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A TOPOLOGICAL CHARACTERIZATION OF 
CONJUGATE NETS 

PAUL A. VINCENT 

1. I n t r o d u c t i o n . One aspect of topological analysis t ha t authors , such as 
G. T . Whyburn and Marston Morse, have pointed to ([16; 6] for instance) as 
being fundamental in the development of function theory is the topological 
s tudy of the level sets of analytic and harmonic functions or of their topological 
analogues, light open maps and pseudo-harmonic functions. The first step in 
this direction seems to have been made by H. Whi tney [14] when he studied 
families of curves, given abstract ly using a condition of regularity. In the plane, 
Kaplan [9] showed tha t Whi tney ' s condition is equivalent to the condition tha t 
the family is locally homeomorphic to parallel lines and tha t this condition 
topologically characterizes the level sets of harmonic functions without critical 
points. Boothby [2; 3] a few years later included critical points. He showed tha t 
a family of branched curves filling the plane and locally structured like the 
level curves of Re zn characterized topologically the level curves of harmonic 
functions. M. Morse and J. Jenkins [7] shortly after generalized Boothby 's 
work by omitt ing a non-recurrence hypothesis and considered the problem on 
an open Riemann surface. They subsequently considered [6; 7] the question of 
the existence of a second family of branched curves such tha t locally both 
families were topologically like the level lines of Re zn and Im zn. When a second 
such family did exist they called the resulting pair of families a conjugate net. 
On simply connected surfaces, they showed tha t for a given branched curve 
family there always existed a second such family and tha t the concept of con
jugate net topologically characterizes the level sets of the real and imaginary 
par ts of analytic functions. In a different vein, G. T . Whyburn gave point set 
characterizations of the type of continuity required for decompositions into 
compact [15] as well as non-compact [16] elements caused by analytic functions. 

The purpose of this paper is to formulate as a point set topological concept 
the idea of a conjugate net. In [13] the definition of conjugate net was extended 
by considering families of locally connected generalized continua (locally com
pact connected sets of more than one point) locally structured by zn (see 
definition, § 4) . Here necessary and sufficient conditions for two families of 
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generalized continua to form a conjugate net are found (Theorems 4.1 and 
4.2). 

Th is concept of conjugate net includes the level sets of the real and imaginary 
par ts of light open maps and as such in [13] was used to generalize a theorem of 
Stoïlow. Here theorem 4.1 approaches another theorem of Stoïlow which s ta tes 
tha t a light open map from one 2-manifold to another is locally topologically 
equivalent to zn. The absence of semi-closed sub-collections (see § 2) and bound
ing unions parallels openess and the discrete intersection condition parallels 
lightness. 

T h e topological properties required for one family of generalized continua to 
behave like the level lines of an harmonic function must be stricter. This 
problem will be taken up in a subsequent paper. 

Notation. Capital letters will be used to denote spaces as well as their subsets 
and small letters will denote points of the space. Script letters, such a s - î / , 3i, 
^ , ffl will denote families of subsets of a space. If ^ is a family of subsets of 
the space X and 5 is a subset of X then ^s will denote the family {components 
of G C\ S\G £ S^}. If the family & consists of mutual ly disjoint subsets of X 
and p £ U ^ then the element of ^ containing p will be denoted by Gv. 

An arc (open arc) is the image under a continuous 1 — 1 function of a closed 
(open) interval. Arcs will be denoted by lower case Greek letters, such as 
a, ]5, y. An arc joining two points a and b will also be denoted by ab, or by axb 
to stress an intermediate point x on ab. 

In a metric space X, N(p, r) will be used to denote the open ball about the 
point p of radius r and V(S, r) will denote the open neighborhood about the 
subset 5 of X of radius r. In a 2-manifold M, neighborhoods homeomorphic to 
the open uni t disk in the plane will be referred to as disks in M. By a closed disk 
or a closed Jordan domain, it will be meant the homeomorph of the closed unit 
disk in the plane. 

If 5 is a subset of a space X, In t S, Ex t S, CI S, fiS, *£S will denote respec
tively the interior, exterior, closure, boundary and complement of S. Finally, Z 
and R will denote the integers and the real numbers respectively. 

