW is the exceptional divisor.
Notice that p is birational and that eW is canonically isomorphic to P with conormal
sheaf in gX�Y X the sheaf O�1�. We subsequently identify eW and P, and also denote
by q : eW !W the projection. Diagram (23) induces two rational maps:

(i) q�b�s�oX=S ÿÿ! O�1� over P � eW,
(ii) b�s�f �oY=S ÿÿ! J =J 2 over W.

By Proposition 5.3, we have:

�DY :G�loc � cW1;Ws
�b�s�f �oY=S ÿÿ! J =J 2� \ �W � 2 A0�Ws�: �24�

As p is birational, Proposition 5.3 (more precisely, its analogue for the closed immer-
sion G! X �S X ) implies:

�G:�X �Y X ��loc � qs�fcP1;Ps
�q�b�s�oX=S ÿÿ! O�1�� \ �P�g 2 A0�Ws�: �25�

By Lemma 5.2, f induces a rational map f �oY=S ÿÿ! oX=S, and we have

cX1;Xs
�s�f �oY=S ÿÿ! s�oX=s� � cX1;Xs

�s�O1
X=Y � 2 A1�Xs ! X �: �26�
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By substituting equations (24), (25) and (26) in the formula of Proposition 6.4, we get
the projection formula �G:�X �Y X ��loc � �DY :G�loc. &

The next step is a reformulation of Proposition 6.4. Denote B � X �Y X and con-
sider it as an X -scheme by the ¢rst projection. Consider a scheme C smooth over X
with an X -closed immersion of B in C:

We will prove the existence of such a factorization in the proof of Lemma 6.6. AsX is
regular, thenC is regular. And as B is an l.c.i. scheme, the closed immersion ofB in C
is regular (EGA IV 19.3.2). Let E � O1

C=X jB, andU � N BC be the conormal sheaf to
B in C. We have an exact sequence over B:

U ! E ! p�2O
1
X=Y ! 0;

where p2 : B! X is the second projection. As XZ is ëtale over YZ, the complex
U ! E is exact off Bs. It de¢nes a bivariant class cloc1 � cB1;Bs

�U ! E� 2 A1�Bs ! B�.

LEMMA 6.5. The bivariant class cloc1 2 A1�Bs ! B� does not depend on the scheme C.
Proof. Consider two schemes C1 and C2 as above and the diagram

LetU ! E,U1 ! E1 andU2! E2 be the complexes associated toC1 �X C2,C1 and
C2. Then E � E1 � E2, and we have an exact sequence 0! U1! U ! E2 ! 0,
which follows from the diagram

Therefore, cB1;Bs
�U ! E� � cB1;Bs

�U1 ! E1�, and the Lemma follows. &

LEMMA 6.6. With the above notation, we have:

cloc1 \ �W � � cX1;Xs
�s�O1

X=Y � \ b��W � 2 A0�Ws�:
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Proof. There exists aY -closed immersion of X in a schemeZ which is smooth over
Y . Then, Z is regular and the closed immersion of X in Z is l.c.i. (EGA IV 19.3.2).
Let E0 � O1

Z=Y jX and E1 � N XZ be the conormal sheaf of X in Z. We have an exact
sequence

0! E1! E0! O1
X=Y ! 0:

Indeed, the kernel of E1! E0 is torsion-free with a generic rank 0. Therefore,
Lemma 6.6 is equivalent to

cloc1 \ �W � � cX1;Xs
�s�E1! s�E0� \ b��W �

� cW1;Ws
�b�s�E1! b�s�E0� \ �W � 2 A0�Ws�:

�27�

Consider now the diagram

The map p1 is smooth and i is a closed immersion. So, this diagram can be used to
compute the localized Chern class cloc1 . Let U � N BC be the conormal sheaf to
B in C and E � O1

C=X jB. It is easily seen that E � p�2E0, where p2 : B! X is the
second projection. Furthermore, we have a surjective map p�2E1! U which is
an isomorphism as E1 and U are locally free of the same rank. Hence,

cloc1 � cB1;Bs
�U ! E� � cB1;Bs

�p�2E1! p�2E0�:
We then apply this relation toW and use the equation p2 � a � s � b in diagram (22),
to get relation (27). &

By Lemmas 6.5 and 6.6, Proposition 6.4 is equivalent to the following:

qs�fcP1;Ps
�q�J =J 2!O�1�� \ �P�g

� cloc1 \ �W � � �c1�J =J 2� ÿ c1�b�s�oX=S�� \ ��W � ÿ s� 2 A0�Ws�: �28�
Taken in A0�W �, equation (28) will follow from the commutativity of Fulton's
intersection theory for well chosen regular closed immersions. For this purpose,
we need to leave the category of schemes and work with formal schemes. Equation
(28) taken in A0�Ws� turns out to be a re¢ned version of Fulton's commutativity.

6.2 REGULAR IMMERSIONS OF FORMAL SCHEMES

DEFINITION 6.7. (i) A closed immersion of formal schemes Y! Z de¢ned by a
coherent ideal sheaf I is a regular immersion if for any point y 2 Y, there exists
an open neighborhood U of y in Z such that IjU is generated by a regular sequence
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of elements of G�U;OZ�. One can prove that Y! Z is regular if and only if for any
point y of Y, the kernel Iy of OZ;y!OY;y is generated by a regular sequence of
elements of OZ;y.

(ii) A formal scheme Y is local complete intersection if for any point y of Y , the
local ring OY;y is a local complete intersection ring (i.e. the completion of OY;y

is isomorphic to a quotient of a complete local regular ring by a regular sequence
of elements).

LEMMA 6.8. �1� Let Z0 be a closed subscheme of a scheme Z and let Z be the formal
completion of Z along Z0. If Z is l.c.i. then Z is l.c.i..
�2� Let i : Y! Z be a closed immersion of formal schemes and assume that Z is

regular. Then, i is a regular immersion if and only if Y is l.c.i.
Proof. (1) Being l.c.i. is a local property. Therefore, we can assume that

Z � Spec�A� and Z0 is given by an ideal I . Let Â be the I-adic completion of A.
The formal scheme Z is isomorphic to Spf�Â�. Let P be a prime ideal of A containing
I , denote by x the associated point either in Z0 or in Z and byP � PÂ. The local ring
of Z at x is given by:

OZ;x � limÿ!
f 62P

Âh f ÿ1i;

where Âh f ÿ1i is the I-adic completion of Âf (this is the localization of Â at
f f n; n 2 Zg). Then, we get canonical morphisms:

ÂP !OZ;x! Âh�ÂÿP�ÿ1i ' �ÂP�^;
where ÂP is the localization of Â atP and Âh�ÂÿP�ÿ1i is canonically isomorphic to
the I-adic completion of ÂP. It follows that the I-adic completion of OZ;x is
canonically isomorphic to the I-adic completion of ÂP. On the one hand, the I-adic
completion of ÂP is canonically isomorphic to the I-adic completion of AP . On
the other hand the P-adic completion of AP is canonically isomorphic to the P-adic
completion of the I-adic completion of AP . The same remark applies for OZ;x.
So, the completions of the local rings OZ;x and OZ;x at their maximal ideals are
isomorphic.

(2) Follows from EGA VI 19.3.2. &

We return to our problem and consider the Cartesian diagram:

where V is the scheme of s-¢xed points over X . Let A be the formal completion of
X �S X along G, B be the formal completion ofX �Y X alongW and C be the formal
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completion of DX along V . Then, we have canonical embeddings C � B � A. We
consider C, B and A as X -formal schemes by means of the ¢rst projection
X �S X ! X .

LEMMA 6.9. The closed immersions V �W and C � B induce isomorphisms
VZ 'WZ and CZ ' BZ on the generic ¢bers.

Proof.Notice ¢rst thatW � fix�t� �GY
t
GX
s and V � fix�s�. As s is a good lifting of

t , VZ �WZ. The map fZ : XZ! YZ is ëtale. So, �DX �Z is a connected component of
�X �Y X �Z. Taking completions along VZ 'WZ, we get an isomorphism CZ ' BZ.&

LEMMA 6.10 ([3] Lemma 7.5). There exist a formal scheme Z over X, locally
isomorphic to Â2 � X, and an X-closed immersion of A in Z.

Proof.We give the construction only for s � id since it is similar for any s. Let I
be the ideal sheaf of the closed immersion X !A induced by the diagonal closed
immersion. Since X is regular, O1

X=S � I=I 2 is locally generated by two sections.
One can lift these generators to get a local surjectionOX ��x; y�� ! OA. Hence, locally
such a Z exists. For the globalization of this construction, we proceed as follows.
There exists a covering of X by two af¢ne open subschemes X1 and X2 such that
O1

X=SjXi
is generated by two sections over Xi. To construct X1 and X2, ¢x in each

component of Xs a closed point. The sheaf O1
X=S is generated by two sections over

the associated semi-local ring. Choose any open af¢ne neighborhood X1 of these
points over which O1

X=S is generated by two sections. There exist only ¢nitely many
closed points of X which are not in X1. Over the corresponding semi-local ring,
the sheaf O1

X=S is generated by two sections. Lift these to an open af¢ne
neighborhood X2.

Let Ai � A�X Xi for i � 1; 2. These are af¢ne formal schemes. Indeed, consider
for example A1. It is canonically isomorphic to the formal completion of
X1 �S X along X1 diagonally embedded. But X1 is af¢ne and so are all its
in¢nitesimal neighborhoods, because they are ¢nite over X1. Put Ai � Spf�Ai�.
Let Ii be the associated ideals of Ai. Let ai; a0i be two elements of Ii lifting generators
of Ii=I2i � O1

X=SjXi
. We get a map ji : OXi ��x; y�� ! Ai. It is a surjective map. Indeed,

for any integer n, jn
i : OXi �x; y�=�x; y�n ! Ai=Ini is surjective. The last statement

follows by induction from the following diagram:

because the left vertical map is surjective.
I claim that there exists an automorphism j of OX1\X2 ��x; y�� such that

j � id mod �x; y� and j1 � j � j2 over X1 \ X2. Then, we can glue j1 and j2 to
get the formal scheme Z. We prove the claim in two steps.
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Step 1: We construct a homomorphism j satisfying the needed properties. There
exist a; b; c; d 2 OX1\X2 such that the relations

a2 � aa1 � ba01; a02 � ca1 � da01 �29�
hold in I=I2 over X1 \ X2. Hence, the differences a2 ÿ aa1 ÿ ba01 and a02 ÿ ca1 ÿ da01
are in I 2. As j1 is surjective, we ¢nd two formal series f �x; y� and f 0�x; y� in
�x; y�2 mapping by j1 to these differences. Put

g�x; y� � ax� by� f �x; y�;
g0�x; y� � cx� dy� f 0�x; y�;

and de¢ne

j : OX1\X2 ��x; y�� ! OX1\X2 ��x; y��
x; y 7! g�x; y�; g0�x; y�:

The only point is to check that we can take j to be an isomorphism. It suf¢ces to take
j to be an isomorphismmod �x; y�2 (i.e. to ¢nd a; b; c; d 2 OX1\X2 such that ad ÿ bc is
invertible).

Step 2: We can choose a; b; c; d such that ad ÿ bc does not vanish at all the generic
points of �X1 \ X2�s. Let k1; . . .kr be the generic points of �X1 \ X2�s and let P1; . . .Pr

be different closed points of X1 \ X2 such that Pj is in the closure of kj. If ad ÿ bc
does not vanish at Pj then it does not vanish at kj. So, we are reduced to ¢nd
a; b; c; d satisfying this property. For each j � 1; . . . ; r, we can ¢nd
aj; bj; cj; dj 2 OX1\X2 such that:

(1) the relations
a2 � aja1 � bja01
a02 � cja1 � dja01

�
hold at Pj, and

(2) ajdj ÿ bjcj does not vanish at Pj.

Statement (1) implies the existence of fj; gj in the maximal ideal of Pj and
a0j; b

0
j; c
0
j; d
0
j 2 OX1\X2 such that the relations

a2 � aja1 � bja01 � fj�a0ja1 � b0ja
0
1�; a02 � cja1 � dja01 � gj�c0ja1 � d 0ja

0
1�

hold over X1 \ X2. As the Pj are distinct closed points, there exist elements hj withP
hj � 1 such that hj belongs to the maximal ideal of any Pi except Pj . Take

a; b; c; d to be:

a b
c d

� �
�
X
j

hj
�aj � fja0j� �bj � fjb0j�
�cj � gjc0j� �dj � gjd 0j �

� �
:

Relations (29) are trivially satis¢ed and ad ÿ bc does not vanish at any point Pj and
therefore at any point kj. As a consequence, ad ÿ bc fails to be invertible at only
¢nitely many closed points of X1 \ X2. Let mi be maximal ideals of OX2 correspond-
ing to these closed points. Let nj be the maximal ideals of OX2 corresponding to
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the ¢nite set of closed points ofX2 which are not contained in X1. Take any element f
of OX2 which is in any mi, but which is not in any of the nj. Replace X2 by its
localization at f . Clearly X1 and X2 continue to cover X . This ¢nishes the con-
struction of j and gives the formal scheme Z. &

The formal scheme Z constructed in Lemma 6.10 ¢ts in the Cartesian diagram:

�30�

The scheme X �Y X is l.c.i., hence so is the formal scheme B by Lemma 6.8. By the
same Lemma, the closed immersions C ! Z, B ! Z and G! Z are l.c.i. of
codimension 2. PutH � N GZ the conormal sheaf to G in Z, U � NBZ the conormal
sheaf to B in Z, F � N CZ the conormal sheaf to C in Z and E � O1

Z=X the sheaf of
relative differentials of Z over X . Then, we have canonical isomorphisms
H ' EjG and F ' EjC, and an exact sequence over B:

Uÿ!EjBÿ!Ôÿ!0; �31�
where Ô is the formal completion of p�2O

1
X=Y along W . Put U � UjW and

E � EjW � HjW .
The scheme P de¢ned in the previous subsection is canonically isomorphic to

Proj�SWB�. We have denoted q : P!W the projection. We consider also
Q � Proj�SVC�. Then, there exists a canonical closed immersion Q � P which
induces an isomorphism on the generic ¢bers (by Lemma 6.9). Thus, the cycle
�P� ÿ �Q� is supported over the closed ¢ber of P. We de¢ne the invertible sheaf
K1 over P by the exact sequence

0ÿ!K1ÿ!q�E ÿ!d O�1�ÿ!0; �32�
where d is the composed map q�E ! q�I=I2!O�1� and the map E ! I=I 2 is
induced by diagram (30). We denote K2 the excess bundle relative to the diagram

In other words, K2 is the invertible sheaf over W de¢ned by the exact sequence:

0ÿ!K2ÿ!Uÿ!J =J 2ÿ!0: �33�
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These sheaves are related by the commutative diagram over P:

�34�

where the second vertical map is induced by the exact sequence (31), and the third
one was de¢ned in Subsection 6.1 (we leave to the reader to check the commutativity
of this diagram). All the vertical maps are isomorphisms off Ps. The following Prop-
osition states the re¢ned commutativity �G:�B� ÿ �C�� � ��B� ÿ �C�:G� of the
intersection products in Z.

PROPOSITION 6.11. We have the relation:

qs�fc1�K1� \ ��P� ÿ �Q��g
� c1�K2� \ f�W � ÿ s1�V ;G�g ÿ qs�fcP1;Ps

�q�K2! K1� \ �Q�g 2 A0�Ws�; �35�

where s1�V ;G� is the ¢rst Segre class of the closed immersion of V in G (notice that
f�W � ÿ s1�V ;G�g is a cycle over Ws, by Lemma 6.9).

We postpone the proof of (35) to the next subsection, and we continue the proof of
Equation (28).

LEMMA 6.12. Let D be an irreducible reduced component of W appearing with
a non-vanishing multiplicity in ��W � ÿ s�. Then, I=I 2jD is locally free of rank 2
over D.

