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WIDTH OF A SCALE-FREE TREE

ZSOLT KATONA,∗ Eötvös Loránd University

Abstract

Consider the random graph model of Barabási and Albert, where we add a new vertex
in every step and connect it to some old vertices with probabilities proportional to their
degrees. If we connect it to only one of the old vertices then this will be a tree. These
graphs have been shown to have a power-law degree distribution, the same as that observed
in some large real-world networks. We are interested in the width of the tree and we show
that it is Wn ∼ n/

√
π log n at the nth step; this also holds for a slight generalization of

the model with another constant. We then see how this theoretical result can be applied
to directory trees.
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1. Introduction

Consider the following random graph model of Barabási and Albert [1].

Starting with a small number (m0) of vertices, at every time step we add a new vertex with
m (≤ m0) edges that link the new vertex to m different vertices already present in the system.
To incorporate preferential attachment, we assume that the probability P that a new vertex
will be connected to vertex i depends on the degree of that vertex.

Barabási and Albert pointed out that many complex real-world networks cannot be
adequately described by the classical Erdös–Rényi random graph model, where the possible
edges are included independently with the same probability p. In this model, the degree
distribution is approximately Poisson with parameter np while, in real networks (for example
the World Wide Web), power-law degree distributions have been observed, with a parameter
independent of the number of steps n. These are called scale-free degree distributions (or
scale-free graphs).

The original definition may lead to different precise definitions; see, for example, Bollobás
and Riordan [3] and for trees (i.e. m = 1), see Móri [7]. We use the latter model. Starting with
a single point, at every step we add a new vertex and connect it to one of the old vertices by an
edge. This old vertex is chosen randomly with probability proportional to its degree. This leads
to the same model as if we had chosen an edge randomly, each with equal probability, then
chosen one of the endpoints of that edge. This tree is also known as a plane oriented recursive
tree or an ordered recursive tree. The reader might be interested in the survey [9] of recursive
trees.

A possible generalization of this model is where the probability of choosing an old vertex
is (k + β)/sn, instead of k/2n, with a given β > −1, where k is the degree of the vertex and
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sn = 2n + β(n + 1) = (2 + β)n + β is the sum of all weights in the nth step. It was shown
in [7] that the proportion of vertices of degree k converges almost surely (a.s.) to a limit ck ,
which, as a function of k, decreases at the rate k−(3+β). Similar a.s. results were proved in [4].

The following examples show the importance of these results and the sense of the general-
ization. Several graphs have been found with degree distributions P(k) ∼ ck−γ , where c is
a constant; see [1]. One of these is the collaboration graph of movie actors (see [1, p. 510]),
where γ = 2.3 ± 0.1. Another example is the World Wide Web, which is a directed graph,
so it has an in-degree distribution and an out-degree distribution. The Hungarian Web was
studied by the Websearch and Data Mining Group of the Hungarian Computer and Automation
Research Institute in [2]; they found that, both for the in- and out-degrees, the distribution is
P(k) ∼ ck−γ with γin = 2.29 and γout = 2.78.

In this paper, we study the shape of the tree. Starting from the root (0th level), cut the tree
into levels. The neighbours of the root will be on level 1, the neighbours of these will be on
level 2, and so on. Let X[n, k] denote the size of the kth level after the nth step (the first step is
when we take the first edge). The following random variables determine the shape of the tree.
Let Wn := max{X[n, k] : 1 ≤ k} be its width and Hn := max{k ≥ 1 : X[n, k] �= 0} its height.

The diameter studied in [3] is in close connection with Hn. The results there yield the height
of our original tree (β = 0) to be asymptotically O(log n). On the other hand, Pittel proved in
[8] that

lim
n→∞

Hn

log n
= 1

(2 + β)y

a.s., where y satisfies (1 + β)ye1+y = 1.
Our goal is to determine the width of the tree. We use the method of [5], which was applied

to binary search trees for the proof of Wn ∼ n/
√

4π log n. We now present the main results of
this paper. Set α = (1 + β)/(2 + β).

Theorem 1. With probability 1, we obtain

X[n, k] = n√
2απ log n

exp

(
− (k − α log n)2

2α log n

)
+ O

(
n

log n

)
,

as n → ∞, where the error term is uniform for all k ≥ 0.