2. A d m i s s i b l e f a m i l i e s . This section establishes minimal requirements for 
the cont inui ty of the families of generalized continua. 

Since conjugate nets need not be generated globally by one function and 
since a t best the elements are the components of the fibers of the real or 
imaginary par ts of a complex valued function, we may be dealing with families 
of generalized continua which are neither lower semicontinuous (LSC) nor 
upper semicontinuous (USC) (see [15] or [16]) either in the open set sense or 
limit sense (for example the components of the fibres of f(x, y) = x defined on 
R2 — 0) . However, locally they are USC in the weaker limit sense bu t still 
need not be continuous. This suggests the following definition: a collection @ 
of sets in a space X is locally USC if each point x of X has a neighborhood N in 
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which ^N is USC in the limit sense. In locally compact spaces, it is easily seen 
t ha t compact neighborhoods can be chosen in which ^N is USC in both the 
limit and open set sense [5, 3-35]. 

Although locally it is not required t ha t limits occupy a complete element, we 
want to avoid sequences collapsing to points, tha t is the following behavior: a 
collection of disjoint sets ^ in a space X is semi-closed if each set of & is closed 
and any convergent sequence of sets of & whose limit intersects X — {J& 
converges to a single point of X — \J^ [15, VI I , 5]. 

T h u s on a 2-manifold (locally euclidean, connected, Hausdorff space) M a 
family & of disjoint closed generalized continua which fills M will be termed 
admissible if it is locally USC and contains no semi-closed subcollection. This 
second condition gives the following useful fact. 

LEMMA 2.1. Let & be an admissible family on a 2-manifold M. Then for each 
point p G M there is a disk D about p such that G C\ &D ^ 0 for each G £ &. 

3. P lanar n e t s . Because conjugate nets are essentially characterized locally, 
this section considers the problem in the setting of the plane. 

A component of a level curve of the real par t of an analytic func t ion / in the 
plane will meet one of the imaginary par t in a t most one point; otherwise, the 
union of two such components will bound a relatively compact domain D such 
that/(j&D) does not separate the plane and so p(f(D)) (£ f(/3D), contrary to the 
behavior for analytic maps. This behavior is reflected in the following définition. 

Definition. Two admissible families of closed generalized c o n t i n u a l and 3ê 
in the plane form a planar net, denoted by [<$/, 38\ if each point p is the 
intersection of an element oisé and an element of 38. The elements ois/ and 38 
as well as of s/s and 38 $ for any subset 5 of the plane will be called fibers. 

T h a t the intersections in this definition must be no larger than single points 
is forced on us by the work of R. D. Anderson [1] who showed the existence of a 
continuous decomposition of the plane by pseudo-arcs such tha t the decom
position space is a plane and the induced map is open. The above condition also 
assures us t ha t each family fills the plane. The main theorem of this section is 
the following "spoke theorem" for planar nets. 

T H E O R E M 3.1. Let \_sé, 38~\ be a planar net and let p be a point in the plane. 
There exists an integer n ^ 2, a neighborhood N of p and an homeomorphism h 
of N onto the unit disk E in the z-plane about 0, such that h(0) = 0 and h carries 
s$N and 38N onto the level curves of Re znn and Im zn/2 respectively. 

T h e first step towards the proof of this theorem is showing tha t these 
families have the following properties in common with the level sets of open real 
valued maps in the plane: thinness, local connectedness and absence of end 
points. T h a t the fibers are of dimension one is an immediate result of the 
definition. The other two properties are less trivial to prove. However before 
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proving these properties for planar nets, I will show them to be sufficient in 
producing another wrell known behavior of the above level sets: the absence of 
simple closed curves. 

LEMMA 3.1. A locally connected continuum C which contains at most one end 
point must contain a simple closed curve. 

Proof. The Non-Cut Point Existence Theorem [15, III, 6.1] says t ha t C has a t 
least two non-cut points. T h u s there is a non-cut point p in C which is not an 
end point. Bu t any such point of a cont inuum must be on a simple closed curve 
of C[10, I I , 30]. 