Proof. Notice ¢rst that I=I 2 is locally generated over W by two sections, namely
the pull-back of two local sections generating s�O1

X=S over G. Let k be the generic
point of D. It is enough to see that the stalk �I=I 2�k is generated by two sections.
If �I=I 2�k is generated by one section, then we have an isomorphism OW ;k�T � !
��nX 0I n=In�1�k. It follows that Pk � Proj���nX 0I n=In�1�k� ' Spec�OW ;k�. We
deduce that D does not appear in the cycle ��W � ÿ s�. The Lemma is proved. &

PROPOSITION 6.13. We have the relation:

c1�E� \ ��W � ÿ s� � c1�b�s�oX=S� \ ��W � ÿ s� 2 A0�Ws�:

Proof. LetD be an irreducible component ofW as in Lemma 6.12 (notice thatD is
vertical). The surjective map EjD ! I=I2jD, induced by diagram (30), is an
isomorphism because both sheaves are locally free of rank 2. Also, the surjective
map b�s�O1

X=SjD ! I=I2jD, induced by diagram (23), is an isomorphism because
O1

X=S is locally generated over X by two sections. Therefore, EjD ' b�s�O1
X=SjD.
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Hence,

c1�E� \ �D� � c1�EjD� \ �D�
� c1�b�s�O1

X=SjD� \ �D�
� c1�s�O1

X=S� \ b��D� �by �3� lemma 7:4�
� c1�s�oX=S� \ b��D�
� c1�b�s�oX=S� \ �D�:

Proposition 6.13 is proved. &

Now, we prove relation (28). From diagram (34), we get

qs�fcP1;Ps
�q�J =J 2!O�1�� \ �P�g

� qs�fcP1;Ps
�q�U ! q�E� \ �P�g ÿ qs�fcP1;Ps

�q�K2! K1� \ �P�g
� cW1;Ws

�U ! E� \ sÿ qs�fc1�q�K2 ! K1� \ ��P� ÿ �Q��g
ÿ qs�fcP1;Ps

�q�K2! K1� \ �Q�g
� cW1;Ws

�U ! E� \ s� c1�K2� \ �sÿ s1�V ;G��
ÿ qs�fc1�K1� \ ��P� ÿ �Q��g ÿ qs�fcP1;Ps

�q�K2! K1� \ �Q�g 2 A0�Ws�:

In the last equation, we used that q��Q� � s1�V ;G�. Indeed, q��Q� � s1�V ; C� �
s1�V ;DX � where s1 denotes the ¢rst Segre class of a closed immersion. As V is
the scheme of s-¢xed point, s1�V ;G� � s1�V ;DX �. We deduce, using Proposition
6.11, that:

qs�fcP1;Ps
�q�J =J 2!O�1�� \ �P�g � cW1;Ws

�U ! E� \ �W ��
� c1�U ! E� \ �sÿ �W �� � c1�K2� \ �sÿ �W �� 2 A0�Ws�:

I claim that cW1;Ws
�U ! E� \ �W � � cloc1 \ �W � 2 A0�Ws�. Indeed, the diagram of for-

mal schemes

can be used to compute the class cloc1 (see Lemma 6.5). Therefore,

qs�fcP1;Ps
�q�J =J 2!O�1�� \ �P�g

� cloc1 \ �W � � �c1�K2� � c1�E� ÿ c1�U�� \ �sÿ �W ��
� cloc1 \ �W � � �c1�E� ÿ c1�J =J 2�� \ �sÿ �W �� �by the sequence �33��
� cloc1 \ �W � � �c1�b�s�oX=S� ÿ c1�J =J 2�� \ �sÿ �W �� �by Proposition 6:13�:

Equation (28) is proved. &
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6.3. REFINED COMMUTATIVITY OF FULTON'S INTERSECTION THEORY

Using the commutativity of Fulton's intersection theory, we get relation (35) only in
A0�W �. Proposition 6.11 is a re¢ned version of this commutativity. Consider the
Cartesian diagram

where

(i) Z0 is obtained from Z by a sequence of two blow-ups, the ¢rst along B, and the
second along the inverse image of C. Hence, C0 and B0, the inverse images of
C and B, are Cartier divisors over Z0. Put L � OZ0�ÿB0�jB0 and G � OZ0�ÿC0�jC0.

(ii) G0,W 0 and V 0 are the inverse images of G ,W and V respectively in Z0, B0 and C0.
(iii) G00 is the blow-up of G alongV andW 00 and V 00 are the inverse images ofW and V

in G00. They are Cartier divisors over G00. By the universal property of blowing-up,
there exists a canonical closed immersion of G00 in Z0 such that B0 and C0 restrict
respectively to W 00 and V 00. This closed immersion factors into G00 !
G0 ! Z0. Notice that V 00 is canonically isomorphic to Q.

The residual formal scheme to C0 in B0, denoted T , is the Cartier divisor over Z0
associated to the ideal sheaf OZ0�ÿB0 � C0� � OZ0 . As C0Z � B0Z, T is supported over
B0s. We label the closed immersions which appear in the diagram as follows

(1) i : G! Z, b : B ! Z and c : C ! Z,
(2) b0 : B0 ! Z0, c0 : C0 ! Z0 and t : T ! Z0.

Remark 6.14. We use the notion of Gysin map associated to a regular closed
immersion as de¢ned by Fulton in [7] chapter 6.2. Moreover, we have to consider
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the following situation

where r is a regular closed immersion of formal schemes and Y0 is a formal scheme. If
X 0 is a scheme, then we can consider r!��Y0�� as a cycle class over X 0. It is de¢ned
exactly as in [7] chapter 6. Indeed, the normal cones needed to de¢ne this class
are schemes because X 0 is a scheme. The same remark applies for other bivariant
classes like Chern classes or localized Chern classes. For example, if X is a formal
scheme, E is a locally free sheaf of X , and X ! X is a morphism from a scheme
X to X , then we can consider ci�E� as an operator on cycles of X .

As usual, we introduce the excess bundles K1 over C0 and K2 over B0 de¢ned by the
exact sequences:

0! K2 ! g�U ! L ! 0;
0! K1 ! f ��EjC� ! G ! 0:

We get the commutative diagram over C0:

�36�

We denote in the following cloci for the localized Chern classes cC
0

i;C0s .

LEMMA 6.15. The vertical maps in diagram �36� are exact off C0s and the following
relation holds between localized Chern classes over C0:

c1�K2�cloc1 �LjC0 ! G� � cloc1 �K2jC0 ! K1�c1�G�
� cloc2 � f ��UjC� ! f ��EjC�� � cloc1 � f ��UjC� ! f ��EjC��c1�f ��UjC��

Proof. Given two invertible sheaves U and V over C0 and a morphism U ! V
which is an isomorphism on the generic ¢ber of C0, one can prove that:

cloc2 �U ! V � � ÿc1�U�cloc1 �U ! V �:
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We apply this remark to the complexes K2jC0 ! K1 and LjC0 ! G. Then, using the
exact sequences (36) and the relation c2� f ��UjC�� � c1�K2jC0 �c1�LjC0 �, we get:

cloc2 � f ��UjC� ! f ��EjC�� � cloc1 � f ��UjC� ! f ��EjC��c1� f ��UjC��
� cloc2 �K2jC0 ! K1� � cloc2 �LjC0 ! G� � cloc1 �K2jC0 ! K1�cloc1 �LjC0 ! G��
� �c1�K2jC0 � � c1�LjC0 ���cloc1 �K2jC0 ! K1� � cloc1 �LjC0 ! G��
� �c1�LjC0 � � cloc1 �LjC0 ! G��cloc1 �K2jC0 ! K1� � c1�K2jC0 �cloc1 �LjC0 ! G�
� c1�G�cloc1 �K2jC0 ! K1� � c1�K2jC0 �cloc1 �LjC0 ! G�:

The last equality follows from the fact that a product of two localized bivariant
classes is the product of one of them by the other class taken without localization.&

LEMMA 6.16. Let a � i!��Z0�� 2 A2�G0�. Then, there exist two cycle classes
g 2 A2�V 0� and d 2 A2�W 0

s� such that aÿ �G00� � g� d 2 A2�G0�:
Proof. I claim that aÿ �G00� is in the image of A2�W 0� ! A2�G0�. Let O � GÿW

and O0 � G0 ÿW 0. The map p induces an isomorphism O0 ' O. Consider the com-
mutative diagram

where the vertical and horizontal sequences are localization sequences. SinceO0s ' Os

is an open subscheme of Gs, its dimension is at most one, so A2�O0s� � 0. Therefore,
any class in A2�G0� which image vanishes in A1�O0Z�, is the image of a class in
A2�W 0�. The image of aÿ �G00� in A1�O0Z� coincides with the image of p��aÿ �G00��
in A1�OZ� via the isomorphism O0 ' O. But p��aÿ �G00�� � 0 2 A2�G� by compatiblity
of intersection product with push-forward. The claim follows. The irreducible com-
ponents of W 0 are either contained in V 0 or in the closed ¢ber W 0

s. Then we have
a surjection A2�V 0� � A2�W 0

s�ÿ!A2�W 0�. The Lemma follows. &

The commutativity of Fulton's intersection theory ([7] Theorem 6.4) implies

i!��T �� � t!�a� 2 A1�W 0
s�; �37�

i!��C0�� � c0!�a� 2 A1�V 0�: �38�
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Indeed, the ¢rst relation is localized in the closed ¢ber of W 0 because T is vertical.
From these relations, we get:

c1�K2�i!��T �� ÿ cloc1 �K2jC0 ! K1�i!��C0��
� �c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��a� 2 A0�W 0

s�:
�39�

LEMMA 6.17. We have the following relation between cycle classes over Ws:

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��a�g
� hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!���G00��g 2 A0�Ws�:

Proof. By Lemma 6.16, it is enough to prove:

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��g�g � 0 2 A0�Vs�; �40�
hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��d�g � 0 2 A0�Ws�: �41�

Restricted to cycles over V 0, the bivariant class t! coincides with the localized Chern
class cloc1 �LjC0 ! G�, and the bivariant class c0! coincides with the Chern class
ÿc1�G�. Therefore,

�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��g�
� �c1�K2�cloc1 �LjC0 ! G� � cloc1 �K2jC0 ! K1�c1�G���g� 2 A0�V 0s�:

Then, by Lemma 6.15,

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��g�g
� �cloc2 �UjC ! EjC� � cloc1 �UjC ! EjC�c1�UjC�� \ �e�g�
� 0 2 A0�Vs�;

because e��g� � 0 2 A2�V �. The proof of relation (40) is ¢nished. This method cannot
apply to the cycle class d, as it is not supported over V 0. But d is already localized in
the closed ¢ber of W 0. Then,

�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��d�
� �c1�K2��b0! ÿ c0!� ÿ �c1�K1� ÿ c1�K2��c0!��d�
� �c1�K2�b0! ÿ c1�K1�c0!��d� 2 A0�W 0

s�:

By Fulton's excess formula ([7] Theorem 6.3), we have:

�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��d� � ÿ�b! ÿ c!��d� 2 A0�W 0
s�:

Taking the push-forward by hs�, we get

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��d�g � ÿ�b! ÿ c!��hs��d�� 2 A0�Ws�:

Relation (41) follows because hs��d� � 0 2 A2�Ws�. &
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LEMMA 6.18. We have the following relation between cycle classes over Ws:

hs�fc1�K2�i!��T �� ÿ cloc1 �K2jC0 ! K1�i!��C0��g � qs�fc1�K1� \ ��P� ÿ �Q��g 2 A0�Ws�:

Proof. The Lemma follows from the two equations:

hs�fc1�K2�i!��T �� ÿ cloc1 �K2jC0 ! K1�i!��C0��g � ÿi!��B� ÿ �C�� 2 A0�Ws�; �42�

i!��B� ÿ �C�� � ÿqs�fc1�K1� \ ��P� ÿ �Q��g 2 A0�Ws�: �43�
Equation (43) is a consequence of Fulton's excess formula ([7] Theorem 6.3). The
¢rst equation is harder. Let A0 and B0 be the projective completions of the normal
cones respectively to V 0 in C0 and to W 0 in B0. They have pure dimension 3. There
exists a canonical closed immersion A0 � B0 which induces an isomorphism over
the generic ¢bers. Let p0 : B0 !W 0 be the canonical projection. Let x0 be the
invertible sheaf over B0 de¢ned by the exact sequence

0! x0 ! p0��h�E �OW 0 � ! OB0 �1� ! 0:

By [7] proposition 6.1,

i!�T � � p0s�fc2�x0� \ ��B0� ÿ �A0��g 2 A1�W 0
s�;

i!�C0� � p0�fc2�x0� \ �A0�g 2 A1�V 0�:
Let A and B be the projective completions of the normal cones respectively to V in C
and to W in B. They have pure dimension 2. There exists a canonical closed immer-
sion A � B which induces an isomorphism over the generic ¢bers. Let
p : B!W be the canonical projection. Let x be the invertible sheaf over B de¢ned
by the exact sequence

0! x! p��E �OW � ! OB�1� ! 0:

Again by [7] proposition 6.1,

i!��B� ÿ �C�� � ps�fc2�x� \ ��B� ÿ �A��g 2 A0�Ws�:
There exists a canonical closed immersion B0 � B �W W 0. Therefore, we get a map
p : B0 ! B which extends the map h : W 0 !W . It is easily seen that p�x � x0.
Therefore, equation (42) is reduced to the following equation:

ps�fc1�K2� \ ��B0� ÿ �A0�� ÿ cloc1 �K2jC0 ! K1� \ �A0�g � ÿ��B� ÿ �A�� 2 A2�Bs�:
The scheme B has pure dimension 2. Therefore, A2�B� � Z2�B� and A2�Bs� � Z2�Bs�.
AsZ2�Bs� injects inZ2�B�,A2�Bs� injects inA2�B�. Hence, the equality of two cycles in
A2�Bs� is equivalent to their equality in A2�B�. Therefore, it is enough to prove the
relation above in A2�B�. Hence, we are reduced to prove the following:

(i) p��c1�K2� \ �B0�� � ÿ�B� 2 A2�B�,
(ii) p��c1�K1� \ �A0�� � ÿ�A� 2 A2�A�.
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We will prove �i�, �ii� is similar. Consider the Cartesian diagram:

where Z1 is the blow-up of Z along B and B1 andW1 are the inverse images of B and
W in Z1. Let B1 be the projective completion of the normal cone toW1 in B1. We can
factor p into B0 ÿ!r B1 ÿ!p1 B. Let E be the excess bundle relative to the diagram

Clearly K2 is the pull back of E. On the other hand, r���B0�� � �B1� because B0 and B1
are birational. So, by the projection formula, �i� is reduced to the following:

p1��c1�E� \ �B1�� � ÿ�B� 2 A2�B�: �44�

The map B1 ! B is £at. Then the diagram

is ¢ber square. But W1 � ProjW �Sym�U��. Hence, B1 � ProjB�Sym�U��. With this
identi¢cation, the restriction to W1 of the ideal sheaf of B1 in Z1 is the sheaf
O�1�. Then, EjW1

is isomorphic to the kernel of the canonical surjection
h�1�U� ! O�1�. Relation (44) follows. &

We give now the proof of Equation (35). As V 00 and W 00 are Cartier divisors over
G00, we have

t!��G00�� � �W 00� ÿ �V 00� 2 A1�W 00
s �;

c0!��G00�� � �V 00� 2 A1�V 00�:
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Therefore, Lemma 6.17 becomes

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��a�g
� hs�fc1�K2� \ ��W 00� ÿ �V 00�� ÿ cloc1 �K2jC0 ! K1� \ �V 00�g 2 A0�Ws�:

Observe that K1jV 00 � K1 under the identi¢cation V 00 ' Q, and K2jW 00 is isomorphic
to the pull-back of the line bundle K2 over W . Hence,

hs�f�c1�K2�t! ÿ cloc1 �K2jC0 ! K1�c0!��a�g
� c1�K2� \ ��W � ÿ s1�V ;G�� ÿ qs�fcQ1;Qs

�q�K2! K1� \ �Q�g 2 A0�Ws�:
Taking the push-forward of Equation (39) by hs, we get (35) as a consequence of
Lemma 6.18 and the above relation. &

7. The Weak Projection Formula for Birational Morphisms

In this Section we focus on the weak projection formula for birational morphisms.
The ¢rst part is devoted to the proof of a key formula giving the behavior of
the Lefschetz numbers under blowing-up. The second part deals with the vertical
contribution to the projection formula. In the last part, we prove the weak projection
formula for birational morphisms and for morphisms obtained from an arithmetic
surface by extending the base ring and resolving singularities, called simply base
changes. The latter are central in the proof of the Lefschetz ¢xed point formula,
precisely in reducing to semi^stable arithmetic surfaces. In this section, we make
heavy use of Theorem 6.3 and the following key formula.

7.1. THE KEY FORMULA

THEOREM 7.1. Let p : X 0 ! X be a birational morphism between two arithmetic
surfaces and s be a non-trivial automorphism of X which can be lifted to an
automorphism of X 0 denoted s0. Let G � X �S X and G0 � X 0 �S X 0 be the graphs
of s and s0. Then,

�DX 0 :G0�loc � �DX :G�loc � tr�s0�jH�et�X 0s;Ql� ÿ tr�s�jH�et�Xs;Ql�:

Proof. Any birational morphism between arithmetic surfaces is obtained by a
sequence of blow-ups at closed points [11]. Moreover, if s can be lifted from X
to X 0, then p is obtained by a sequence of birational maps of two types, namely
a blow-up at a ¢xed point and blow-ups along the (reduced) orbit of a non-¢xed
point. It is enough to prove the above formula for each type.

The second type: Let x be a closed non-¢xed point of X and O�x� be its orbit. Let
p : X 0 ! X be the blow-up of X along O�x�. Put U � X ÿO�x�, then p induces
an isomorphism between U and its inverse image U 0 � pÿ1�U�. The schemes of ¢xed
points fix�s� and fix�s0� are, respectively, closed subschemes of U and U 0. Using
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Proposition 5.8, we see that all the terms appearing there are the same for the
intersections �DX :G�loc and �DX 0 :G0�loc. Therefore, �DX :G�loc � �DX 0 :G0�loc.