Corollary 1. As n → ∞, we have

Wn = n√
2απ log n

(
1 + O

(
1√

log n

))
a.s.

In addition, our results show that the width of the tree is reached approximately at a level of
α log n.

In Section 2, we introduce a way of using martingales for the proof of Theorem 1, which is
postponed to Section 3. In Section 4, we present an application. V. Batagelj brought it to the
author’s attention that directory trees may have the power-law degree distribution property. We
will study some of them and see how their widths can be approximated by applying Theorem 1.

2. Using martingales

Firstly, we introduce the notation

Y [n, k] = X[n, k + 1] + (1 + β)X[n, k] for k > 1,

Y [n, 0] = X[n, 1] + β,
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for the sum of weights on level k. Our basic tool is the study of the following series of complex
generating functions:

Gn(z) =
∞∑

k=0

Y [n, k]zk.

Let Fn denote the natural σ -field generated by the first n steps.

Lemma 1. For any fixed z ∈ C, the sequence

Mn(z) := Gn(z)

En(z)

is a martingale with respect to the filtration Fn, where

En(z) =
n−1∏
j=1

sj + 1 + (1 + β)z

sj
.

Proof. Easy calculation gives that

E(Y [n + 1, 0] | Fn) = Y [n, 0] sn + 1

sn

and, for k > 0,

E(Y [n + 1, k] | Fn) = Y [n, k] sn + 1

sn
+ Y [n, k − 1]1 + β

sn
.

These yield

E(Gn+1(z) | Fn) = sn + 1

sn
Gn(z) + 1 + β

sn
zGn(z) = sn + 1 + (1 + β)z

sn
Gn(z);

thus, we obtain

E Gn(z) = (1 + β)(1 + z)

n−1∏
j=1

sj + 1 + (1 + β)z

sj
= (1 + β)(1 + z)En(z),

since G1(z) = (1 + β)(1 + z). Hence, Mn(z) is a martingale.

The following lemma is about the asymptotics of the expectation.

Lemma 2. For any compact set of complex numbers C ⊂ C, we have

E Gn(z) = n1+α(z−1)(1 + β)(1 + z)�(2α)

�(1 + α(1 + z))
+ O(nα Re(z−1)),

En(z) = n1+α(z−1)�(2α)

�(1 + α(1 + z))
+ O(nα Re(z−1))

uniformly for z ∈ C, as n → ∞.
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Proof. As in the proof of Lemma 1, we obtain

E Gn(z) = (1 + β)(1 + z)

n−1∏
j=1

sj + 1 + (1 + β)z

sj

= (1 + β)(1 + z)

n−1∏
j=1

j + α(1 + z)

j + 2α − 1
.

The product is equal to
�(n + α(1 + z))

�(1 + α(1 + z))

�(2α)

�(n + 2α − 1)
.

Its asymptotics can be determined as in [6] and [5], proving that

�(n + z)

�(n)
= nz + O(nRe(z−1))

uniformly over any compact set. This yields

En(z) = n1+α(z−1)�(2α)

�(1 + α(1 + z))
+ O(nα Re(z−1))

uniformly in any compact set, as n → ∞.

Next, we will study the convergence of the martingale Mn(z). For this purpose, we need to
determine the covariance function of Gn(z).

Lemma 3. For every pair z1, z2 ∈ C, we have

CG
n+1(z1, z2) := E(Gn+1(z1)Gn+1(z2))

=
n∑

j=1

(
bj (z1, z2)

n∏
k=j+1

ak(z1, z2)

)

+ (1 + β)2(1 + z1)(1 + z2)

n∏
j=1

aj (z1, z2),

with

ak(z1, z2) = 1 + 2 + (1 + β)(z1 + z2)

sk
,

bk(z1, z2) = (1 + z1 + z1β)(1 + z2 + z2β)

sk
E Gk(z1z2).

Proof. We give a linear recursion for CG
n (z1, z2). Let kn + 1 denote the level of the vertex

added in the (n + 1)th step. With this notation, Gn+1(z) − Gn(z) = zkn(1 + (1 + β)z). Thus,
we obtain

CG
n+1(z1, z2) = E[E((Gn(z1) + z

kn

1 (1 + z1 + z1β))(Gn(z2) + z
kn

2 (1 + z2 + z2β)) | Fn)]
= CG

n (z1, z2) + E[E(Gn(z1)z
kn

2 (1 + z2 + z2β) + z
kn

1 (1 + z1 + z1β)Gn(z2)

+ z
kn

1 z
kn

2 (1 + z1 + z1β)(1 + z2 + z2β) | Fn)].
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The conditional distribution of kn with respect to Fn is

P(kn = k | Fn) =

⎧⎪⎪⎨
⎪⎪⎩

Y [n, k]
sn

if k > 0,

Y [n, 0]
sn

if k = 0.