T H E O R E M 3.2. Lets^ be a family of closed disjoint locally connected generalized 
continua which fills the plane. If no member of s/ contains an open set or an end 
point, then no member of se contains a simple closed curve. 

Proof. Assume tha t the fiber A of s/ contains a simple closed curve. T h e n 
there exists a bounded domain D in *$A. Each fiber of the subfamily se1 — 
[Av £ sé\p Ç D] is a locally connected cont inuum without end points and so by 
Lemma 3.1, contains a simple closed curve. T h u s each fiber of s/' has a 
bounded complementary domain. Define on s/f the following partial ordering: 
for Ai,A2^_ >stf', A i ^ A 2 if A i = A 2 or there is a bounded domain Dx in ^f A i 
such tha t A2C.D1. 

I t is now easy to show t h a t chains have upper bounds bu t t ha t there are no 
maximal elements, thus contradict ing Zorn's lemma. 

Although admissible families of thin sets are not necessarily free of simple 
closed curves globally, they are locally. 

LEMMA 3.2. Let SX? be an admissible family in the plane {or a 2-manifold) whose 
sets contain no open set. For any point p let D be a disk given by lemma 2.1. Then 
no element of se D contains a simple closed curve. 

Proof. If there is an element of S$ D containing a simple closed curve then 
there is a fiber A of stf which has a complementary domain D' such tha t 
D' C D and /3D' C A. But then for any point a of D', the fiber Aqois/ meets 
rlûD Ex t D' and so must meet A, cont rary to disjointness ois/. 

The fibers are locally connected. Because a locally connected metrizable 
generalized cont inuum is arcwise connected [15, I I , 5.2], considerable s t ructural 
s trength will be added to a planar net if its fibers are shown to be locally 
connected. 

T H E O R E M 3.3. Each fiber of a planar net [s/, 38\ is locally connected. 

Proof. An outline of the proof is given here. Assume there is a fiber A of se 
which is not locally connected a t the point p of A. There is a closed disk D about 
p such tha t (i) S$f D and &D are USC, (ii) Lemma 2.1 holds, and (iii) there 
exists a sequence of distinct components Ct of A Pi D converging to a con-
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tinuum C of A C\ D containing p and such that C P\ (US=i Ct) = 0 (see 
[15, I, 12.1] or [5, 3, 3-12]). 

Since d H (3D ^ 0 for all i, there is a cluster point a on $D of US=i (C* P\ /3Z?) 
which is necessarily a point of C. Then there is a sequence {an} of points of 
UîLi (C* n /3-D) such that {aj is strictly monotone converging to a and if 
an G Cfn there is no point of Cfn between a and aw. Let L be the right bisector of 
the segment [a, p] and let 6 be a number such that 0 < e < diam (Z>)/4 (see 
Figure 1). There is an w(e) large enough so that N(a, e) C\ Cin(e) ^ 0. Since L 

Figure 1 

separates a from p then C*w(e) H L ^ i . Since the sets 

X(e) = (Cl N(a, e) H 00) U C ^ , U CI 7V(£, e), 

F(e) - (Cl TV (a, e ) H ^ ) U C U Cl iV(p, e) 

are two continua such that X(e) H F(e) = (Cl TV (a, e) P\ 0£>) U CI N(p, e) 
is not connected, then [10, IV, 20] X(e) U F(e) separates the plane. 

For each m > n(e), Cim C\ L ^ 0 by converging, since C C\ L ^ 0. By the 
ordering of {aj a point bm £ Cirn P\ L can be found in a bounded comple
mentary domain of X(e) U F(e), so that {bm} converges to a point b £ C C\L. 
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The fibers Bbm of 38D mus t meet (3D (Lemma 2.1) and mus t do so by running 
through N(p, e) or N(a, e) infinitely often. T h u s p or a £ lim sup Bbm. Bu t 
b G lim inf Bbm Pi Bb so tha t lim sup Bbm C Bb by [ASC Hence {p, b} or 
{a, ô} C Bb C\ A contrary to the definition of planar net. 

Remark 3.1. If C is a locally connected generalized cont inuum in the plane 
and D a closed disk then, using [15, I, 12.1, 12.3], it is not hard to see tha t the 
components of C P\ D are also locally connected. T h u s for a planar net [s/} 38] 
the fibers of \stf&, 38 jf\ are also locally connected. 