LEMMA 7.2. Let p : X 0 ! X be the blow-up of an arithmetic surface X along a ¢nite
set F of closed reduced points. Then,

Hi
et�X 0s;Ql� ' Hi

et�Xs;Ql� for i 6� 2;

0! H2
et�Xs;Ql� ! H2

et�X 0s;Ql� !
M
x2F

Ql ! 0:

Proof. By the proper base change theorem, H�et�Xs;Ql� � H�et�X ;Ql�. Hence, we
are reduced to compare the ëtale cohomology groups of X and X 0. We use the Leray
spectral sequence for p:

Hp�X ;Rqp�Ql� ) Hp�q�X 0;Ql�:
For any x 2 F , let ix : Spec�k� ! X be the canonical closed immersion. As the excep-
tional ¢bers of p are isomorphic to P1

k, one gets by the proper base change theorem
that Rqp�Ql � Ql; 0;�x2F ix�Ql; 0; respectively, for i � 0; 1; 2; X 3. Hence, the
E1 terms are

Ep;q
1 �

Hp�X ;Ql� for q � 0;L
x2F Ql for �p; q� � �0; 2�
0 otherwise:

;

8<:
The Lemma follows. &

If in the above Lemma we take F � O�x�, we get tr�s0�jH�et�X 0s;Ql� �
tr�s�jH�et�Xs;Ql�. The theorem is now proved for morphisms of the second type.

The ¢rst type: We consider a blow-up p : X 0 ! X of X at a closed ¢xed point x. As
in Section 5.3, letY (resp.Y 0 ) be the Cartier divisor ofX (resp.X 0) de¢ned locally by
the greatest common divisor of all functions in the ideal sheaf of fix�s� (resp. fix�s0�),
and R (resp. R0) be its residual scheme in fix�s� (resp. fix�s0�). Denote E � �pÿ1�x��red
the exceptional ¢ber of p, which is isomorphic to P1

k with self-intersection ÿ1.

LEMMA 7.3. Under the above conditions, we have Y 0 � p�Y � aE where a is an
integer such that

a�a� 1� � degR0 ÿ degR � 1;

and degR and degR0 are the sums of the multiplicities of all closed points in R and R0

respectively.

Remark 7.4. The scheme of ¢xed points of an automorphism s over a scheme X
was de¢ned globally by the ¢ber square (17). We can also de¢ne it locally as follows.
Let I be its ideal sheaf in X . If X � Spec�A� then I is generated by s�a� ÿ a where a
runs over A. In general, let U � Spec�A� and V � Spec�B� be two af¢ne open
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subschemes of X such that U � V \ s�V �. Denote f;c : B! A the maps induced
respectively by the scheme morphisms U ! V and U ! s�V � !� V . Then, I is gen-
erated over U by c�b� ÿ f�b� where b runs over B.

Proof of Lemma 7.3. Let A be the local ring of X at x,m be its maximal ideal, and t
and u be two local parameters of A. The automorphism s over A is given by

s�t� � at� bu; s�u� � ct� du;

where a; b; c; d 2 A. Let h � s�t� ÿ t and g � s�u� ÿ u be the generators of the ideal of
¢xed points at x. Let F be the greatest common divisor of h and g. It is a local
equation de¢ning the Cartier divisor Y at x. The residual scheme R is de¢ned at
x by the ideal �h=F ; g=F �. Its degree is the local intersection at x of the Cartier
divisors de¢ned by h=F and g=F . Let n be the order of h=F and m be the order
of g=F at x. We assume that 0W nWm.

All the computations we will do are local. So, we can replace X by Spec�A�. The
blow-up of X at x is X 0 � Proj A�T ;U �=�tU ÿ uT �� �, and the automorphism s0 lifting
s to X 0 is given by

s0�T � � aT � bU; s0�U� � cT � dU :

The scheme of s0-¢xed points over X 0 is covered by the open af¢ne subschemes
O1 � D��U� \D��s0�U�� and O2 � D��T � \D��s0�T ��. As we will remark in the
following, the computation depends on the order of �uhÿ tg�=F at x. This order
is always greater or equal than n� 1.

Assume ¢rst that ordxf�uhÿ tg�=F g � n� 1. The scheme O1 is isomorphic to the
spectrum of the algebra:

fA�T �=�tÿ uT �g 1
cT � d

� �
:

The exceptional divisor E is de¢ned there by the equation u � 0. We have
s�u�=u � cT � d, and is therefore invertible over O1. Using remark 7.4, we get that
fix�s0� is de¢ned over O1 by the equations g � s�u� ÿ u and

H � aT � b
cT � d

ÿ T � s�t�
s�u� ÿ

t
u
� uhÿ tg

us�u� :

We leave to the reader the exercise of writing f and c in this case. The greatest
common divisor of g and H is Funÿ1. Hence, a � nÿ 1 and the residual scheme
R0 is de¢ned over O1 by the ideal �g=Funÿ1; �uhÿ tg�=Funs�u��.

In the same way, O2 is isomorphic to the spectrum of the algebra:

fA�U �=�uÿUt�g 1
a� bU

� �
:

The exceptional divisor E is de¢ned there by the equation t � 0. We have
s�t�=t � a� bU , and is therefore invertible over O2. The scheme of ¢xed points
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is de¢ned over O2 by h � s�t� ÿ t and

G � c� dU
a� bU

ÿU � s�u�
s�t� ÿ

u
t
� tgÿ uh

ts�t� :

The greatest common divisor of h andG is Ftnÿ1 andR0 is de¢ned overO2 by the ideal
�h=Ftnÿ1; �tgÿ uh�=Ftns�t��. I claim that:

degR0 � p�
h
F

� �
ÿ nE:p�

g
F

� �
ÿ nE

� �
� p�

uhÿ tg
F

� �
ÿ �n� 1�E:E

� �
:

The ¢rst intersection number �p��h=F � ÿ nE:p��g=F � ÿ nE� is de¢ned as the sum,
over all closed points of E, of the local intersection of the effective Cartier divisors
p��h=F � ÿ nE and p��g=F � ÿ nE. These meet properly. The second intersection
number can be de¢ned in the same way. We can also use [6] exposë X to de¢ne
it because one of the factors is E. To prove the claim, choose a closed ¢xed point
y of E. Assume that y 2 O1. Then, using Lemma B.1,

degy R
0 � g

Funÿ1
:
uhÿ tg
Fun�1

� �
y
� ug

Fun
:
uhÿ tg
Fun�1

� �
y

� g
Fun

:
uhÿ tg
Fun�1

� �
y
� u:

uhÿ tg
Fun�1

� �
y
� g

Fun
:
h

Fun

� �
y
� u:

uhÿ tg
Fun�1

� �
y
:

This proves the claim. By the classical projection formula, the claim implies

degR0 � h
F
:
g
F

� �
x
ÿn2 � �n� 1� � degRÿ n�nÿ 1� � 1;

which is the needed relation.
Assume now that ordx�uhÿ tg�=F > n� 1. In this case, n � mX 1 and there exists

a 2 mnÿ1 such that h=F ÿ ta 2 mn�1 and g=F ÿ ua 2 mn�1. First, over O1 the greatest
common divisor of g and H is Fun. Hence, a � n and R0 is de¢ned there by the ideal
�g=Fun; �uhÿ tg�=Fun�1s�u��. Second, over O2 the greatest common divisor of h
and G is Ftn. So, the residual scheme R0 is de¢ned there by the ideal
�h=Ftn; �tgÿ uh�=Ftn�1s�t��. I claim that:

degR0 � p�
g
F

� �
ÿ nE:p�

h
F

� �
ÿ nE

� �
ÿ �E:p�aÿ �nÿ 1�E�:

Choose a closed ¢xed point y of E. Assume that y 2 O1. Then, using Lemma B.1,

degy R
0 � g

Fun
:
uhÿ tg

Fun�1s�u�
� �

y
� g

Fun
:
uhÿ tg
Fun�1

� �
y
ÿ u:

g
Fun

� �
y

� g
Fun

:
h

Fun

� �
y
ÿ u:

g
Fun

� �
y
� g

Fun
:
h

Fun

� �
y
ÿ u:

a
unÿ1

� �
y
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Indeed,

g
Fun
ÿ a
unÿ1
2 1
un

mn�1

and is therefore a multiple of u over O1. This proves the claim. The lemma follows
from the claim using the projection formula. &

LEMMA 7.5. With the same notation as above, we have

�DX 0 :G0�loc ÿ �DX :G�loc � a�a� 1� � degR0 ÿ degR:

Proof.Leto ando0 be the dualizing sheaves ofX andX 0. These sheaves are related
by o0 � p�o
OX 0 �E�. The Cartier divisors Y over X and Y 0 over X 0 are
decomposed into vertical and horizontal parts Y � H � V and Y 0 � H 0 � V 0. Then,
p�H 0 � H and p�V 0 � V , and by Lemma 7.3,Y 0 � p�Y � aE. Using Proposition 5.8,
we see that �DX 0 :G0�loc ÿ �DX :G�loc is a sum of three differences:

�i� The horizontal term:

cH
0

1;H 0s
�o0jH 0 ÿÿ! O�ÿY 0�jH 0 � \ �H 0� ÿ cH1;Hs

�ojH ÿÿ! O�ÿY �jH � \ �H�
� ÿ�a� 1��E:H 0�:

�ii� The vertical term:

ÿ �o0 � Y 0:V 0� � �o� Y :V �
� ÿ�a� 1��E:V 0� � ÿ�a� 1��p�Y � aE ÿH 0:E�
� a�a� 1� � �a� 1��E:H 0�:

�iii) The 0-dimensional term: degR0 ÿ degR.

Lemma 7.5 is now proved. &

Finally by Lemma 7.2, tr�s0�jH�et�X 0s;Ql� ÿ tr�s�jH�et�Xs;Ql� � 1. Then, Theorem
7.1 is a consequence of Lemmas 7.3 et 7.5. &

Remark 7.6 (Lefschetz numbers over normal surfaces). Let X be a normal surface
over S (i.e. a normal integral scheme of dimension 2 proper and £at over S) and let s
be a non-trivial S-automorphism of X . Fix a resolution X 0 of X to which s lifts. The
existence of such an X 0 is a consequence of the theory of minimal resolutions in
dimension 2 [11]. The lifting of s, when it exists, is unique (denoted s0). De¢ne
the Lefschetz number of s over X by the formula:

L�X ; s� � �DX 0 :Gs0 �loc ÿ tr�s0�jH�et�X 0s;Ql� � tr�s�jH�et�Xs;Ql�:

By Theorem 7.1, this de¢nition does not depend on the desingularisation we choose.
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7.2. SOME COMBINATORICS ON GRAPHS

We consider a birational S-morphism f : X ! Y from a normal surface X to a reg-
ular surface Y . Let V be the cycle of X �Y X given by its irreducible components
different from the diagonal. The latter are isomorphic to products of two irreducible
components of Xs which collapse to the same point in Y . We write
�X �Y X � � �DX � �V and decompose

V �
X
�i;j�

ei;j�Ei �k Ej �;

where the Ei are the irreducible components ofXs which collapse to a point inY , and
the sum above is taken over all couples �i; j� such that Ei and Ej collapse to the same
point of Y . Assume, moreover, that we are given an S-automorphism s of Y which
can be lifted to an automorphism of X (also denoted by s).

THEOREM 7.7. Let f : X ! Y be as above, thenX
�i;j�

ei;j�s�Ei�:Ej� � tr�s�jH�et�Ys;Ql� ÿ tr�s�jH�et�Xs;Ql�: �45�

The numbers on the left-hand side are the intersection numbers over the normal sur-
face X de¢ned by Mumford [14] and summarized in Appendix A.

This theorem was proved by Bloch [3] for s � id. We begin by giving his proof in
more details. Then, we deduce the result for any automorphism.

Reduction step: Let f : X ! Y be a dominant map between arithmetic surfaces
over S (i.e. X and Y are assumed to be regular!). Then, f is local complete
intersection. This means that f factors into

where g is smooth and i is a regular closed immersion. Put f � � i!g� 2 A0�X ! Y �.
Fulton proved that f � does not depend on the factorization of f ([7] proposition
6.6). Consider the following diagram

As g� g is smooth and i � i is a regular closed immersion (it is the composition of
X �S X ! X �S P and X �S P! P �S P which are both regular closed
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immersions), then f � f is l.c.i. and de¢nes a bivariant class
� f � f �� 2 A0�X �S X ! Y �S Y �. Consider the following Cartesian diagram

I claim that

� f � f ���DY � � �X �Y X � 2 A2�X �Y X �: �46�

Proof of the Claim. We consider the previous factorization of f � f . Then,

� f � f ���DY � � �i � i�!�g� g����DY ��
� �i � i�!��P �Y P�� �because g� g is flat�:

Consider the ¢ber square

Let d be the dimension of P. As P �Y P is regular and X �Y X is an l.c.i. scheme,
then the closed immersion X �Y X ! P �Y P is regular (EGA IV 19.3.2) of
codimension 2d ÿ 4, which is the same codimension as i � i. Therefore,

�i � i�!��P �Y P�� � �X �Y X � 2 A2�X �Y X �:

The claim is proved. &

Consider now two effective vertical divisors E and F over Y . I claim that

�i) f ÿ1E is a Cartier divisor over X of associated sheaf f �OY �E�, and
f ���E�� � �f ÿ1E� 2 A1�f ÿ1E�.

�ii) �f � f ���E �S F � � �f ÿ1E �S f ÿ1F � 2 A2�f ÿ1E �S f ÿ1F �.
Proof. (i) The closed subscheme f ÿ1E is locally de¢ned by one equation in X (the

pull-back of a local equation de¢ning E in Y ). It is not a zero divisor because
the map is dominant. We have, f ���E�� � i!��gÿ1E�� because g is £at. Consider
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the diagram

As g is £at, j is a regular closed immersion of codimension 1. The commutativity of
intersection products ([7] theorem 6.4) implies that i!��gÿ1E�� � j!�X �. But
j!�X � � �f ÿ1E� because f ÿ1E is a Cartier divisor over X .

(ii� The bivariant class f � maps A1�Ys� to A1�Xs�, and �f � f �� maps A2�Ys �k Ys�
to A2�Xs �k Xs�. Moreover, the following diagram commutes:

Notice that �E� and �F � are in the image of A1�Ys� ! A1�Y � , and �E � F � is in the
image of A2�Ys �k Ys� ! A2�Y �S Y �. It is enough to prove relation �ii�
in A2�Xs �k Xs�. Indeed, by dimension argument, A2�f ÿ1E �S f ÿ1F � �
A2��f ÿ1E�red �k �f ÿ1F �red� injects in A2�Xs �k Xs�. In A2�Xs �k Xs�, the relation is
a consequence of �i� and the commutativity of the previous diagram. &

Assume that we are given two birational maps f : X2 ! X1 and g : X1! X0

between arithmetic surfaces over S. De¢ne the cycles V�X2=X1� over X2 �X1 X2,
V�X2=X0� over X2 �X0 X2 and V�X1=X0� over X1 �X0 X1 as before : they are made
of the irreducible components of these schemes different from the diagonals.
Write

V�X1=X0� �
X
�i;j�

ei;j �Ei � Ej�;

where the Ei are the irreducible components of X1 which collapse to a point in X0,
and the sum is taken over all couples �i; j� such that Ei and Ej collapse to the same
point in X0. I claim that

V�X2=X0� � V�X2=X1� �
X
�i;j�

ei;j�f ÿ1Ei � f ÿ1Ej� 2 A2�X2 �X0 X2�: �47�

Moreover, this relation holds between cycles because X2 �X0 X2 has dimension 2.
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Proof of the claim. Put h � g � f and consider the Cartesian diagram

By Equation (46),

�X2 �X0 X2� � �h� h���DX0 � � �f � f ���g� g���DX0 � ��7� theorem 6:5�
� �f � f ���X1 �X0 X1�
� �f � f ����DX1 � �

X
�i;j�

ei;j�Ei � Ej ��

� �X2 �X1 X2� �
X
�i;j�

ei;j�f ÿ1Ei � f ÿ1Ej� 2 A2�X2 �X0 X2�:

The claim follows by subtracting �DX2 � from this relation. &

Remark 7.8. Equation (47) implies very easily Theorem 7.7 for a regular X .
Indeed, it implies that, like the right-hand side, the left-hand side of Equation (45)
is additive for the composition of birational maps between arithmetic surfaces.
So, it is enough to prove (45) for the two types of birational maps introduced in
the proof of Theorem 7.1. For these maps, (45) is obvious.

We come to the general situation of Theorem 7.7 where X is just a normal surface.
Fix a resolution Z of X to which s extends. The composed map g : Z! Y is
birational and therefore is obtained by a sequence of blow-ups at closed points [11].
The map Z! X is obtained by contracting some of the exceptional curves in
Z. Denote F the dual graph of the exceptional ¢bers of g. It is the graph labeled
by one vertex for each irreducible component in an exceptional ¢ber of Z=Y
and one edge between intersecting curves. Each vertex is labeled with the
self-intersection number of the corresponding curve and each edge with the
intersection number of its vertices. We denote I the set of vertices which are con-
tracted in Z! X and s the automorphism induced by s on this graph. Notice that
s�I� � I .

LEMMA 7.9. The only datum which determines the left and right-hand sides of
equation (45) is �F; I; s�. The way that they depend on �F; I; s� is the same in
the pure and in the mixed characteristic situation.