Hence, the conditional expectation is

E(Gn(z1)z
kn

2 (1 + z2 + z2β) | Fn) = 1 + z2 + z2β

sn
Gn(z1)Gn(z2).

Similarly, we have

E(Gn(z2)z
kn

1 (1 + z1 + z1β) | Fn) = 1 + z1 + z1β

sn
Gn(z1)Gn(z2).

Finally, this yields

E(z
kn

1 z
kn

2 (1 + z1 + z1β)(1 + z2 + z2β) | Fn) = (1 + z1 + z1β)(1 + z2 + z2β)

sn
Gn(z1z2).

Hence,

CG
n+1(z1, z2) =

(
1 + 2 + (1 + β)(z1 + z2)

sn

)
CG

n (z1, z2)

+ (1 + z1 + z1β)(1 + z2 + z2β)

sn
E Gn(z1z2).

This proves the lemma, since CG
1 (z1, z2) = (1 + β)2(1 + z1)(1 + z2).

Corollary 2. The set of martingales {Mn(z) : n ∈ N} is bounded in L2 for any fixed
|z − 1| <

√
1/α, where Lp is the space of p-power integrable functions. Thus, there

exists a random variable M(z) ∈ L2 such that Mn(z) → M(z) a.s. in L2, as n → ∞,
for z ∈ H := {w ∈ C : |w − 1| <

√
1/α}.

Proof. Using the notation of Lemma 3, we have
n∏

k=j+1

ak(z1, z2) =
(

n

j

)2+α(z1+z2−2)(
1 + O

(
1

j

))
.

We write An � Bn if there is a constant c > 0 such that An ≤ cBn for every n. By Lemma 2,

CG
n (z1, z2) = (1 + z1 + z1β)(1 + z2 + z2β)

2 + β

n∑
j=1

E Gj(z1, z2)

j + 2α − 1

n∏
j=k+1

ak(z1, z2)

+ (1 + β2)(1 + z1)(1 + z2)

n∏
j=1

ak(z1, z2)

�
n∑

j=1

jα Re(z1z2−1)

(
n

j

)2+α Re(z1+z2−2)

+ n2+α Re(z1+z2−2)

� n2+α Re(z1+z2−2)
n∑

j=1

j−(2+α Re(z1+z2−z1z2−1)).
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Hence,

CM
n (z1, z2) := E(Mn(z1)Mn(z2)) = E(Gn(z1)Gn(z2))

E Gn(z1) E Gn(z2)
�

n∑
j=1

j−(2+α Re(z1+z2−z1z2−1)).

So, if
2 + α Re(z + z − zz − 1) > 1,

where z is the complex conjugate of z, then the sum is bounded. The inequality above is true
exactly in H ; hence, Mn(z) is bounded in L2 for z ∈ H .

Also, if z1, z2 ∈ H then 2 + α Re(z1 + z2 − z1z2 − 1) > 1; hence, CM
n (z1, z2) converges to

some CM(z1, z2) uniformly over the compact subsets of H2, and CM(z1, z2) is holomorphic
over H2.

To prove the uniform convergence of Mn(z), we follow the arguments of [5]. The main idea
is the following result, which can be proved in a similar way to Proposition 2 of [5].

Proposition 1. Let I = (1−√
1/α, 1+√

1/α). Then (M(t))t∈I has a continuous modification
M̃ such that, for any compact C ⊆ I ,

E
(

sup
t∈C

|M̃|2
)

< ∞.

Generally, if γ : R → H is continuously differentiable, then (Mn(γ (t)))t∈R has a modifi-
cation M̃γ such that, for any compact set C ⊆ R,

E
(

sup
t∈C

|M̃γ (t)|2
)

< ∞.

The uniform convergence of (Mn) comes from the following proposition. The proof, being
essentially the same as the proof of Proposition 2 of [5], is omitted.