The fibers have no end points. A point p of a set K is an end point of K if there 
exists arbitrari ly small neighborhoods of p with boundaries consisting of a 
single point. When K is a closed locally connected generalized cont inuum in the 
plane, which contains no simple closed curve, these neighborhoods may be 
given by Jordan domains D containing p such t ha t (3D P\ K is a singleton and 
D - K is connected [4, I, 2.1]. 

The non existence of end points depends on a phenomenon for planar nets 
which is analogous to the following behavior of the level curves of a light open 
m a p / of the plane to itself: if A is a level curve of R e / containing an arc a and 
if B is a level curve of Im / meeting A in a point p of a, then there is an arc (3oîB 
which crosses a(a C\ (3 — {p} and for some simple closed curve / containing an 
open arc of (3 containing p, no one of the complementary domains of J contains 
an open subarc from each component of a: — p, each incident on p; see [10]). 

An analogue of this si tuation for planar nets depends on a theorem of Ru t t -
Roberts in the following form (see [10, IV, 112; 11; or 12]). 

T H E O R E M (Rut t -Rober t s ) . Let D be a closed Jordan domain in the plane with 
points a, b £ (3D. LetJ^f" be a collection of disjoint continua in D each meeting (3D 
such that R = U ^ is a compact set not containing a or b and no element H oj ffl 
separates a from b in D. Then there is an arc ab in D — R spanning fiD (i.e. 
(ab - {a,b}) C IntD). 

T H E O R E M 3.4. Let D be a closed Jordan domain chosen within a disk satisfying 
Lemma 2.1 and in which s/D and 3§D are USC. Suppose that fi is an arc in (3D 
contained in some set B of Se. Then, if the fiber A ofs/ separates /3, it separates D 
by an arc aa' in A C\ D spanning /3D where a = A C\ B. A similar statement with 
sé and 38 interchanged holds. 

Proof. Since /3 C B, we may suppose A C\ {3 = a and a separates /3. Assume A 
does not separate D. T h e component A0 of A C\ D containing a (possibly only 
{a}) does not meet /3D — p [15, VI , 3.5]. Let x and y be the end points of /3 on 
(3D and let b Ç (3D - (3. Choose e > 0 such t ha t the neighborhood V(A0, e) of 
Ao in D excludes the arc xby of (3D (see Figure 2) . By USC of seD let 
U C V(Ao, e) be an open set in D containing A0 and such t ha t each fiber A' 
of se D meeting U is contained in V(AQ, e). Choose ô > 0 such tha t C\V(AGf 5 ) C 
U C V(A0, e). Let W = ^ ( C l V(AQ, Ô)) \J V(A0, 5/4). Define & = 
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Figure 2 

{A e s/D\A C W}. Then U ^ is open in D [5, 3-32]. Letting J f = sf D - &, 
then \jffi is closed. 

No ^4' of ffi meets arc xby since each A' must meet Cl V(A 0, à) C_ U and so by 
Î75C is in F(-4o, e) which excluded arc xby. On the other hand A' must meet 02) 
since the fiber of J / containing it meets ^D. Therefore A' meets (3 but only in 
one point since (3 C B. Thus no A' oi^f separates a from b in D and so a, fr, P 
andJf^ satisfy the Rutt-Roberts theorem, which gives an arc a joining a and b 
in D - U ^ . Since a G 7 (4 0 , 5/2) and & G ^ 7 ( 4 0 , 5/2) then a meets 
PV(A0, 8/2). Lets £ a C\ PV(AQ, 8/2) and As be the fiber oisfD containing 5. 
Thus A s not being completely in *$ CI V(A0, 5) or V(AQ, 5/4), is an element of 
Jf. But then 5 G U ^ , contradicting the fact that s £ a C D - \J3Jf. Thus A 0 

must separate .D by meeting fiD — /3 and the theorem follows. 

THEOREM 3.5. No fiber of \sé, 38] has an end point. 