Proof. The right-hand side of (45) is minus the number of s -¢xed vertices inFÿ I .
To prove this statement, write

tr�s�jH�et�Ys;Ql� ÿ tr�s�jH�et�Xs;Ql�
� tr�s�jH�et�Ys;Ql� ÿ tr�s�jH�et�Zs;Ql� � tr�s�jH�et�Zs;Ql� ÿ tr�s�jH�et�Xs;Ql�:
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As Z! Y is a sequence of blow-ups, Lemma 7.2 implies that the ¢rst difference is
minus the number of s-¢xed vertices in F. The second difference is the number
of s-¢xed vertices in I . Indeed, one can factor Z! X into a sequence of birational
maps each of them is a contraction of a disjoint union of curves isomorphic to
P1 and making an orbit under s of one of them. Then, the proof of Lemma 7.2
applies in this case. The details are given in Lemma 7.11.

We prove now the lemma for the left hand side of (45). Denote E 0i the strict trans-
form in Z of the irreducible component Ei. First, the E 0i are exactly the vertices
of F which are not in I . Second, the intersection number �s�Ei�:Ej� over X is com-
pletely determined by �F; I; s� as explained in Appendix A. Finally, consider
two such components Ei and Ej over X and E 0i and E 0j their strict transform in
Z. We will prove that the ei;j depends only on F. Let e0i;j be the multiplicity of
E 0i � E 0j in Z �Y Z. The map Z! X is an isomorphism in a neighborhood of
the generic points of Ei and Ej , then ei;j � e0i;j. Therefore, it is enough to consider
the case of I � ;. In this case, the proof is by induction on the number n of blow-ups
giving the map Z! Y .

If n � 1, then there is only one exceptional ¢ber E of self-intersection ÿ1 and the
multiplicity of E � E in Z �Y Z is 1. Assume the result for any sequence of
�nÿ 1� blow-ups and factor the map Z! Y into r : Z! Z0 and p : Z0 ! Y , where
the number of blow-ups in r is �nÿ 1�, and p is a blow-up at a closed point with
exceptional ¢ber E. Let F0 be the graph associated with Z! Z0. It is the subgraph
of F obtained by removing the vertex corresponding to the strict transform of E
in Z. By the reduction step (equation (47)), the following relation holds between
cycles over Z �Y Z:

V�Z=Y � � V�Z=Z0� � �r�E � r�E�:

By the induction hypothesis, the cycleV�Z=Z0� is completely determined by F0 � F.
The pull-back r�E is also the pull-back as a Cartier divisor of E and therefore,
is determined by the graph F. &

DEFINITION 7.10. An admissible triple is a triple �F; I; s� made of

. an admissible graph F: the dual graph of a birational map between regular
surfaces labeled as explained before (where a regular surface means an
irreducible regular scheme of dimension 2 proper and £at over a base which
can be either a ¢eld or the spectrum of a discrete valuation ring),

. a set of vertices I on F,

. an automorphism s of the labeled graph F (i.e. an automorphism which
preserves the intersection numbers), such that s�I� � I .

The arithmetic situation we begin with provides us with an admissible triple.
Moreover, any admissible triple of the form �F; I; id� can be realized in this way.
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LEMMA 7.11. (i) Let F be an admissible graph and Y be a regular surface (in the
sense of the previous de¢nition). Then, there exist a regular surface Z and a birational
map Z! Y with dual graph F.

(ii) Assume that Y is either de¢ned over an algebraic closure of a ¢nite ¢eld, or over
a complete discrete valuation ring. Let I be a set of vertices of F. Then, one can con-
tract in Z the curves corresponding to I, to get a normal surface X and a birational
morphism X ! Y. Moreover, w�X � ÿ w�Y � � #�Fÿ I �.

Proof. (i) Obvious.
(ii) For each i 2 I , let Fi be the associated exceptional curve of Z=Y . The

intersection form over the divisors supported over the exceptional curves of
Z=Y is de¢nite negative. Therefore, its restriction to the divisors supported over
the Fi is also de¢nite negative. This is a necessary and suf¢cient condition for
contractability under the hypothesis of the Lemma ([1] theorem 2.9 for the geo-
metric case, and [13] corollary 4.4 for the arithmetic case). This means that there
exists a normal surface X and a birational projective morphism j : Z! X such
that

(1) j�[i2IFi� is a ¢nite set of points, and
(2) j : Z ÿ �[i2IFi�ÿ!X ÿ j�[i2IFi� is an isomorphism.

A contraction when it exists is unique up to isomorphism ([11] section 27). It is
universal in the following sense: Let A be a normal surface with a birational projective
morphism c : Z! A such that c�[i2IFi� is a ¢nite set of points. Then, there exists a
map f : X ! A such that c � f � j. For this, consider the following diagram

whereX 0 is the normalization of the image ofZ (we use here thatZ is regular in order
the get the factorization of �c;j� ). Obviously, X 0 satis¢es properties �1� and �2�.
Then, X 0 is isomorphic to X . The map f : X ! A is obtained by composing with
the ¢rst projection.

Choose a bijection I ' f1; . . . ng. For each 0W jW n, let Xj be the normal surface
obtained by contracting in Z the curves �Fi j 1W iW j�, and jj : Z! Xj be the con-
traction (hence, Xn � X ). By the universal property of Xj , there exists a proper
morphism fj : Xj ! Xj�1 such that jj�1 � fj � jj. The map fj is an isomorphism
outside a single point of Xj�1. Its ¢ber over this point is Cj � jj�Fj�1�. I claim that
jj induces an isomorphism Fj�1 ' P1! Cj. Let x be a point of Cj . Its inverse image
jÿ1j �x� � Z is either a point or a connected curve Cx supported over the
�Fi j 1W iW j�. Assume that it is a connected curve. It is enough to see that
Fj�1 \ Cx is a unique point. If it is more than one point, one can construct a
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non-trivial loop with curves among the �Fi j 1W iW j � 1�. This is not possible
because F is an admissible graph.

It follows from the Leray spectral sequence of fj that (see Lemma 7.2),

Hi
et�Xj;Ql� ' Hi

et�Xj�1;Ql� for i 6� 2;

0! H2
et�Xj�1;Ql� ! H2

et�Xj;Ql� ! Ql ! 0;

for a prime number l 6� p. The last statement in the Lemma is proved. &

Fix an admissible triple �F; I; s�, and let E and F be two vertices of Fÿ I . De¢ne
the rational numbers �ai�i2I and �bi�i2I by the equations

E �
X
i2I

aiEi:Ej

 !
� 0 8j 2 I; F �

X
i2I

biEi:Ej

 !
� 0 8j 2 I :

These numbers are well de¢ned because det�Ei:Ej��i;j�2I2 6� 0. Put

�E:F �I � E �
X
i2I

aiEi:F �
X
i2I

biEi

 !
:

Let Z! Y be a realization of F, and X be the surface obtained by contracting the
curves in I as in Lemma 7.11. Let E 0 and F 0 be the images of E and F in X . Then,
�E:F �I is the intersection number of E 0 and F 0 over X de¢ned by Mumford.

We associate to F , as in the proof of Lemma 7.9, non-negative integers �ei;j��i;j�2F2

such that ei;j � 0 if and only if i and j are not in the same connected component of F.
Namely, we de¢ne them by induction on the number of vertices of F, using equation
(47). Finally, we put

l�F; I; s� �
X

�i;j�2�FÿI �2
ei;j�s�Ei�:Ej�I ; �48�

r�F; I; s� � ÿ#fx 2 Fÿ I ; s�x� � xg: �49�
By Lemma 7.9, Theorem 7.7 is reduced to the combinatorial equation:

l�F; I; s� � r�F; I ; s�; �50�
for any admissible triple. The latter will be proved in two steps. Following Bloch [3],
the case s � id is proved by taking a geometric realization of the triple �F; I; id� as in
Lemma 7.11, and applying the Poincarë duality (Lemma 7.13). For a non-trivial
automorphism, it is not clear if one can realize geometrically any admissible triple
�F; I ; s�. Lacking such an elegant proof, we will give a combinatorial one : thanks
to some elementary operations on admissible graphs, equation (50) for any s is
reduced to the same equation for s � id.
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EXAMPLE 7.12. Consider the graph

;

and take I � fÿ2g and s � id. The geometric (or if you want the arithmetic)
realization of this graph is

whereY is a regular surface,X1 is the blow-up ofY at a closed point with exceptional
¢ber E1, and X2 is the blow-up of X1 at a closed point of E1. Denote E2 the excep-
tional ¢ber of X2=X1 and E 01 the strict transform of E1 in X2. Then,
�E2:E2� � ÿ1 , �E 01:E 01� � ÿ2 and �E2:E 01� � 1. Finally, Y 0 is obtained by contracting
E 01 in X2. Therefore, it is not regular. Let E 02 be the image of E2 in Y 0. Then,
�E 02:E 02� � ÿ1=2. By Equation (47), we have:

�X2 �Y X2� � �DX2 � � �E 01 � E 01� � �E 01 � E2� � �E2 � E 01� � 2�E2 � E2�:

So, �Y 0 �Y Y 0� � �DY 0 � � 2�E 02 � E 02�. Thus, l�F; I; id� � ÿ1 � r�F; I; id�. This
example shows also that Equation (45) does not hold if the target surface is not
regular!

LEMMA 7.13. Let F be an admissible graph and I be a set of vertices of F. Then,
l�F; I; id� � r�F; I; id�:

Proof. Let k be an algebraic closure of the ¢nite ¢eld Fp. Take Y � P2
k and con-

struct a regular surface Z and a birational map Z! Y with dual graph F. By
Lemma 7.11, one can contract the curves in Z corresponding the vertices of I to
get a normal surface X . Put g : Z! X and f : X ! Y . The idea now is to invert
the previous computation over X �k X . Namely, we ¢rst prove the projection for-
mula and then deduce the above equation. The computation cannot be done in
the Chow group A��X �k X � because we lack an intersection product. Instead,
we work with the ring of ëtale cohomology H��X �k X ;Ql� for a prime l 6� p.
For any proper variety V over k of dimension d, we have a canonical isomorphism
H2d�V ;Ql� ' Ql given by the trace isomorphism H2d

c �V0;Ql� ' Ql , where V0 is
the smooth locus in V . It induces a cup product which will be denoted [.
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Claim: X satis¢es Poincarë duality, i.e.,

Hi�X ;Ql� �H4ÿi�X ;Ql� ÿ![ Ql

is a perfect pairing.
Proof. We factor g : Z! X as in the proof of Lemma 7.11-(ii) into

Z � X0! X1 ! . . .! Xn � X . Each map fj : Xj ! Xj�1 is a contraction of a curve
Cj ' P1

k. We have seen that

Hi�Xj;Ql� ' Hi�Xj�1;Ql� for i 6� 2;

0! H2�Xj�1;Ql� ! H2�Xj;Ql� ! Ql ! 0:

We will prove that if Poincarë duality holds for Xj, then it holds for Xj�1. As f�j
preserves cup products, the statement is clear for i 6� 2.

The closed immersion Cj ! Xj induces the morphism

H2�Xj;Ql� ! H2�Cj;Ql� ' Ql :

By Poincarë duality over Xj, this map de¢nes a class denoted �Cj� 2 H2�Xj;Ql�.
Obviously, for any a 2 H2�Xj�1;Ql�, f�j a [ �Cj� � 0. Therefore, the map

H2�Xj�1;Ql� �Ql ! H2�Xj;Ql�
�a; x�7!f�j a� x�Cj�

is an isomorphism and gives an orthogonal decomposition of H2�Xj;Ql�. Then, we
get the Poincarë duality for Xj�1. By induction, Poincarë duality holds for X because
it holds for the regular surface Z. &

Let �Eh�h be the irreducible curves ofX collapsing to a point inY . For any h , de¢ne
the class �Eh� 2 H2�X ;Ql� by the map

H2�X ;Ql� ! H2�Eh;Ql� ' Ql

under Poincarë duality. By the KÏnneth formula, we have:

H4�X � X ;Ql� '
M

0W iW 4

Hi�X ;Ql� 
H4ÿi�X ;Ql�:

Now, we de¢ne the needed classes. First, for any �h; l�, put �Eh � El � �
�Eh� 
 �El � 2 H4�X � X ;Ql�. Second, for any 0W iW 4, ¢x a basis �ai;j�j of
Hi�X ;Ql�. Let a�i;j be the dual basis of H4ÿi�X ;Ql�, and put

�DX � �
X
i;j

ai;j 
 a�i;j 2 H4�X � X ;Ql�:

Third, de¢ne �X �Y X � to be the inverse image of �DY � 2 H4�Y � Y ;Ql�. Let eh;l be
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the integers associated to F as before. Then

�X �Y X � � �DX � �
X
�h;l�

eh;l �Eh � El � 2 H4�X � X ;Ql�: �51�

Proof. Let h � f � g : Z! Y and denote Fi the exceptional curves in Z. De¢ne in
the same way the classes �DZ�; �Z �Y Z� and �Fi � Fj� 2 H4�Z � Z;Ql�. As Z is
regular, we have a class map A2�Z � Z� ! H4�Z � Z;Ql�. Notice that the classes
previously de¢ned are the images by the cycle map of the usual cycles over
Z � Z. Therefore, the following relation

�Z �Y Z� � �DZ� �
X
�i;j�

ei;j�Fi � Fj � 2 H4�Z � Z;Ql� �52�

holds (as the image of the same relation in A2�Z � Z� by the cycle map).
De¢ne

�g� g�� �
M

0W iW 4

g� 
 g� : H4�Z � Z;Ql� ! H4�X � X ;Ql�;

where g� : Hi�Z;Ql� ! Hi�X ;Ql� is the adjoint of g� under Poincarë duality. I claim
that:

(i) �g� g���Z �Y Z� � �X �Y X �;
(ii) �g� g���DZ� � �DX �;
(iii) �g� g���Fi � Fj� � �g�Fi� � g�Fj�� if g�Fi� and g�Fj� are curves, and 0 otherwise.

The equalities (i) and (ii) are purely formal. We have injections
H2�Y ;Ql� ! H2�X ;Ql� ! H2�Z;Ql�. One takes bases of these spaces by taking
a basis of the subspace and a basis of its orthogonal relatively to Poincarë duality,
and notices that the push-forward maps the orthogonal part to zero. Equality (iii)
is a consequence of the functoriality of pull-back and Poincarë duality. Finally,
relation (51) is the image by �g� g�� of Equation (52). &

The following cup products are computed over X � X :

(1) �DX � [ �DX � � w�X �,
(2) �DX � [ �X �Y X � � w�Y �,
(3) �DX � [ �Eh � El � is Mumford's intersection number �Eh:El� over the normal sur-

face X.

As before, (1) and (2) are purely formal. But (3) needs some details : from the de¢-
nition of the diagonal, �DX � [ �Eh � El � � �Eh� [ �El � where the cup product is
now over X . We have �Eh� [ �El � � g��Eh� [ g��El �. Let E 0h be the strict transform
of Eh in Z. We have seen that for any exceptional curve F of Z=X ,
g��Eh� [ �F � � 0. Moreover, g��Eh� ÿ �E 0h� is the image by the class map of an excep-
tional divisor. Then, the pull-back g��Eh� is the class of the divisor g�Eh de¢ned
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in Appendix A. As Z is regular, �Eh� [ �El � is the intersection number �g�Eh:g�El�
which is the claim.

Now, we deduce the lemma: take the cup product of Equation (51) with �DX �. By
Lemma 7.11, w�Y � ÿ w�X � � r�F; I; id�, and by (3),

�DX � [ �
X
�h;l�

eh;l �Eh � El �� � l�F; I; id�: &

We introduce some basic operations on admissible graphs:

(i) If F is the admissible graph associated to a birational map Z! Y, then the
connected components of F correspond to the exceptional ¢bers of Z=Y.

(ii) The subgraph made of some connected components of an admissible graph is an
admissible graph. Indeed, by (i) one can contract the exceptional curves in the
other connected components to get a regular surface which realizes the new graph
over the base surface.

(iii) Let F be an admissible graph.Take any realization Z! Y of F, and let Z0 be the
regular surface obtained from Z by contracting all the special curves of
self-intersection ÿ1. Denote F�1� the dual graph of Z0=Y. The graph F�1� can
be directly computed from F without any geometric realization. Indeed, as a
set F�1� is obtained by removing the vertices of self-intersection ÿ1. The
intersection numbers are computed by the rules introduced in appendix A.
Finally, we put an edge between two different vertices if their intersection number
is non^zero. Moreover, an automorphism of F induces an automorphism of
F�1�.

(iv) The number of connected components of F�1� is less or equal than the number of
connected components of F (this is a consequence of (i)).