Proposition 2. For any compact set C ⊆ I , we have Mn → M uniformly over C and

E
(

sup
t∈C

|Mn(t) − M(t)|2
)

→ 0.

Generally, let γ : R → H be continuously differentiable and let Mn,γ (t) = Mn(γ (t)) and
Mγ (t) = M(γ (t)). Then the same result holds for (Mn,γ ).

Corollary 3. The martingale Mn(z) and all its derivatives converge uniformly over the compact
subsets of H .

Proof. By Proposition 2, Mn is uniformly convergent over the arc γ (t) = 1 + ρeit , for all
0 < ρ <

√
2. Thus, for |s − 1| < ρ, we have

Mn(s) = 1

2π i

∮
γ

Mn(z)

z − s
dz,

by Cauchy’s formula. Thus, Mn and its derivatives converge uniformly over the compact subsets
of H .

In order to prove Theorem 1, we will need two more lemmas on the asymptotics of Gn(z).
Firstly, we approximate E |Gn(z)|2.
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Lemma 4. For every δ > 0 and z such that |z − 1| ≤ √
1/α − δ, we obtain

E |Gn(z)|2 = O(n2(1+α(Re z−1))).

For any z such that
√

1/α − δ ≤ |z − 1| ≤ √
1/α, we obtain

E |Gn(z)|2 = O(n2(1+α(Re z−1)) log n),

with uniform error terms as n → ∞. Furthermore, for any compact C ⊆ C − H , we obtain

E |Gn(z)|2 = O(n1+α(|z|2−1) log n)

uniformly for z ∈ C.

Proof. Recall the proof of Corollary 2. It follows that

E |Gn(z)|2 � n2(1+α(Re z−1))
n∑

j=1

j−2−α(2 Re z−|z|2−1).

For |z − 1| ≤ √
1/α − δ, the exponent of j is at most −1 − δ′ < −1, where δ′ is an arbitrarily

small number; hence,

E |Gn(z)|2 � n2(1+α(Re z−1))
n∑

j=1

j−1−δ′ � n2(1+α(Re z−1)).

On the other hand, for
√

1/α − δ ≤ |z − 1| ≤ √
1/α, we can write

E |Gn(z)|2 � n2(1+α(Re z−1))
n∑

j=1

j−1−δ′ � n2(1+α(Re z−1)) log n.

In the third case, for |z − 1| >
√

1/α, we have

E |Gn(z)|2 � n2(1+α(Re z−1))
n∑

j=1

j−2−α(2 Re z−|z|2−1)

� n2(1+α(Re z−1)) n−1−α(2 Re z−|z|2−1)

−1 − α(2 Re z − |z|2 − 1)
.

For the uniform equality we need more. The numerator might tend to 0, so

E |Gn(z)|2 � n2(1+α(Re z−1)) (n + 1)−1−α(2 Re z−|z|2−1)

−1 − α(2 Re z − |z|2 − 1)

� n1+α(|z|2−1) 1 − e(−1−α(2 Re z−|z|2−1) log(n+1)

−1 − α(2 Re z − |z|2 − 1)

� n(1−α)(1+(1+β)|z|2) log n.

This completes the proof.
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Now, we approximate G′
n(z), where the prime denotes differentiation.

Lemma 5. For every 0 < |z| < 2, we have

|G′
n(z)| � |z|−1(log n)n(1−α)(1+|z|+|z|β) a.s.

Proof. Obviously, |G′
n(z)| ≤ G′

n(|z|). By [8], we know that Hn � log n, where Hn is
the height of the tree. Hence, there exists an n0, for each realization of the tree, such that
X[n, k] = 0 a.s. for n ≥ n0, if k > c log n. Hence, for sufficiently large n, with probability 1,

G′
n(|z|) =

∞∑
k=1

kY [n, k]|z|k−1 ≤ c(log n)

∞∑
k=1

Y [n, k]|z|k−1 ≤ c(log n)
Gn(|z|)

|z| .

We need the following lemma to approximate Gn(z) outside H . Since the proof of this
lemma follows from Lemma 4 and Lemma 5 by arguments similar to those in the proof of
Proposition 3 of [5], it will be omitted.

Lemma 6. For any K > 0, there exists a δ > 0 such that

sup
|z|=1, |z−1|≥√

1/α−δ

|Gn(z)| = O

(
n

(log n)K

)

a.s., as n → ∞.