Proof. Assume p is an end point of some fiber A of s/. Let D' be a disk about 
p such that Lemma 2.1 holds and se D> and 38 D> are [ÀSC and let Av be the fiber 
of séB> containing p. Since Av is a closed (in J9') locally connected generalized 
continuum containing no simple closed curve (Lemma 3.2), but having an end 
point p, there is a Jordan domain D C D' containing p such that /3D P\ Av = q 
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and D — Av is connected. Let qp be the arc joining q to p in Av C\ CI D and Bp 

the fiber of 38 containing p. Since Bp H ^D' j£ 0 then Bv meets I3D. Let the 
arc pr in 23p have only r in /3P (see Figure 3). Thus the arc qp U £>r spans 02) 
and so [15, VI, 3-5] separates D into two domains D\ and D2. 

Figure 3 

Now consider a £ qp — {p, q] and the fiber Ba of â?. By Theorem 3.4 
applied to Di, qp C PD± and Ba, Ba contains an arc xa spanning /3Di; in fact 
x G PD since 2>a Pi (g£ U £r) = a. Apply Theorem 3.4 once again to D2, 
qp C &D2 and i3a to obtain an arc ay in 2>G joining a to a point y G /3D — j&Di C 
jSP2. The arc xay spans /iD, thereby separating it into two domains D3 and D4. 
Assume p £ D%. Since xa}/ crosses qp (use /3Di as the simple closed curve) then 
qp crosses xay [10, IV, 32] so that q £ fiD^ — xay. Now apply Theorem 3.4 once 
more to Dz, xay C @Dz and Ap, to obtain an arc az in Av joining a to z Ç j&D3 — 
xay = /3Z) — xçry. But then qa \J az is an arc in Av spanning (3D, separating D 
and so giving a contradiction to the choice of D. 

Remark 3.2. It now follows from Theorem 3.2 that the fibers of a planar net 
contain no simple closed curves and furthermore that Lemma 2.1 is valid for 
any relatively compact set. 
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Singular points of a planar net. The order of a point p in a set X is said to be 
less than or equal to the integer n > 0, if for any neighborhood V of p there 
exists a neighborhood U of p such that U C V and /3 U contains ^ n points. The 
order of p in X is equal to n if the order is ^n but not ^ n — 1. If no such n 
exists the order will be said to be infinite. If p is a point in the fiber A of se, the 
order of p in A will be denoted by 0A(p). Similarly 0B{p) will denote the order 
of p in the fiber B of 3i. It is now shown that for any point p, 2 ^ 0Ap(p) = 
OBP(P) < °° and that in fact they are equal to 2 except for an isolated set. 
Because no fiber has an end point the lower bound of 2 is immediate. 

LEMMA 3.3. Let D be a disk in the plane and C a dendrite (a locally connected 
continuum with no simple closed curves) in CI D with its end points in fiD. Let C 
be a subcontinuum or a point such that C C C — /3D. Then there are only a finite 
number of components in C — C. 

This lemma follows easily from local connectedness. 

THEOREM 3.6. Let A be a fiber of s/. Then 0A(p) = 2 for all but a countable 
number of points of A. Furthermore, we have 2 ^ 0A(p) < oo for all p £ A. 

Proof. Every point of A is a cut point for if p is a non cut point which is not 
an end point (Theorem 3.5), then p must lie on a simple closed curve [10, II, 30] 
contrary to Remark 3.2. Thus the cut-point order theorem [15, III, 3.2] proves 
the first statement. For the second statement, let p Ç A and D be a disk about 
p. Apply Lemma 3.3 to the component C of A C\ Cl D containing p and with 
C = {p}. Thus the number of components of C — p is finite and equal to 
0A(p) by [15,V, 1.3(2)]. 

THEOREM 3.7. Each fiber of a planar net \sé, 33} is locally a finite tree. 

For a fiber A £ se, it can be shown that the countable set S = {p £ A\0A(p) 
> 2} does not cluster by standard arguments using local connectivity, Lemma 
3.3 and Theorem 3.6. 

THEOREM 3.8. Let A be a fiber of se and B a fiber of 3! such that p = A C\ B. 
ThenOA(p) = 0B(p). 