(v) Let F be an admissible connected graph. By (iv), F�1� is either connected or
empty. De¢ne the admissible connected graphs F�1�;F�2�;F�3�; . . . by induction
as in (iii). There exists an integer n such that F�n� � ; and F�nÿ 1� 6� ;. Then,
F�nÿ 1� contains only vertices of self-intersection ÿ1. But over an admissible
graph, two vertices of self-intersection ÿ1 cannot be connected. Therefore
F�nÿ 1� is a single vertex. De¢ne the base vertex E1 of F to be the strict trans-
form of F�nÿ 1� in F. A base vertex of a connected graph is ¢xed by any
automorphism. To give a geometric picture, ¢x any realization Z! Y of F
and let y be the unique point of Y with an exceptional ¢ber. Then, we can
factor the map Z=Y into Z! Y 0 ! Y, where Y 0 is a blow-up of Y at y.
Let E be the exceptional ¢ber in Y 0. The strict transform of E in Z is the base
vertex E1.

We come to the proof of Equation (50) for an admissible triple �F; I; s�. The action of
s on the connected components of F induces the decomposition F �Fn

i�1 Fi, where
the Fi are the orbits of the connected components of F. Denote Ii � Fi \ I . By (ii),
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the triples �Fi; Ii; s� are admissible. Moreover,

l�F; I; s� �
Xn
i�1

l�Fi; Ii; s�; �53�

r�F; I; s� �
Xn
i�1

r�Fi; Ii; s�: �54�

Indeed, (54) follows directly from De¢nition (49). Equation (53) follows from De¢-
nition (48) if we notice that for any �i; j� in the same connected component of
F; ei;j depends only on the connected component of F which contains them.
By (53) and (54), we are reduced to consider two cases:

(1) The graph F has no ¢xed connected component by s. First, r�F; I; s� � 0 because
there are no ¢xed vertices. Second, l�F; I ; s� is de¢ned as the sum over couples
�Ei;Ej� in the same connected component of F of ei;j�s�Ei�:Ej�. By hypotheses
on F, if Ei and Ej are in the same connected component, then s�Ei� and Ej

are not in the same one. Hence, their intersection number is 0. The equality
l�F; I; s� � 0 � r�F; I; s� follows.

(2) The graph F is connected. Let E1 be its base vertex and F0 � Fÿ fE1g.The graph
F0 is admissible. Indeed, if Z! Y is a realization of F and Z! Y1! Y is its
factorization as in (iv), then Z! Y1 realizes the graph F0. Finally, s ¢xes E1

and therefore induces an automorphism of F0. There are two cases, either
E1 2 I or E1 62 I.

2^(i) If E1 2 I , put I 0 � I ÿ fE1g. Remark that r�F; I; s� � r�F0; I 0; s�. By formula
(48),

l�F; I; s� �
X

�i;j�2�FÿI �2
ei;j�s�Ei�:Ej�I ;

l�F0; I 0; s� �
X

�i;j�2�F0ÿI 0 �2
e0i;j�s�Ei�:Ej�I 0 :

We consider F0 as a subgraph of F, then �Fÿ I � � �F0 ÿ I 0�. First, we compare the
integers ei;j and e0i;j. Let E be the exceptional ¢ber of Y1=Y (its strict transform
in Z is E1). De¢ne the integers �ai�i2Fÿf1g by the relations

E1 �
X

i2Fÿf1g
aiEi:Ej

 !
� 0 8j 6� 1:

Then, by Equation (47),

V�Z=Y � � V�Z=Y1� � ��E1 �
X
i 6�1

aiEi� � �E1 �
X
i 6�1

aiEi��:

It follows that for i; j 6� 1, ei;j � e0i;j � aiaj. Second, I claim that for any
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�i; j� 2 �Fÿ I �2,

�s�Ei�:Ej�I � �s�Ei�:Ej�I 0 ÿ
�s�Ei�:E1�I 0 �Ej:E1�I 0

�E1:E1�I 0
:

This is an easy computation if we remark that s�E1� � E1. Therefore,

l�F; I; s� ÿ l�F0; I 0; s� � ÿ
X

�i;j�2�FÿI �2
ei;j
�s�Ei�:E1�I 0 �Ej :E1�I 0

�E1:E1�I 0
�

�
X

�i;j�2�FÿI �2
aiaj�s�Ei�:Ej�I 0

� ÿ
X

�i;j�2�FÿI �2
ei;j
�s�Ei�:E1�I 0 �Ej :E1�I 0

�E1:E1�I 0
�

� s�
X

i2�FÿI �
aiEi�:

X
j2�FÿI �

ajEj

 !
I 0

:

Using again s�E1� � E1, we get that as�i� � ai and �s�Ei�:E1�I 0 � �Ei:E1�I 0 . Hence,

l�F; I ; s� ÿ l�F0; I 0; s� � l�F; I; id� ÿ l�F0; I 0; id�
� r�F; I; id� ÿ r�F0; I 0; id� �by Lemma 7:13�
� 0
� r�F; I; s� ÿ r�F0; I 0; s�:

2^(ii) If E1 62 I , put I � I 0. First, r�F; I; s� � r�F0; I 0; s� ÿ 1 because E1 is ¢xed by s.
Second, �Fÿ I � � �F0 ÿ I 0� t fE1g, and for any i; j 62 I t fE1g, �Ei:Ej�I � �Ei:Ej�I 0 .
Therefore,

l�F; I; s� ÿ l�F0; I 0; s�
�

X
i2�F0ÿI 0�

e1;i�s�E1�:Ei�I � ei;1�s�Ei�:E1�I � e1;1�s�E1�:E1�I�

�
X

�i;j�2�F0ÿI 0 �2
aiaj�s�Ei�:Ej�I

�
X

i2�F0ÿI 0�
e1;i�s�E1�:Ei�I � ei;1�s�Ei�:E1�I � e1;1�s�E1�:E1�I�

� s�
X

i2�F0ÿI 0 �
aiEi�:

X
j2�F0ÿI 0 �

ajEj

0@ 1A
I

:
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Again because s�E1� � E1, we get

l�F; I; s� ÿ l�F0; I 0; s� � l�F; I; id� ÿ l�F0; I 0; id�
� r�F; I; id� ÿ r�F0; I 0; id� �by Lemma 7:13�
� 1
� r�F; I; s� ÿ r�F0; I 0; s�:

In both cases, we conclude that equation (50) holds for �F; I; s� if and only if it holds
for �F0; I 0; s�. But F0 has less vertices than F. Then, by induction l�F; I; s� �
r�F; I; s�. &

7.3. THE WEAK PROJECTION FORMULAS

We prove the weak projection formulas announced in the introduction of this
section.

LEMMA 7.14. Let X be an arithmetic surface over S and s be an S -automorphism of
X. Denote G � X �S X its graph and ¢x E and F two irreducible components of Xs.
Then �G:�E � F ��loc � �s�E�:F �:

Proof. Consider the automorphism y :� �id�S s� : X �S X ! X �S X . Then,
y�DX � � G and y�E � sÿ1�F �� � E � F . We deduce that

�G:�E � F ��loc � �DX :�E � sÿ1�F ���loc:
Therefore, the lemma is equivalent to the relation �DX :�E � F ��loc � �E:F �. As E � F
is vertical, this relation is a consequence of remark 4.5. &

PROPOSITION 7.15. The weak projection formula holds for any birational
morphism of arithmetic surfaces.

Proof. Let f : X ! Y be a birational morphism between arithmetic surfaces over
S, and let s be a non-trivial S-automorphism of Y which can be lifted to an
automorphism ofX . Put G � GX

s � X �S X and GY
s � Y �S Y the graphs of s acting

respectively, on X and Y . De¢ne, as in the last section, the cycle
V �P�i;j� ei;j�Ei � Ej �. The weak projection formula to be shown is
�G:�X �Y X ��loc � �DY :GY

s �loc. By Theorem 7.7 and Lemma 7.14, it is equivalent to:

�DY :GY
s �loc � �G:DX �loc � �G:V�loc
� �DX :G�loc �

X
�i;j�

ei;j�G:�Ei � Ej��loc

� �DX :G�loc �
X
�i;j�

ei;j�s�Ei�:Ej�

� �DX :G�loc � tr�s�jH�et�Ys;Ql� ÿ tr�s�jH�et�Xs;Ql�:
This is the key formula of Theorem 7.1. &
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We need to extend this result to the following situation. Let L be a ¢nite Galois
extension of K of degree n and Galois group G, B be the integral closure of R
in L , and T � Spec�B�. Let Y be an arithmetic surface over S and s be a non^trivial
S-automorphism of Y .

DEFINITION 7.16. A T -base change of �Y ; s� is an S -morphism f : X ! Y , where
X is an arithmetic surface over T , such that:

(i) its generic ¢ber over T is isomorphic to YK �K L ,
(ii) the canonical action of G over YK �K L extends to an action on X (if such an

action exists then it is unique),
(iii) there exists a T-automorphism of X lifting s over Y.

Remark 7.17. By (i), there exists only one possibility to lift s over the generic ¢bers
to an L-automorphism. It is the L-automorphism �s� id� ofYK �K L. Therefore, the
lifting of s to a T -automorphism of X , if it exists, is unique (denoted by s). It is
clearly a good lifting of s over Y (De¢nition 6.1).

Fix a T^base change f : X ! Y and let V be the cycle of X �Y X given by its
irreducible components which are not of ¢nite degree over Y . Write

V �
X
�i;j�

ei;j�Ei � Ej�;

where the Ei are the irreducible components ofXs which collapse to a point inY , and
the sum is taken over all pairs of such components which collapse to the same point.

LEMMA 7.18. With the above notation, we haveX
�i;j�

ei;j�s�Ei�:Ej� � ntr�s�jH�et�Ys;Ql� ÿ
X
t2G

tr�st�jH�et�Xs;Ql�:

Proof. Let Y 0 be the quotient of X by G. It is a normal surface over S, birational to
Y . Moreover, s descends to Y 0. Indeed, for any t 2 G , st � ts over X . The reason is
that tÿ1st is a T -automorphism of X which lifts s over Y , by Remark 7.17, it is
equal to s. We factor f : X ! Y into the quotient map p : X ! Y 0 followed by
Y 0 ! Y .

Let V0 be the cycle of Y 0 �Y Y 0 given by all its irreducible components except the
diagonal. Write

V0 �
X
�h;l�

ah;l �Fh � Fl �;

where the Fh are the irreducible components ofY 0s which collapse to a point inY , and
the sum is taken over such components which collapse to the same point inY . I claim
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that

V �
X
�i;j�

ei;j�Ei � Ej� �
X
�h;l�

ah;l �p�Fh � p�Fl � 2 A2�X �Y X �; �55�

where p�Fh is the cycle of X de¢ned in Appendix A. Notice that the above relation
holds on the cycle level because X �Y X has dimension 2.

Proof.ChooseV andW two arithmetic surfaces which ¢t in the following diagram

such that r and k are birational, the action of G over X extends to an action overW ,
and this action satis¢es gt � g for any t 2 G. Let F 0h be the strict transform of Fh inV .
In the proof of Lemma 7.9, we have seen that

V�V=Y � �
X
�h;l�

ah;l �F 0h � F 0l � �D1 2 Z2�V �Y V �:

The cycleD1 is a sum of cycles �G1 � G2�where G1 and G2 are irreducible curves over
V such that at least one of them collapse to a point in Y 0. Using the de¢nition of
Appendix A, the above relation implies:

V�V=Y � �
X
�h;l�

ah;l �r�Fh � r�Fl � �D2 2 Z2�V �Y V �; �56�

where the cycleD2 has the same property asD1. The morphisms g and g� g are l.c.i..
They induce re¢ned Gysin maps g� and �g� g��, and we have:

�W �Y W � � �W �V W � � �g� g��V�V=Y �
� �W �V W � �

X
�h;l�

ah;l �g�r�Fh � g�r�Fl �

� �g� g��D2 2 A2�W �Y W �:

The ¢rst equation follows from the reduction step in the previous Subsection. The
second equation follows from (56) and the same reduction step. Let GW

t be the graph
of an automorphism t 2 G. By subtracting

P
t2G�GW

t � from the previous equation, we
¢nd

V�W=Y � � V�W=V � �
X
�h;l�

ah;l �g�r�Fh � g�r�Fl � � �g� g��D2 2 A2�W �Y W �;

where the cyclesV�ÿ=ÿ� are de¢ned in the obvious way. Taking the push-forward by
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�k� k�, we get

V�X=Y � � �k� k��V�W=Y �
�
X
�h;l�

ah;l �k�g�r�Fh � k�g�r�Fl ��

� �k� k���V�W=V � � �g� g��D2� 2 A2�X �Y X �:
The cyclesV�W=V � and �g� g��D2 are sums of cycles �C1 � C2�, whereC1 andC2 are
curves overW such that at least one of them (for instance C1 ) collapses to a point in
Y 0. As p is ¢nite, C1 collapses to a point in X . We deduce that

�k� k��V�W=V � � �k� k���g� g��D2 � 0 2 A2�X �Y X �:
The claim is now proved because p� � k�g�r�. &

We deduce from (55) thatX
�i;j�

ei;j�s�Ei�:Ej� �
X
�h;l�

ah;l�p�s�Fh�:p��Fl��:

Using relation (8) of Appendix A, we ¢nd thatX
�i;j�

ei;j�s�Ei�:Ej� � n
X
�h;l�

ah;l�s�Fh�:Fl�:

The canonical morphism Xs;red=G! Y 0s;red is purely inseparable. So, H�et�Y 0s;Ql� �
H�et�Xs;Ql�G. We deduce that

ntr�s�jH�et�Y 0s;Ql� �
X
t2G

tr�st�jH�et�Xs;Ql�:

By the last two relations, Lemma 7.18 is reduced to the following equation:X
�h;l�

ah;l�s�Fh�:Fl� � tr�s�jH�et�Ys;Ql� ÿ tr�s�jH�et�Y 0s;Ql�:

This is the statement of Theorem 7.7. Thus, Lemma 7.18 is proved. &

LEMMA 7.19. Let f : X ! Y be a T-base change. The weak projection formula for f
is equivalent to the following relation:

n�DY :GY
s �loc �

X
t2G
�DX :GX

st�loc ÿ
X
t2G

tr�st�jH�et�Xs;Ql� � ntr�s�jH�et�Ys;Ql�;

�57�

where GY
s � Y �S Y and GX

st � X �S X denote the graphs of, respectively, s over Y
and st over X.

Proof. The weak projection formula for f is n�DY :GY
s �loc � �GX

s :�X �Y X ��loc. Put
Gs � GX

s and Gt � GX
t . From the de¢nitions, the relation �X �Y X � �Pt2G�Gt�
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�V holds between cycles over X �S X . Then

�Gs:�X �Y X ��loc �
X
t2G
�Gs:Gt�loc � �Gs:V�loc �

X
t2G
�DX :Gst�loc � �Gs:V�loc:

To prove the last equation, consider the automorphism

y : X �S X ! X �S X
�x; y� 7! �y; s�x�� :

It maps DX to Gs and Gstÿ1 to Gt. Indeed, tstÿ1 � s by Remark 7.17. Therefore,
�Gs:Gt�loc � �DX :Gstÿ1 �loc, which implies the needed equation. Finally, by Lemmas
7.14 and 7.18,

�Gs:V�loc �
X
�i;j�

ei;j�s�Ei�:Ej� � ntr�s�jH�et�Ys;Ql� ÿ
X
t2G

tr�st�jH�et�Xs;Ql�:

Lemma 7.19 is proved. &

PROPOSITION 7.20. The weak projection formula �21� , or equivalently equation
�57�, holds for any base change.

Proof. Let f : X ! Y be a T -base change. Assume ¢rst that we can ¢nd
g : X 0 ! X a birational map of arithmetic surfaces such that:

(i) the automorphism s and the action of G over X can be lifted to X 0. Hence,
f � g : X 0 ! Y is a T-base change.

(ii) the projection formula holds for f � g : X 0 ! Y.

By (ii) and Lemma 7.19,

n�DY :GY
s �loc �

X
t2G
�DX 0 :GX 0

st �loc ÿ
X
t2G

tr�st�jH�et�X 0s;Ql� � ntr�s�jH�et�Ys;Ql�:

By Theorem 7.1,

�DX 0 :GX 0
st �loc ÿ tr�st�jH�et�X 0s;Ql� � �DX :GX

st�loc ÿ tr�st�jH�et�Xs;Ql�:

Hence, we get

n�DY :GY
s �loc �

X
t2G
�DX :GX

st�loc ÿ
X
t2G

tr�st�jH�et�Xs;Ql� � ntr�s�jH�et�Ys;Ql�;

which is relation (57) for the morphism f .
In order to prove the existence of X 0 as above, we use Theorem 6.3. By remark

7.17, the hypotheses of this theorem, except the hypothesis on the dimension of
W � G \ �X �Y X �, are satis¢ed. I claim that the latter can be satis¢ed after a
sequence of blow-ups. Indeed, W is isomorphic to the inverse image of
fix�s� � Y in X . If it is not a Cartier divisor, we blow-up X at closed points until
this condition will be satis¢ed. We can do these blow-ups in such a way that s

86 AHMED ABBES

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001822419774


and the action of G lift to the ¢nal step X 0. Then, the scheme W 0 associated with X 0

has dimension 1. &

8. Lefschetz Formula: The Semi^Stable Case

Let X be a semi-stable arithmetic surface over S and s be a non-trivial
S-automorphism of X . Denote by $ the set of singular points in Xs. Let
G � X �S X be the graph of s, fix�s� be the scheme of s-¢xed points, and I be
its ideal sheaf in G. Let Y be the Cartier divisor on X de¢ned locally by the greatest
common divisor of all functions in the ideal I , and let F be the residual scheme
to Y in fix�s�. We decompose Y as D� Z, where D is a horizontal Cartier divisor
over S and Z is a vertical one.