Remark 1. If β = 0 then Lemma 6 holds for the function |Gn(z)|/|1 + z| on

γ (δ) := {z : |z| = 1, |z − 1| ≥ √
2 − δ, Re z > −0.9} ∪ {z : Re z = −0.9, |z| ≤ 1}.

For any K > 0, there exists a δ > 0 such that

sup
γ (δ)

∣∣∣∣Gn(z)

1 + z

∣∣∣∣ = O

(
n

(log n)K

)

a.s., as n → ∞. Since −1 /∈ γ , to see this it is enough to approximate |Gn(z)| on γ (δ). From
here, the argument follows in exactly the same way as that in the proof of Lemma 6.

3. Proof of Theorem 1

Finally, we can start to prove Theorem 1. By definition,

Gn(z) =
∞∑

k=0

Y [n, k]zk,

Gn(z) − β

1 + (1 + β)z
=

∞∑
k=0

X[n, k + 1]zk,

if z �= −1/(1 + β). This exception does not matter if β �= 0, since |1/(1 + β)| �= 1, and the
function can be extended to this point regularly. We can extract X[n, k] from the generating
function by using Cauchy’s formula.

If β �= 0 then

X[n, k + 1] = 1

2π i

∫
|z|=1

Gn(ξ) − β

(1 + (1 + β)ξ)ξk+1 dξ = 1

2π

∫ π

−π

Gn(eit ) − β

1 + (1 + β)eit e−kit dt.
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We split the integral into two parts. Let ϕ = min(π, arccos(1 − 1/2α)) and let

I1 := 1

2π

∫
|t |≤ϕ−δ

Gn(eit ) − β

1 + (1 + β)eit e−kit dt,

I2 := 1

2π

∫
π≥|t |≥ϕ−δ

Gn(eit ) − β

1 + (1 + β)eit e−kit dt,

where δ is the same as in Lemma 6.
If β = 0, instead of |z| = 1 we integrate on

γ = {ξ : |ξ | = 1, Re ξ > −0.9} ∪ {ξ : Re ξ = −0.9, |ξ | ≤ 1}.

Let I1 be the same as in the previous case and let

I2 := 1

2π i

∫
γ (δ)

Gn(ξ)

(1 + ξ)ξk+1 dξ,

where δ is the same as in Remark 1.
By Lemma 6 and Remark 1, for any K > 0 we can approximate the second integral in both

cases as follows:

|I2| ≤ 1

2π

∫ ∣∣∣∣ Gn(ξ) − β

1 + (1 + β)ξ

∣∣∣∣ dξ � n

(log n)K
,

where we integrate on

{ξ : |ξ | = 1, |ξ − 1| ≥ √
1/α − δ}

(where β �= 0) and on γ (δ) (where β = 0).
For |t | ≤ ϕ − δ,

Mn(e
it ) = Gn(eit )

En(eit )

is a.s. uniformly bounded by Corollary 3. On the other hand, Lemma 2 provides the asymptotics
of the denominator; hence,

|Gn(e
it )| � n(1−α)(1+(1+β) Re eit ) = nnα(cos t−1) = ne(log n)(cos t−1)α � ne−c′t2(log n),

for some constant c′ > 0. By fixing a sufficiently small positive ϑ , we obtain

1

2π

∫
(log n)−(1−ϑ)/2≤|t |≤φ−δ

|Gn(e
it )| dt � n

∫ ∞

(log n)−(1−ϑ)/2
e−c′t2 log n dt � ne−c′(log n)ϑ . (1)

The remaining part of the integral is

I0 := 1

2π

∫
|t |≤(log n)−(1−ϑ)/2

Gn(eit )

1 + (1 + β)eit e−kit dt.
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Again, we are going to use

Gn(z) = En(z)Mn(z) = E Gn(z)
Mn(z)

(1 + β)(1 + z)
(2)

and Lemma 2, which can be written in the form

E Gn(z) = n(1−α)(1+z+zβ) (1 + β)(1 + z)�(2α)

�(1 + α(1 + z))
+ O(n(Re z−1)α)

= nn(z−1)α

(
(1 + β)(1 + z)�(2α)

�(1 + α(1 + z))
+ O

(
1

n

))

uniformly. If t → 0 in such a way that |t | ≤ (log n)−(1−ϑ)/2, then

E Gn(eit )

1 + (1 + β)z
= ne(log n)(eit−1)α

(
(1 + β)(1 + eit )�(2α)

(1 + (1 + β)eit )�(1 + α(1 + eit ))
+ O

(
1

n

))
= ne−(αt2/2) log n+(itα) log n

×
(

1 − it

(
α − 1

2
+ 2α2�′(1 + 2α)

)
− αt3

6
i log n + O(t2 + t4 log n)

)
.