Proof. Let D b e a closed disk about p which excludes any point in A and B of 
order > 2 (except possibly p) and whereJ^^ and SeD are USC. Let 0B(p) = n. 
Let C be the component of A C\ D containing p and C be that of B C\ D 
containing p. Then C consists of n arcs with n complementary domains whose 
boundaries contain an arc of B containing p. Apply Theorem 3.4 to each 
domain to obtain n arcs in C joining p to $D. Therefore C — p has at least n 
components so that 0B(p) ^ 0A(p). The reverse inequality is obtained by 
symmetric arguments on A and B. 

Definition. Let [s/, 3)\ be a planar net. For the point p in the plane let A ^s/ 
and B G 3$ be the fibers such that p = A C\B. The order of p in [&/, 3J\ is 
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0A(P) — 0B(P) and will be denoted by 0(p). The singular set of \sé, £$] is the 
set 5 = lp\0(p) > 2} and a point p of S is called a singular point of [ J / , Sê\ 

THEOREM 3.9. The set S has no cluster points. 

Proof. Assume p is a cluster point of S. Let {pn} be a sequence of points of 5* 
converging to p. Let D b e a closed disk about p chosen such thatS#D and 3ëD 

are USC and D contains no singular point of Av except possibly p. Let A, An be 
the fibers of seD containing p and pn respectively, for each n. The components 
of D — A incident with p are finite in number so assume {pn} is contained in one 
of them. Let C be the arc in A bounding this component in D with end points 
a, b G @D. Given e > 0, by USC of s/D there is a 5 > 0 such that each An 

meeting V(C, ô) is contained in V(C, e). Since there is an integer N such that 
for all n > N, pn G N(p, d),AnC V(C, e) for all n > N. Let Bn and B be the 
fibers of 3!D containing pn and £ respectively (see Figure 4). For each n > N, 
since 0(pn) > 2 there is a component, Dn, of D — An such that Dw C V(C, e) 
so that/SP^ C\ I3D C N(a, c) or N(b, e). By Theorem 3.4, since 5 n separates the 
boundary arc f3Dn P\ An of Z)n, 5 n contains an arc which spans the boundary of 
Dn. Hence Bn must meet /3Dn P\ Ẑ> C N(a, e) or iV(&, e). Therefore the J5„'s 
are infinitely often near a or b, say a. Thus a Ç lim sup £>w. But p d B C\ 

Figure 4 
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lim inf Bn so tha t lim sup Bn d B and hence a £ B. This contradicts p = 
A C^\ B and establishes the theorem. 

The proof of Theorem 3.1. Let D be a closed disk about £> such tha t Z) contains 
no singular point of \sé, S§] except possibly p for which 0(p) = n §; 2 and 
J3/2) and ^£> are f/SC. Let 4̂ and B be the fibers of s/D and ^ ^ respectively 
such tha t A C\B = p. Let 0(/>) = n ^ 2 so tha t A — p and 5 - p each have 
w components {at : i G Zn} and {/3* : i G Zw} respectively lettered counter 
clockwise from a fixed component «o such tha t for each i (E Zn , fii is between a* 
and a i + i . For each i £ Zn , let the component of D — A containing fit be 
denoted by Dt and at £ « j H (3D and &* 6 /3f C\ (3D be the first points of at and 
/3* respectively on fiD in the order start ing from p (see Figure 5). 

Consider the following construction. For each i £ Zn , let ^ b e a point on the 
open arc pa^oiai and let Z^ be the fiber of S§' D containing pt. By choice of D, B x 