By Lemma 5.6, any closed point x in F is singular in Xs. The following lemma
describes the points of F among the singular points in Xs.

LEMMA 8.1. Let x be a closed ¢xed point of X that is singular in Xs.

(i) If s stabilizes the branches of Xs through x , then x 2 F and its multiplicity in F is 1.
(ii) If s switches the branches through x, then x 62 F and x is contained in the horizontal

Cartier divisor D.

Proof. The completion of the local ring of X at x is isomorphic to
A � R��t; E��=�tEÿ p�, where p denotes a uniformizing element of R. Let m be its
maximal ideal. The branches of Xs through x are de¢ned by t and E. The
automorphism s is given over A by

s�t� � ut� vE; s�E� � u0t� v0E:

Using s�tE� � s�p� � p, one ¢nds uu0t2 � vv0E2 � �uv0 � vu0�p � p. Hence uu0 2 EA and
vv0 2 tA.

. If u is a unit in A, then u0 2 EA. As �uv0 ÿ vu0� 2 A�, then v0 2 A�. Therefore,
v 2 tA. We conclude that s is given by

s�t� � at; s�E� � bE;

where a and b are in A� with ab � 1 and a 6� 1. In this case, s stabilizes the
branches.

. If u 62 A�, then v 2 A� because �uv0 ÿ vu0� 2 A�. Therefore, v0 2 tA�. Again this
implies that u0 2 A�, hence u 2 EA. We conclude that s is given by

s�t� � aE; s�E� � bt;

where a and b are in A� with ab � 1. In this case s switches the branches.

(i) In the ¢rst case, Ix � ��aÿ 1�t; �bÿ 1�E� � �aÿ 1�m. So, the Cartier divisor Y is
locally de¢ned at x by aÿ 1, and F by m. Therefore, x 2 F and l�x� � 1.
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(ii) In the second case, Ix � �aEÿ t�. So, the Cartier divisorY is de¢ned by aEÿ t, and
x 62 F . The equation aEÿ t de¢nes a horizontal divisor. &

For a singular point x in Xs, we put

lx �
1 if s fixes x and stabilizes the branches through it,
ÿ1 if s fixes x and switches the branches through it,
0 otherwise.

(
�58�

Lemma 8.1 implies the following relation:X
x2$

lx �
X
x2F

1ÿ
X

x2Ds\�$ÿF �
1: �59�

Indeed, by Lemma 8.1, the set of ¢xed points of $ is a disjoint union of F and
Ds \ �$ÿ F �. The ¢rst subset corresponds to points with lx � 1, and the second
to points with lx � ÿ1.

PROPOSITION 8.2. With these notation,�DX :G�loc � ÿ�o�D� Z:Z� �Px2$ lx:
Proof. This Proposition is a consequence of the residual intersection formula and

equation (59). We need ¢rst to prove a slightly different version of the residual for-
mula given in Proposition 5.8. Let eG be the blow-up of G along F . As any point
of F has multiplicity 1, eG can also be obtained from G by blowing-up successively
the points of F . In particular,eG is regular. For any x 2 F , let Ex be the inverse image
of x. Let W � fix�s� be the scheme of ¢xed points, and eW be its inverse image in eG.

�60�

Denote by eD , eZ and eF the inverse images in eG of D , Z and F . Then, the relationseW � eD� eZ �eF and eF �Px2F Ex hold between Cartier divisors over eG. As r is
birational, deg�DX :G�loc � deg�DX :eG�loc. Let E: be a resolution of O1

X=S as in Section
5.1-1). Diagram (60) induces a surjection of complexes ~g��E:� ! OX �ÿeW �jeW where
the second complex is concentrated in degree 0. Let F : be the kernel of this
surjection. The localized excess formula (Theorem 4.7) implies:

�DX :eGs�loc � ÿceW
1;eWs

�F :� \ �eW � � ÿceW
1;eWs

�F :� \ �eD� ÿ ceW
1;eWs

�F :� \ �eZ �eF �:
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As eZ �eF is vertical,

ceW
1;eWs

�F :� \ �eZ �eF � � c1�F :� \ �eZ �eF �
� c1�~g�E:� \ �eZ �eF � � c1�O�eW �� \ �eZ �eF �;

deg ceW
1;eWs

�F :� \ �eZ �eF � � �o� Z �D:Z� ÿ
X
x2F

1:

We compute now the contribution of eD. Let D be the strict transform of D in eG (i.e.
the blow-up of D along F \D ). Then, eD � D�Px2F mx�D��Ex� as Cartier divisors,
where mx�D� is the multiplicity of D at x. Therefore,

ceW
1;eWs

�F :� \ �eD� � cD1;Ds
�F :� \ �D� � c1�F :� \ �

X
x2F

mx�D��Ex��

� cD1;Ds
�F :� \ �D� ÿ

X
x2F

mx�D�:

The divisor D is ¢nite and £at over R. Let i : D! eW be its inclusion in eW , and
consider the exact sequence:

0ÿ!i�F :ÿ!i� ~g��E:�ÿ!g O�ÿeW �jDÿ!0:

The surjective map g is a quasi-isomorphism on the generic ¢ber of D. Therefore, it
de¢nes a rational map t : i� ~g�oX=S ÿÿ! O�ÿeW �jD. Corollary 3.7. implies:

deg cD1;Ds
�F :� \ �D� � ÿord�t�:

LEMMA 8.3. ord�t� � ÿPx2F mx�D� ÿ
P

x2Ds\�$ÿF � 1.

Proof. Let h : D! D be the blow-up of D along D \ F , and consider the diagram:

�61�

where the top sequence is obtained by taking the h-pull-back of the exact sequence
(14) and a is the surjective map induced by diagram (60). The kernel of f isR-torsion.
Hence, it maps to zero by a because D is £at over R. Therefore, a factors through the
image C of f in i* ~g*oX=S. Denote by b : C !O�ÿeW �jD the induced map. First, b is
surjective because a is surjective. Second, b is an isomorphism over the generic ¢ber
of D. Then, its kernel is R-torsion. But C is R-torsion-free as a sub^bundle of

CYCLES ON ARITHMETIC SURFACES 89

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001822419774


i* ~g*oX=S. Then, b is injective, and hence bijective. We have now the diagram

from which we deduce that

ord�t� � ÿ dimk h��
M

x2$\Ds

k� � ÿ
X
x2F

mx�D� ÿ
X

x2Ds\�$ÿF �
1: &

We proved the relation:

deg�DX :eG�loc � ÿ�o�D� Z:Z� �
X
x2F

1ÿ
X

x2Ds\�$ÿF �
1:

Proposition 8.2 follows from the above equation and Equation (59). &

PROPOSITION 8.4. With the above notation, �o�D� Z:Z� � 0.
Proof. Let C be an irreducible reduced component of Xs which appears in Z with

multiplicity iX 1. Denote by J and I the ideal sheaves of, respectively, C and
fix�s� in G (I � J i ). For any integer nX 0, �sÿ 1� induces a map OnC !OnC .

Claim 1. �sÿ 1� : OnC !OnC vanishes if and only if nW i.

Indeed �sÿ 1��OX � � I is contained in J i but not in J i�1.
Consider the diagram

Claim 1 implies that the composed mapO�i�1�C !OiC vanishes. Then, we get a map

�sÿ 1� : O�i�1�C ! J i=J i�1 � OC�ÿiC�:

Claim 2. �sÿ 1� vanishes on J =J i�1.

This is a local question. Let y be a point of C and let A be the completion of the local
ring of X at y. Let t be an equation de¢ning the Cartier divisor C. We should prove
that s�t� ÿ t 2 ti�1At, where At is the localization of A at tA. We can write
p � vt where v is a t-unit in A. Hence, by (18):

0 � s�vt� ÿ vt � s�v��s�t� ÿ t� � t�s�v� ÿ v�;
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and the fact that s�v� ÿ v 2 I � J i, we ¢nd that s�t� ÿ t 2 ti�1At. The claim is
proved.

By Claim 2, we get a map Ds;C : OC !OC�ÿiC�.
Claim 3. Ds;C is a k-derivation.

It follows from the formula s�ab� ÿ ab � s�a��s�b� ÿ b� � b�s�a� ÿ a� if we remark
that s�a� � a modulo I � J .

We denote also by Ds;C the OC-linear map O1
C=k !OC�ÿiC� induced by Ds;C .

LEMMA 8.5. The cokernel k of Ds;C : O1
C=k !OC�ÿiC� is supported over a ¢nite set

of points in C. Its total length is

LengOC
�k� � �C:D� � �C:Z ÿ iC� ÿ �C:C� � d;

where d is the number of nodes of C, and �C:*� is the intersection number with C.
Proof. Let y be a closed point of C and let A be the completion ofOX ;y. We denote

ky the stalk of k at y.
If y is smooth in Xs, then A � R��t��, and C is de¢ned in A by p a uniformizing

element of R. The ideal sheaf of fix�s� is generated by s�t� ÿ t. Put
s�t� ÿ t � pif , where f is a local equation de¢ning the horizontal Cartier divisor
D, and i the multiplicity of C in Z. Therefore

LengOC
�ky� � LengA�A=��s�t� ÿ t�=pi; p�� � LengA�A=�f ; p�� � �C:D�y;

where �C:D�y is the local intersection of C and D at y.
If y is singular in Xs, then A � R��t; E��=�tEÿ p�. Let m be its maximal ideal. We

have two cases:
(1) y is a smooth point of C. Then C is de¢ned by the equation t � 0. The equation

E � 0 de¢nes C0, the other component of Xs through x. As C is ¢xed by s, C 0 is
stabilized by s, and we have s�t� � at , s�E� � bE and ab � 1 (see the proof of Lemma
8.1). The ideal de¢ning Y is generated by aÿ 1. Write aÿ 1 � tiEj f , where i is the
multiplicity of C, and j is the multiplicity of C0 in Y , and f is an equation de¢ning
D. On the other hand, E gives a local parameter of C at y. Therefore,

LengOC
�ky� � LengA�A=��s�E� ÿ E�=ti; t��
� LengA�A=��bÿ 1�E=ti; t��
� LengA�A=�Ej�1f ; t�� � �j � 1��C:C0�y � �C:D�y:

(2) y is a singular point inC (a node). ThenC is de¢ned inA by the equation tE � 0.
As s ¢xes the branches through x , we have the same description of the action of s on
A, and the Cartier divisorY is de¢ned by aÿ 1. Write aÿ 1 � tiEif where f de¢nesD.
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Therefore,

LengOC
�ky� � LengA�A=��s�t� ÿ t�=tiEi; �s�E� ÿ E�=tiEi; tE��
� LengA�A=�tf ; Ef ; Et��
� LengA�A=�fm; Et��
� LengA�A=�f ; tE�� � Leng�A=�m; tE�� �by Lemma B:1�
� �C:D�y � 1:

The Lemma follows by adding all these contributions. &

LEMMA 8.6. LengOC
�k� � ÿi�C:C� ÿ �2gC ÿ 2� � d.

Proof. Let oC=k be the dualizing sheaf of C over k, and Sing be the set of singular
points of C. We have an exact sequence

0ÿ!Nÿ!O1
C=k ÿ!

r
oC=kÿ!

M
x2Sing

kÿ!0;

whereN is torsion. SinceOC�ÿiC� is torsion-free, thenDs;C mapsN to zero. Hence,
it factors through the image H of r. Moreover, the kernel of the induced map
H! OC�ÿiC� is torsion, and H is torsion free (as a subsheaf of oC=k ). Therefore,
we have an exact sequence 0!H! OC�ÿiC� ! k! 0. The lemma follows by
observing that degC oC=k � 2gC ÿ 2. &

Lemmas 8.5 and 8.6 imply that �2gC ÿ 2� ÿ �C:C� � ÿ�C:Z �D�. So
�o�D� Z:C� � 0 by the adjunction formula. This ¢nishes the proof of Proposition
8.4. &

COROLLARY 8.7. Let X be a semi-stable arithmetic surface over S, and s be a
non-trivial S-automorphism of X. Then,

�DX :Gs�loc � tr�s�jH�et�Xs;Ql� ÿ tr�s�jH�et�XZ;Ql�:

Proof. Propositions 8.2 and 8.4 imply that �DX :Gs�loc �
P

x2$ lx. Therefore,
Corollary 8.7 is equivalent to the following relation:

tr�s�jH�et�Xs;Ql� ÿ tr�s�jH�et�XZ;Ql� �
X
x2$

lx: �62�

Let M be the Ql-vector space with generators y1;x and y2;x for x 2 $, and relations
y1;x � y2;x � 0. The automorphism s acts over M and tr�s�jM �Px2$ lx. Let S
be the spectrum of the integral closure of R in K, X � X �S S, and a : XZ! X .
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By [6], we have

Hm�X ;Rna�Ql� �
M m � 0; n � 1;
Hm�Xs;Ql� n � 0;
0 otherwise:

8<: �63�

Then, the Leray spectral sequence for a implies Equation (62). &

9. Base Change

By the semi-stable reduction theorem and the projection formula proved in Prop-
osition 7.20, the proof of the Lefschetz ¢xed point formula in Theorem 1.1 is reduced
to computing Lefschetz numbers on a semi-stable arithmetic surface. This is the aim
of this section.

Let L be a ¢nite Galois extension of K of degree n and Galois group G�L=K�. Let B
be the integral closure of R in L. Put T � Spec�B�, and denote t its closed point, g its
generic point, and g a geometric generic point. We choose g such that the induced
geometric point of S is Z. Let dT=S be the discriminant of T=S.

Let X be a semi-stable arithmetic surface over T , and s be a non-trivial
automorphism of X lifting an automorphism t 2 G�L=K� of T . In particular, s
is an S-automorphism of X . Then, one can form the ¢ber square

and compute the intersection product �DX :Gs�loc relatively to this diagram.

THEOREM 9.1. If t � 1, then

�DX :Gs�loc � tr�s�jH�et�Xt;Ql� ÿ �swL=K �1� � n�tr�s�jH�et�Xg;Ql�: �64�

If t 6� 1, then

�DX :Gs�loc � tr�s�jH�et�Xt;Ql� ÿ swL=K �t� tr�s�jH�et�Xg;Ql�: �65�

Remark 9.2. The automorphism s acts canonically over Xt and Xg, but it acts
canonically overXg � X �T Spec�K� only if t � 1. However, tr�s�jH�et�Xg;Ql� is well
de¢ned for any t as it will be explained at the end of the proof of formula (65).

Proof of formula (64). As t � 1, s is a T^automorphism of X . Hence, one can
compute the localized intersection product relatively to the ¢ber square:
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Denote this product (and its degree) by �DX :Gs�Tloc in order to distinguish it from the
previous one referred by �DX :Gs�Sloc. The ¢rst step compares these numbers.

LEMMA 9.3. Let V be a scheme of pure dimension 2 with a map h : V ! X �T X.
Then

deg�DX :�V ��Sloc ÿ deg�DX :�V ��Tloc � dT=S �Xg:Vg�;

where �Xg:Vg� is the geometric intersection number of Vg with Xg diagonally embedded
in Xg � Xg.

Proof. Let f : X ! T be the structural map. We have an exact sequence ([3]
corollary 1.2)

0! f �O1
T=S ! O1

X=S ! O1
X=T ! 0: �66�

Fix resolutions F :, E: and G: of, respectively, f ��O1
T=S�, O1

X=S and O1
X=T by locally free

OX -modules extending the exact sequence (66). Let W be the scheme given by the
¢ber square

Then, the diagram

is also Cartesian. Let P � P�SWV �z�� and q : P!W be the canonical projection.
De¢ne the complexes E0: and G0: of locally free OP-modules by

0! E00 ! q�g��E0 �OX � ! OP�1� ! 0;
0! G00 ! q�g��G0 �OX � ! OP�1� ! 0;

and E0i � q�g��Ei� and G0i � q�g��Gi� for i > 0. Then, by de¢nition

�DX :V �Sloc � qs��cP2;Pt
�E0:� \ �P�� 2 A0�Ws� � A0�Wt�;

�DX :V �Tloc � qs��cP2;Pt
�G0:� \ �P�� 2 A0�Wt�:

From the de¢nition of E0:, G0:, the snake lemma and the exact sequence (66), we get
the exact sequence

0! q�g��F :� ! E0:! G0:! 0;
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from which we deduce:

cP2;Pt
�E0:� � cP2;Pt

�G0:� � cP2;Pt
�q�g�F :� � c1�G0:�cP1;Pt

�q�g�F :�:
Therefore, by q-push-forward,

�DX :V �Sloc � �DX :V �Tloc � cW2;Wt
�g�F :� \ q���P�� � cW1;Wt

�g�F :� \ q��c1�G0:� \ �P��:
Hence,

deg�DX :V �Sloc � deg�DX :V �Tloc � deg cX2;Xt
�f �O1

T=S� \ g�q���P���
� deg cX1;Xt

�f �O1
T=S� \ g�q��c1�G0:� \ �P��:

On the other hand, as f is £at, we have:

fs��cX2;Xt
�f �O1

T=S� \ g�q��P�� � cT2;Tt
�O1

T=S� \ f�g�q��P� � 0 2 A0�t�;

fs��cX1;Xt
�f �O1

T=S� \ g�q��c1�G0:� \ �P���
� cT1;Tt

�O1
T=S� \ f�g�q��c1�G0:� \ �P�� 2 A0�t�:

Write f�g�q��c1�G0:� \ �P�� � a�T � 2 A1�T �. Hence,

deg�DX :V �Sloc ÿ deg�DX :V �Tloc � dT=S a:

In order to compute a, we work over the geometric generic ¢bers. Denote by an
over-line the geometric generic ¢bers. Then, f �g�q��c1�G:� \ �P�� � a�g� 2 Z0�g�. Over
P, G0: is a resolution of the locally free sheaf x0 given by the exact sequence

0! x0 ! q��O1
X=K �OX � ! OP�1� ! 0:

Furthermore, the usual intersection theory [7] for the regular embedding
X ! X � X implies that

q��c1�x0� \ �P�� � �X :V � 2 A0�W �:
This ¢nishes the proof. &

Formula (64) follows from Lemma 9.3, Corollary 8.7 and the relation
1� dT=S � n� swL=K �1�.