(3)

On the other hand, Mn(1) = 2(1 + β) and, hence,

Mn(eit )

(1 + β)(1 + eit )
= 1 + it

M ′
n(1) − (1 + β)

2(1 + β)
+ O(t2). (4)

Then, by (2)–(4), we conclude that, with probability 1,

Gn(eit )e−kit

1 + (1 + β)eit = ne−(αt2/2) log n+it (α log n−k)

×
(

1 − it

(
α − 1

2
+ 2α2�′(1 + 2α) − M ′

n(1) − (1 + β)

2(1 + β)

)

− αt3

6
i log n + O(t2 + t4 log n)

)

uniformly with respect to k. For the same reason as in (1), here we also have∫
|t |≥(log n)−(1−ϑ)/2

e−t2 log n(1 + t + t3 log n) � e−(log n)ϑ .

Hence,

I0

n
= 1

2π

∫ ∞

−∞
e−(αt2/2) log n+it (α log n−k)

×
(

1 − it

(
α − 1

2
+ 2α2�′(1 + 2α) − M ′

n(1) − (1 + β)

2(1 + β)

)
− αt3

6
i log n

)
dt

+ O((log n)−3/2).
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Integration gives

I0

n
= 1√

2απ log n
exp

(
− ((log n)α − k)2

2α log n

)

×
(

1 + ((log n)α − k)

2α log n
− ((log n)α − k)3

6α2(log n)2

+ (log n)α − k

α log n

(
α − 1

2
+ 2α2�′(1 + 2α) − M ′

n(1) − (1 + β)

2(1 + β)

))
+ O((log n)−3/2).

Hence, we obtain

X[n, k]
n/

√
2απ log n

= exp

(
− ((log n)α − k)2

2α log n

)

×
(

1 + ((log n)α − k)

2α log n
− ((log n)α − k)3

6(α log n)2

+ (log n)α − k

α log n

(
α − 1

2
+ 2α2�′(1 + 2α) − M ′

n(1) − (1 + β)

2(1 + β)

))

+ O

(
1

log n

)

a.s., with an error term uniform in k. This completes the proof.

4. Directory trees

Although there are several examples of networks that have power-law degree distributions,
none of them are trees. V. Batagelj brought it to the author’s attention that directory trees should
be studied. The following examples all have power-law degree distributions P(k) ∼ ck−γ ,
with 2 < γ < 3. This allows us to compare the width of the tree with the result of Theorem 1.
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(

)
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Figure 1.
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Table 1.

Directory tree Vertices β Real width Theoretical width β ′

Server of CS Dept.,
Budapest Univ. of Technology

39 182 −0.62 10 159 9 162 −0.71

Server of CS Dept.,
Eötvös Loránd Univ.

18 609 −0.96 10 916 12 519 −0.95

Server of Fazekas High School 48 898 −0.25 9 721 9 071 −0.40
Home Linux 22 797 −0.27 4 026 4 415 +0.04

Home Windows 6 999 −0.53 2 097 1 662 −0.75

The first example is the directory tree of the main server of the Department of Computer
Science and Information Theory, Budapest University of Technology and Economics. Figure 1
shows the degree distribution with logarithmic scales.

Linear regression gives γ ≈ 2.38. Substituting β = γ − 3 = −0.62 and n = 39 182 into
Theorem 1 gives a width of 9162. We can compare this with the real width of the tree, which
is 10 159. We can also calculate the β ′ that would give the same theoretical width as the real
width. From Theorem 1, we have β ′ ≈ −0.71

Table 1 shows the results of studying several directory trees. The servers are all Unix systems
with a lot of users who are free to create their own directories in the home directory. This is
a reason why we should consider these graphs to be random. The ratio of theoretical to real
widths is between 0.85 and 1.15 in Table 1; hence, we can approximate the width of directory
trees using Theorem 1.
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