Proof of formula (65). We assume now that t 6� 1. Denote $ the set of singular
points in Xt. Decompose fix�s� into Y [ F , where Y is a Cartier divisor over Gs

de¢ned locally by the greatest common divisor of all functions in the ideal of
fix�s�, and F is the residual scheme to Y in fix�s�. The main difference with Section 8
is that Y is a vertical divisor. Indeed, the ideal sheaf of fix�s� in Gs contains
s�p� ÿ p � t�p� ÿ p � gpj, where p is a uniformizing element of B, j � j�t� �
v�t�p� ÿ p�, and g 2 B* (see Section 2). Therefore, fix�s� is a scheme over Spec�B=pj�.

Lemma 5.6 implies that F is regularly embedded in Gs. For any closed point x of
X , let l�x� be the multiplicity of F at x. It is also the algebraic multiplicity of Gs
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along F at x ([7] example 4.3.5^c)). We will compute the multiplicity l�x� of any
closed point of X ¢xed by s.

LEMMA 9.4. All components of Y occur with multiplicity iW j. Moreover, no two
components of multiplicity j meet.

Proof. Let C be a component of Y of multiplicity i. Let I and J be the ideal
sheaves of Y and C in Gs. Then �s�p� ÿ p� � �pj� � I � J i. Choose a smooth point
x of Xt contained in C. The equation of C at the local ring of X at x is p , so iW j.

For the second point, let x be a closed point of X that is singular in Xt. The
completion of the local ring of X at x is isomorphic to A � B��t; E��=�tEÿ p�, and
t and E give the branches of Xt through x. If these branches occur in Y with
multiplicity j each, then �s�t� ÿ t; s�E� ÿ E� � �tjEj� � �pj�. Therefore, from the
relation

s�p� ÿ p � gpj � s�E��s�t� ÿ t� � t�s�E� ÿ E�;

we get that gpj 2 pjm, where m is the maximal ideal of A. Contradiction. &

Let C be a component of Y which occurs with multiplicity iW j ÿ 1. Recall from
the last section that �sÿ 1� de¢nes a map OnC !OnC which vanishes if and only
if nW i. Therefore, we get a map

�sÿ 1� : O�i�1�C ! J i=J i�1 � OC�ÿiC�;

where J is the ideal sheaf of C in X . Let I be the ideal sheaf of fix�s� in X . Under the
condition iW j ÿ 1 , we still have Claim 2: �sÿ 1� vanishes on J =J i�1 (cf. [3] lemma
(3.5)). We get a k-derivation Ds;C : OC !OC�ÿiC�. We denote also by
Ds;C : O1

C=k !OC�ÿiC� the induced OC-linear map and k its cokernel. For any
closed point x of C, de¢ne ordx�Ds;C� � LengOC;x

�kx�.

LEMMA 9.5. Let x be a closed point of X ¢xed by s.

(i) If x is smooth in Xt , then x can be on Y. In this case, let C be the component of Y
containing x and let i be its multiplicity in Y. Put i � 0 if x doesn't belong to Y.

l�x� �
jm if i � 0;
�j ÿ i�ordx�Ds;C� if 0 < i < j;
0 if i � j;

8<:
where if i � 0 , m is the multiplicity of x as a ¢xed point of s acting on Xt.

(ii) If x is singular in Xt and s switches the branches of Xt through x. Then, x doesn't
belong to Y, and l�x� � 2j ÿ 1:

(iii) If x is singular in Xt and s ¢xes the branches of Xt through x.We have two cases:
(a) The branches of Xt through x are contained in two different components C1 and

C2 of Xt. Let i1 and i2 be their multiplicities in Y.We choose C1 and C2 such that
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0W i1 W i2. Then ; i1 W j ÿ 1 by Lemma 9.4, and

l�x� �

j�s1 � s2 ÿ 2� � 1 if i1 � i2 � 0;

j�s1 ÿ i2 ÿ 1� � 1� �j ÿ i2��ordx�Ds;C2� ÿ 1� if 0 � i1 < i2 < j;

j�s1 ÿ i2 ÿ 1� � 1 if i1 � 0; i2 � j;

�j ÿ i1��ordx�Ds;C1� ÿ i2 ÿ 1��
��j ÿ i2��ordx�Ds;C2� ÿ i1 ÿ 1� � 1 if 0 < i1 W i2 < j;

�j ÿ i1��ordx�Ds;C1 � ÿ i2 ÿ 1� � 1 if 0 < i1 < i2 � j;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
where s1 and s2 are the multiplicities of xas a ¢xed point of sacting respectively
on C1 and C2 (de¢ned when i1 � 0 or i2 � 0).

(b) The branches of Xt through x are contained in the same component C of Xt. Let i
be its multiplicity in Y. Then, 0W iW j ÿ 1 by Lemma 9. 4, and

l�x� �
j�sÿ 1� � 1 if i � 0;

�j ÿ i��ordx�Ds;C� ÿ 1� � 1 if 0 < i < j;

8<:
where if i � 0 , s is the multiplicity of x as a ¢xed point of s acting on C.

Proof. Lemma B.1 will be frequently used in this proof without any indication.
(i) Assume that x is smooth in Xt. The completion of the local ring of X at x is

isomorphic to B��t��. The ideal of fix�s� at x is given by

�s�p� ÿ p; s�t� ÿ t� � �t�p� ÿ p; s�t� ÿ t� � �pj; s�t� ÿ t�:
The local equation de¢ning the divisor Y is the greatest common divisor of pj and
s�t� ÿ t. It is pi with iW j. If i > 0, then x belongs to Y . Let C be the component
of Y on which x lies. Its multiplicity in Y is i. The ideal of F at x is generated
by pjÿi and �s�t� ÿ t�=pi. If i � j, then l�x� � 0. If 0 < i < j, then

l�x� � Leng�B��t��=�pjÿi; �s�t� ÿ t�=pi�� � �j ÿ i�Leng�B��t��=��s�t� ÿ t�=pi; p�:
On the other hand, we can de¢ne in this case the derivation Ds;C , and we have

ordx�Ds;C� � Leng B��t��= p;
s�t� ÿ t

pi

� �� �
:

Finally, if i � 0, then

l�x� � Leng�B��t��=�pj; �s�t� ÿ t�� � jLeng�k��t��=�s�t� ÿ t�� � jm:

Assume that x is singular in Xt. The completion of the local ring of X at x is
isomorphic to A � B��t; E��=�tEÿ p�. Let m be its maximal ideal. The automorphism
s induces an automorphism on A also denoted s. As in the proof of Lemma 8.1,
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one proves that there exist two units a and b in A, with ab � 1� gpjÿ1, such that

�ii� if s fixes the branches through x; then
s�t� � at
s�E� � bE

�

�iii� if s switches the branches through x; then
s�t� � aE
s�E� � bt

�
(ii) The ideal of fix�s� at x is I � �s�t� ÿ t; s�E� ÿ E� � �aEÿ t; btÿ E�, which is also

the ideal generated by �aEÿ t� and �abtÿ aE� � �tÿ aE� gpjÿ1t�. Then,
I � �aEÿ t; pjÿ1t�. The greatest common divisor of aEÿ t and pjÿ1t is 1, because
a is invertible in A. It follows that x cannot be on Y and

l�x� � Leng�A=�aEÿ t; pjÿ1t��
� 1� Leng�A=�aEÿ t; pjÿ1��
� 1� �j ÿ 1�Leng�A=�aEÿ t; p��
� 2j ÿ 1:

(iii) The ideal I is generated by �aÿ 1�t and �bÿ 1�E. De¢ne

n1 � ordt�bÿ 1�;
n2 � ordE�aÿ 1�:

Put gcd�t�aÿ 1�; E�bÿ 1�� � ti1Ei2 , and assume that i1 W i2 (otherwise exchange t and
E).

(a) The local equation of C1 at x is t � 0, and the one of C2 is E � 0.

Claim: i1 � n1 and i2 � inf�n2; j�.
Proof. We have the relation:

�aÿ 1� � aÿ ab� gpjÿ1 � a�1ÿ b� � gpjÿ1: �67�
Then, ordt�aÿ 1�X n1 if n1 W j ÿ 1, and ordt�aÿ 1� � j ÿ 1 otherwise. The ¢rst case
gives i1 � n1. The second implies that i1 � j. But i1 W i2, hence i1 W j ÿ 1 by Lemma
9.4. This case cannot occur. For the second relation, use the relation:

bÿ 1 � b�1ÿ a� � gpjÿ1: �68�

&

With these notation,

l�x� � Leng A=
aÿ 1
ti1ÿ1Ei2

;
bÿ 1
ti1Ei2ÿ1

� �� �
:

We distinguish the following cases:
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. i1 � 0 � i2:

l�x� � Leng�A=�t�aÿ 1�; E�bÿ 1���
� 1� Leng�A=�t; bÿ 1�� � Leng�A=�aÿ 1; E�� � Leng�A=�aÿ 1; bÿ 1��
� 1� �s1 ÿ 1� � �s2 ÿ 1� � Leng�A=�aÿ 1; bÿ 1��:

From (67), we get �aÿ 1; bÿ 1� � �bÿ 1; pjÿ1�. Hence,

Leng�A=�aÿ 1; bÿ 1�� � Leng�A=�bÿ 1; pjÿ1��
� �j ÿ 1��Leng�A=�t; bÿ 1�� � Leng�A=�E; bÿ 1���
� �j ÿ 1��s1 ÿ 1� s2 ÿ 1�:

We explain the last equality: there is nothing to be proved if j � 1. Assume that j > 1,
then from (67) and (68), we get �E; bÿ 1� � �E; aÿ 1�. Hence,

Leng�A=�E; bÿ 1�� � Leng�A=�E; aÿ 1�� � s2 ÿ 1:

On the other hand, we have Leng�A=�t; bÿ 1�� � s1 ÿ 1.

. i1 � 0 and 0 < i2 < j: from the Claim, i2 � n2 and En2 divides �bÿ 1� by (68).
Therefore,

l�x� � Leng A= t
aÿ 1
En2

; E
bÿ 1
En2

� �� �
� 1� Leng A= E;

aÿ 1
En2

� �� �
� Leng A=

bÿ 1
En2

; t
� �� �

�

� Leng A=
bÿ 1
En2

;
aÿ 1
En2

� �� �
:

Using (67), we get

l�x� � 1� Leng A= E;
aÿ 1
En2

� �� �
� Leng A=

bÿ 1
En2

; t
� �� �

�

� Leng A=
bÿ 1
En2

; t jÿ1E jÿ1ÿn2
� �� �

� 1� Leng A= E;
aÿ 1
En2

� �� �
� jLeng A=

bÿ 1
En2

; t
� �� �

�

� �j ÿ 1ÿ n2�Leng A= E;
bÿ 1
En2

� �� �
� 1� �j ÿ n2�Leng A= E;

aÿ 1
En2

� �� �
� j�Leng�A=�bÿ 1; t�� ÿ n2�:

We explain the last equality. If j ÿ 1ÿ n2 � 0, there is nothing to be proved.
Otherwise, using (67) and (68), �E; �bÿ 1�=En2 � � �E; �aÿ 1�=En2 �. The Lemma follows
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because of the relations n2 � i2 and

ordx�Ds;C2 � ÿ 1 � Leng A= E;
aÿ 1
En2

� �� �
and s1 ÿ 1 � Leng�A=�t; bÿ 1��:

. i1 � 0 and i2 � j: from the Claim, n2 X j and E jÿ1 divides �bÿ 1� by (68).
Therefore,

l�x� � Leng A= t
aÿ 1
E j

;
bÿ 1
E jÿ1

� �� �
� Leng A= t;

bÿ 1
E jÿ1

� �� �
� Leng A=

aÿ 1
E j

;
bÿ 1
E jÿ1

� �� �
:

Using the relation (68), we get ��aÿ 1�=E j; �bÿ 1�=E jÿ1� � ��aÿ 1�=E j; t jÿ1�.
Then,

l�x� � Leng A= t;
bÿ 1
E jÿ1

� �� �
� Leng A= t jÿ1;

aÿ 1
E j

� �� �
� Leng A= t;

bÿ 1
E jÿ1

� �� �
� Leng A= t jÿ1;

aÿ 1
E jÿ1

� �� �
ÿ �j ÿ 1�

� jLeng A= t;
bÿ 1
E jÿ1

� �� �
ÿ �j ÿ 1� � j�s1 ÿ j ÿ 1� � 1:

The last relation follows from (67) and (68).

. 0 < i1 W i2 < j: from the Claim, n1 � i1, n2 � i2, and by (67) and (68), ti1 divides
�aÿ 1� and Ei2 divides �bÿ 1�. Therefore,

l�x� � Leng A=
aÿ 1
ti1ÿ1Ei2

;
bÿ 1
ti1Ei2ÿ1

� �� �
� 1� Leng A= t;

bÿ 1
ti1Ei2

� �� �
� Leng A= E;

aÿ 1
ti1Ei2

� �� �
�

� Leng A=
aÿ 1
ti1Ei2

;
bÿ 1
ti1Ei2

� �� �
:

Using (67) and (68), we get that

aÿ 1
ti1Ei2

;
bÿ 1
ti1Ei2

� �
� t jÿi1ÿ1E jÿi2ÿ1;

bÿ 1
ti1Ei2

� �
:
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Therefore,

Leng A=
aÿ 1
ti1Ei2

;
bÿ 1
ti1Ei2

� �� �
� �j ÿ i1 ÿ 1�Leng A= t;

bÿ 1
ti1Ei2

� �� �
�

� �j ÿ i2 ÿ 1�Leng A= E;
bÿ 1
ti1Ei2

� �� �
� �j ÿ i1 ÿ 1�Leng A= t;

bÿ 1
ti1Ei2

� �� �
�

� �j ÿ i2 ÿ 1�Leng A= E;
aÿ 1
ti1Ei2

� �� �
:

The second equality follows from (67) and (68). The result follows from:

Leng A= t;
bÿ 1
ti1Ei2

� �� �
� ordx�Ds;C1� ÿ 1ÿ i2;

Leng A= E;
aÿ 1
ti1Ei2

� �� �
� ordx�Ds;C2� ÿ 1ÿ i1:

. 0 < i1 < i2 � j : from the Claim, n1 � i1 , n2 X j, and by (67) and (68), ti1 divides
�aÿ 1� and E jÿ1 divides �bÿ 1�. Therefore,

l�x� � Leng A=
aÿ 1
ti1ÿ1E j

;
bÿ 1
ti1E jÿ1

� �� �
� Leng A= t;

bÿ 1
ti1E jÿ1

� �� �
ÿ Leng A= E;

bÿ 1
ti1E jÿ1

� �� �
�

� Leng A=
aÿ 1
ti1E jÿ1

;
bÿ 1
ti1E;jÿ1

� �� �
� Leng A= t;

bÿ 1
ti1E jÿ1

� �� �
ÿ Leng A= E;

bÿ 1
ti1E jÿ1

� �� �
�

� Leng A= t jÿ1ÿi1 ;
bÿ 1
ti1E jÿ1

� �
:

�
The last equality follows from (67), which implies that

aÿ 1
ti1E jÿ1

;
bÿ 1
ti1E jÿ1

� �
� tjÿ1ÿi1 ;

bÿ 1
ti1E jÿ1

� �
:

As E divides
aÿ 1
ti1E jÿ1

, and using (68), we deduce that

E;
bÿ 1
ti1E jÿ1

� �
� �E; t jÿ1ÿi1�:
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We conclude that

l�x� � ÿ�j ÿ 1ÿ i1� � �j ÿ i1��ordx�Ds;C1 � ÿ j�:

�b� In this case, i1 � i2 � i < j, and the local equation of C at x is Et � 0. We get
from the Claim that n1 � n2 � i, and from (67) and (68) that ti divides �aÿ 1�
and Ei divides �bÿ 1� because i < j. Then,

Leng A=
t�aÿ 1�
tiEi

;
E�bÿ 1�

tiEi
; tE

� �� �
� Leng A= t;

E�bÿ 1�
tiEi

� �� �
� Leng A=

�aÿ 1�
tiEi

; E;
E�bÿ 1�

tiEi

� �� �
� Leng A= t;

E�bÿ 1�
tiEi

� �� �
� Leng A=

�aÿ 1�
tiEi

; E
� �� �

� Leng A= t;
E�bÿ 1�

ti

� �� �
� Leng A=

t�aÿ 1�
Ei

; E
� �� �

ÿ 2i ÿ 1:

The left-hand side of this equation is s if i � 0, and ordx�Ds;C� if 0 < i < j. The
Lemma follows from this relation and the formula

l�x� � 1� �j ÿ i�
 

Leng A
�

t;
bÿ 1
tiEi

� �� �
� Leng A

�
E;
aÿ 1
tiEi

� �� �!

proved previously. &

LEMMA 9.6. Let �Y � �PC iC �C� be the decomposition of Y into its irreducible
components. Then,

�DX :Gs�loc �
X
C

iC��C:C� � 2w�OC�� ÿ �Y :Y � �
X
x2F

l�x�:

Proof. Let o be the dualizing sheaf of X over S. By Proposition 5.8., we have

�DX :Gs�loc � ÿ�o� Y :Y � �
X
x2F

l�x�

� ÿ
X
C

iC�o:C� ÿ �Y :Y � �
X
x2F

l�x�

�
X
C

iC��C:C� � 2w�OC�� ÿ �Y :Y � �
X
x2F

l�x�:

&

Let C be an irreducible component of Xt stabilized by s. De¢ne d�C� to be the
number of s-¢xed nodes of C with s-¢xed branches. If iC � 0, then s induces a
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non-trivial automorphism over C. De¢ne, for any point x in C, the number mC�x� to
be

. the multiplicity of x as a ¢xed point of s acting on C, if x is smooth in C or a
node and s ¢xes the branches of C through it,

. 0 otherwise.

LEMMA 9.7. We have:

�DX :Gs�loc � j
X�

C;iC�0

�X
x2C

mC�x� � d�C�
�
� 2

X�
C;iC>0

�w�OC� � d�C��
 !
ÿ �2j ÿ 1�

X
x2$

lx;

where
X�

denotes the sum over all components C of Xt stabilized by s , and lx for x 2 $

is de¢ned in �58�.
Proof. A painful computation based on Lemma 9.5 gives:

X
x2Xt

l�x� � j
X�

C;iC�0

X
x2C

mC�x� �
X�

C;iC>0

�j ÿ iC�
X
x2C

ordx�Ds;C�

ÿ �2j ÿ 1�
X
x2$

lx �
X�
C

�j � i�d�C� �
X
C

iC�j ÿ 1��C:C�

�
X
C 6�C0

iCiC0 �C:C 0�:

�69�

For any C with 0 < iC < j, Lemma 8.6 gives:X
x2C

ordx�Ds;C� � ÿiC�C:C� � 2w�OC� � d0�C�;

where d0�C� is the total number of nodes in C. Remark that as iC > 0, then
d�C� � d0�C�. Therefore, (69) becomes:

X
x2Xt

l�x� � j
X�

C;iC�0

�X
x2C

mC�x� � d�C�
�
� 2

X�
C;iC>0

�w�OC� � d�C��
 !
ÿ 2

X
C

iCw�OC� ÿ
X
C

iC�C:C� � �Y :Y � ÿ �2j ÿ 1�
X
x2$

lx :

The Lemma follows from this equation and Lemma 9.6. &

Let X be the normalization of Xt, and s be the automorphisms of X extending s
over Xt. Let Gs be the graph of s in X �k X .
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LEMMA 9.8. The geometric intersection number of Gs with the diagonal inX �k X is
given by:

�DX :Gs� �
X�

C;iC�0

�X
x2C

mC�x� � d�C�
�
� 2

X�
C;iC>0

�w�OC� � d�C��:

Proof. LetC be a component ofXt and eC be the connected (smooth) component of
X above it. By the self^intersection formula for curves, we have:

�DX :Gs� �
X1
eC
X
x2eC meC�x� � 2

X2
eC w�OeC�;

where
P1 is the sum over all connected components of X stabilized by s but not

¢xed, and
P2 is the sum over all components ¢xed (point by point) of X . For

any component C with iC > 0 , we have w�OeC� � w�OC� � d�C�. Indeed, C has only
nodes as singularities and d�C� is the total number of this nodes. LetC be a stabilized
component such that iC � 0, and let x be a ¢xed node of C, and x1 and x2 be the
points of eC above it. If s does not ¢x the branches through x, then s exchanges
x1 and x2 and by de¢nition mC�x� � 0. If s ¢xes the branches through x, then, with
the notation of the proof of Lemma 9.5,

mC�x� � Leng�k��t; E��=�t�aÿ 1�; E�bÿ 1�; tE��
� Leng�k��t; E��=�t; E�bÿ 1�� � Leng�k��t; E��=�E; aÿ 1��
� meC�x1� �meC�x2� ÿ 1:

The Lemma follows. &

Proof of formula (65): Lemmas 9.7 and 9.8, and the geometric Lefschetz ¢xed point
formula for X imply that

�DX :Gs�loc � jtr�s�jH�et�X ;Ql� ÿ �2j ÿ 1�
X
x2$

lx: �70�

On the other hand, we have

tr�s�jH�et�X ;Ql� � tr�s�jH�et�Xt;Ql� �
X
x2$

lx: �71�

If j � 1 (i.e. t 62 P�L=K� ), Equations (70) and (71) are enough to get (65). In general,
we need a third relation. For this purpose, we introduce the notation M, T ,
X � X �T T and a : Xg! X as in the proof of (62). We ¢x a lifting t 2 G�K=K�
of t, and let s � s�t t acts over Xg and X . Then s acts over the cohomology groups
Hm�X ;Rna�Ql�. The latter are given by Equation (63), and the action of s turns to be
the same as the one of s over respectively M and Hm�Xt;Ql�. Therefore, the Leray
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spectral sequence for a implies that

tr�s�jH�et�Xt;Ql� � tr�s�jH�et�Xg;Ql� �
X
x2$

lx:

Hence, tr�s�jH�et�Xg;Ql� does not depend on the choice of the lifting t, and the above
formula can be written as

tr�s�jH�et�Xt;Ql� � tr�s�jH�et�Xg;Ql� �
X
x2$

lx: �72�

Formula (65) is a consequence of (70), (71) and (72). &

10. Lefschetz Formula: The General Case

Let X be an arithmetic surface over S and s be a non-trivial S-automorphism of X .
Step (1). Let C be the generic ¢ber of X . By the semi-stable reduction theorem [2],

we can ¢nd a ¢nite Galois extensionL of K of degree n and Galois group G such that:

(1) C �K L admits a semi-stable regular model V over T � Spec�B� (where B is the
integral closure of R in L);

(2) the automorphism s over C �K L extends to a T-automorphism over V equally
denoted s;

(3) the G-action over C �K L extends to an action of G over V by S-automorphisms.

There exists an arithmetic surface W over T , equipped with two birational
morphisms p and r

such that the automorphism s and the group action of G over V lift to W . In other
words, the morphism W ! X is a base change (see De¢nition 7.16).

Step (2). We consider all surfaces over S. By Proposition 7.20, the base change
W ! X satis¢es the weak projection formula:

n�DX :GX
s �loc �

X
t2G
�DW :GW

st �loc ÿ
X
t2G

tr�st�jH�et�Ws;Ql� � ntr�s�jH�et�Xs;Ql�:
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Theorem 7.1, applied to the birational map r, gives:

�DW :GW
st �loc � �DV :GV

st�loc ÿ tr�st�jH�et�Vs;Ql� � tr�st�jH�et�Ws;Ql�:
Let t be the closed point of T . As Vt and Vs have the same reduced scheme structure,
we get from the last two relations:

n�DX :GX
s �loc �

X
t2G
�DV :GV

st�loc ÿ
X
t2G

tr�st�jH�et�Vt;Ql� � ntr�s�jH�et�Xs;Ql�:

By equations (64) and (65), we get:

n�DX :GX
s �loc � ntr�s�jH�et�Xs;Ql� ÿ �swL=K �1� � n�tr�s�jH�et�XZ;Ql�

ÿ
X

t2G; t 6�1
swL=K �t�tr�st�jH�et�XZ;Ql�

� ÿ
X
t2G

swL=K �t�tr�st�jH�et�XZ;Ql� � n�tr�s�jH�et�Xs;Ql�

ÿ tr�s�jH�et�XZ;Ql��:
Theorem 1.1 follows using equation (5). &

Remark 10.1. K. Kato, S. Saito and T. Saito conjectured the Lefschetz ¢xed point
formula in a different formulation ([10] conjecture (1.5)). As they have already
noticed (loc. cit. second paragraph in page 53), their conjecture can be reformulated,
in their notation, as follows:

w�Xs;Li�O1
X=S ! I=I2� � tr�s�jdt�RG�Xs;RFQl��; �73�

where Xs � fix�s� is the scheme of ¢xed points, i is de¢ned in the diagram below and
I is the ideal sheaf of the closed immersion Xs! Gs. The morphism
Li�O1

X=S ! I=I2 induces a quasi-isomorphism on the generic ¢ber of Xs. So,
the left hand side of formula (73) is well de¢ned.

Clearly, the right-hand sides of equations (1) and (73) are opposite. We prove the
same property for the left hand sides as follows. By a sequence of blow-ups of
Gs at closed points, we get a regular surface eGs such that the inverse image eXs

of Xs is a Cartier divisor.

Let J be the ideal sheaf of the closed immersion eXs ! eGs. I claim that
Rh�OeXs

� OXs and Rh�J =J 2 � I=I2. These relations are proved by considering
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a blow^up of a regular surface at a closed point. We deduce that

w�eXs;Lj�O1
X=S ! J =J 2� � w�Xs;Li�O1

X=S ! I=I2�:

Since the rank of the complex Lj�O1
X=S ! J =J 2 over the curve eXs is zero, the re¢ned

Riemann^Roch formula ([7] example 18.3.12) gives

w�eXs;Lj�O1
X=S ! J =J 2� � deg�ceXs

1;eXs
s

�Lj�O1
X=S ! J =J 2� \ �eXs��

� ÿ deg�DX :eGs� � ÿ deg�DX :Gs�:

We used the excess formula of Theorem 4.7.

Remark 10.2. The Lefschetz ¢xed point formula (1) holds for a normal surface and
a non^trivial automorphism, if we de¢ne the Lefschetz number as in remark 7.6. This
follows from the de¢nition and the Lefschetz ¢xed point formula for a
desingularisation of the normal surface.

Finally, we give the proof of Lemma 1.2 and Corollary 1.3. Lemma 1.2 is a conse-
quence of Proposition 5.8. Then, by Theorem 1.1,

aG�s� � ÿ�DX :Gs�loc � tr�s�jsw�H�et�XZ;Ql�� ÿ tr�s�jH�et�Xs;Ql�
� tr�s�jH�et�XZ;Ql�; 8s 2 Gÿ f1g:

Therefore,

aG�s� � tr�s�jsw�H�et�XZ;Ql�� ÿ tr�s�jH�et�Xs;Ql� � tr�s�jH�et�XZ;Ql�
� nrG�s�; 8s 2 G;

for some integer n, where rG is the character of the regular representation of G. But
we know by [19] proposition 7, that jGjaG is the character of a linear representation
of G. Therefore, aG is the character of a Ql-rational representation of G.

A. Intersection Numbers Over Normal Surfaces

Let X be a normal surface over S (i.e. an integral normal scheme of dimension 2,
proper and £at over S). The object of this appendix is to recall Mumford's de¢nition
of the intersection number of a vertical Weil divisor with any Weil divisor over X
([14] II (b)).

Assume ¢rst that X is regular. By [6] (Exposë X, example 1.1.), one can de¢ne the
intersection number of any divisor D with a vertical divisor E.

Let X be a normal surface. Fix p : X 0 ! X a resolution of singularities of X , and
let �Ei�1W iW r be the irreducible reduced components of the exceptional ¢bers of
p. Let A be an irreducible effective Weil divisor over X . Mumford de¢ne the

CYCLES ON ARITHMETIC SURFACES 107

https://doi.org/10.1023/A:1001822419774 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001822419774


pull-back of A by the formula

p�A � A0 �
Xr
i�1

riEi;

where A0 is the strict transform of A in X 0, and the ri are the rationals de¢ned by the
equations �p�A:Ei� � 0 for i � 1; . . . ; r. In other words, the ri are de¢ned by the linear
system:

Xr
j�1

rj�Ej :Ei� � ÿ�A0:Ei�:

As det�Ei:Ej� 6� 0, the ri are well de¢ned. We extend this de¢nition by linearity to any
divisor.

(1) If A is the divisor of a rational function f over X , then p�A is the divisor of the
same function over X 0. Indeed, �divX 0 �f �:Ei� � 0 for any i. Therefore, p� passes to
rational equivalence.

(2) LetA and B be twoWeil divisors over X such that one of them is vertical. Then,
we can compute the rational number �p�A:p�B�. It does not depend on the resolution
we choose. Indeed, it is enough to compare these numbers for two resolutions X 0 and
X 00 such that X 00 is obtained by blowing-up a closed point in X 0. The computation is
easy in this case. We de¢ne the intersection number ofA and B by �A:B� � �p�A:p�B�.

These intersection numbers have the same properties as in the regular case.
Namely, let A , B and C be Weil divisors over X such that A is vertical.

(3) If B is the divisor of a rational function, then �A:B� � 0. This follows from (1).
(4) �A:B � C� � �A:B� � �A:C�.
(5) If B is also vertical then, �A:B� � �B:A�.
(6) For any Weil divisor D over X 0, we have the projection formula

�p�A:D�X 0 � �A:p�D�X :

Indeed, the divisor Dÿ p�p�D is supported over the exceptional ¢bers.
Let f : X ! Y be a dominant map between normal surfaces over S. Choose

resolutions X 0 of X and Y 0 of Y over which f lifts:

De¢ne the pull^back map f � : Z1�Y � ! Z1�X � by the formula f � � p�f 0�r�, where
f 0� is the re¢ned Gysin associated to the l.c.i. map f 0 : X 0 ! Y 0 (see Subsection 7.2).
Notice that f 0� is de¢ned on the cycle level because it is re¢ned and f 0 is dominant.
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(7) The pull^back f � passes to rational equivalence. This follows from the same
statement for r� proved in (1). It is clear that f � coincides with the £at pull-back
(de¢ned in [7]) if f is £at.

(8) Assume that f is ¢nite of degree d, and let A and B be two Weil divisors over Y
with one vertical. Then

�f �A:f �B� � d�A:B�:
Indeed,

�f �A:f �B� � �p�f 0�r�A:p�f 0�r�B� � �f 0�r�A:p�p�f 0�r�B� � �r�A:f 0�p�p�f 0�r�B�:
Remark that p�p�f 0�r�B � f 0�r�B �D, where D is supported over the exceptional
¢bers of p. Then, f 0�p

�p�f 0�r�B � f 0�f
0�r�B � f 0�D. As f 0 is ¢nite over the complement

of the exceptional ¢bers of r, then f 0�f
0�r�B � dr�B � C, where C is supported over

the exceptional ¢bers of r. Hence, f 0�p
�p�f 0�r�B � dr�B � C � f 0�D. Finally, f 0�D

is supported over the exceptional ¢bers of r because r�f 0�D � f�p�D � 0. Therefore,
�r�A:f 0�p�p�f 0�r�B� � �r�A:dr�B� � d�A:B�.

B. Additivity of Colength

Let A be a Noetherian commutative ring. An ideal I of A has ¢nite colength col�I� if
A=I has ¢nite length, and col�I� � LengA�A=I�. If I is generated by a1; . . . ; an , we say
that the sequence �a1; . . . ; an� has ¢nite colength if the ideal I has ¢nite colength, and
we de¢ne col�a1; . . . ; an� � col�I�.

LEMMA B.1 let a and b be two elements of A such that a is not a zero-divisor in A=�b�,
and let I be an ideal. If two of col�aI � bA� , col�I � bA� and col�a; b� are ¢nite, then so
is the third and

col�aI � bA� � col�a; b� � col�I � bA�:

In particular, let a1; a2 and b be elements of A such that a1 or a2 is not a zero-divisor in
A=�b�. If two of col�a1; b� , col�a2; b� and col�a1a2; b� are ¢nite, then so is the third and

col�a1a2; b� � col�a1; b� � col�a2; b�:

Proof. Let A � A=�b� and I � �I � bA�=�b�. The Lemma is a consequence of the
exact sequence

0ÿ!A=I ÿ!:a A=aIÿ!A=�a�ÿ!0:

The multiplication by a is injective because a in not a zero-divisor in A. &

If A is a local regular ring of dimension 2, then �a; b� is of ¢nite colength if and only
if �a; b� is a system of parameters. AsA is regular, a system of parameters is a regular
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sequence and conversely. Therefore, a is not a zero-divisor in A=�b� if and only if
col�a; b� is ¢nite.
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