is an arc and by Theorem 3.4 Bt separates Di-i and Dt. Hence Bt meets {3D in 
the open arcs bt-i, at and a fit and separates at from B. Let e > 0 be chosen so 
small tha t for each i £ Zn , F ( 7 ^ e) C\ Bt = 0 where 7* is the arc C l ^ — £#*)• 
Then since 7 * is connected so is V(y i} e) and hence B t separates V(y u e) from B. 
Let 5 > 0 be chosen so small t ha t V(A, 8) C\ I3D C Uiçzn V(lu <0 and choose 
<5' > 0 so tha t 7 ( 4 , ô') C F ( 4 , <5) satisfies USC for 7 ( 4 , 5). For each i £ Zn , 
let (^ £ (fit — p) r\ V(A, 8f) and let A t be the fiber of se D containing qt. Then 
i j C 7(^4, ô). Let pbi be the arc joining p to fr* in /3*. Then Dt — pbt is the 
union of two disjoint domains each of which is separated by A t (Theorem 3.4). 
T h u s At must meet atbi and btai+i within V(yu e) and V(yi+u e) respectively. 
Since qt £ B, qiis separated from V(yu e) by Z?* and from F (7*4.1, e) by Z?<+i. 
Hence AtC\ Bt 9^ & ^ AtC\ Bi+1. Let r< = Atr\ Bi and 5, = i 4 f n J3 i+i . 
Finally denote the closure of the domain in Di bounded by the arcs pu pi+i on 
A, pi+1 Si on Bi+1, SiYi on At and rtpt on Bt by Z^. 

Now I construct a homeomorphism hi : Rt —> [ — 1, 1] X [0, ( — 1)*] such tha t 
J ^ ; and Se'Ri are mapped onto {lines y = constant} and {lines x = constant} 
respectively. First, for each i Ç Zn , the arcs pipi+i CL a-i^J p^J ai+i and £g* in 
Z^ can be mapped homeomorphically into R2 by fi : pipi+i —> [ — 1, 1] X 0 such 
tha t / , ( />) = (0 ,0 ) a n d / , ( £ , ) = (( —1)*, 0) and by g, : fe->0X [0, ( -1 )* ] 
such tha tg<(£ ) = (0,0) and g iiqt) = (0, (-iy).Lett £ Rt and A t and Bt the 
fibers ois/Ri and ^ ^ . respectively such tha t AtC\ Bt = 2. Since Z3* meets /3ZL* 
it mus t do so in pipi+i or s ^ . Hence by Theorem 3.4 it must meet both. Let 
t\ = B t C\ pipi+i. Similarly A t must meet both pi+iSi and rtpi and hence must 
separate p from qt in R^ Thus 4 ^ meets pqt. Let /2 = A t C\ pqt. Define 7ry on 
J?i by TT^(0 = tj,j = 1,2 and hi on Rfby hi(t) = (fi(iri(t))f gtfait)). Then ht 

is clearly one-to-one. The continuity of ht follows from tha t of 71-1 and 7r2 which 
follows from the USC of SeRi andstf R.. Thus since Rt is compact ht is a homeo
morphism. 

Let R = U zezn ^ i - I t is easily seen tha t for i 7̂  n — I hi agrees with hi+\ on 
ppi+i. If w is even this is also true for i = n — 1 and gives a single valued map 
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h' : i^ —> [ — 1, 1] X [ — 1,1] C R2 of index n/2 which is clearly topologically 
equivalent to zn/2. Thus restricting to N = (h')~l (iV(0, 1)) there is a homeo-
morphism h of N to the unit disk E in the s-plane about 0 such tha t h'(t) = 
(h(t))n/2 on N which satisfies the requirements of the theorem. If n is odd 
hn-i = — ho on ppo. Thus a double valued maps h! : J? —> [ — 1, 1] X [ — 1 , 1] 
can be defined by continuation such tha t h' = ±ht on Rt which is clearly 
topologically equivalent to the two valued map zn/2. As above we get a neighbor
hood N and homeomorphism h of N to E satisfying the theorem. 

4. C o n j u g a t e n e t s o n 2 - m a n i f o l d s . In [13], I gave a generalized definition 
of conjugate net as t reated by Morse and Jenkins [6; 7; 8]. Here in view of 
Theorem 3.1, the definition is extended to include local conditioning by alge
braic functions. 

Definition. A pair of families [s/, 38} of disjoint locally connected generalized 
continua on a 2-manifold M forms a conjugate net if for each point p Ç M there 
is a neighborhood TV about p and a homeomorphism h of N onto the unit disk 
iV(0, 1) in the s-plane such tha t h(p) = 0 and each element of se N or 38 N is 
carried onto a component of a level curve of Re zn/2 or Im zn/2, n > 1, respec
tively. The neighborhood N and homeomorphism h will be termed canonical, n 
the order of p, denoted 0(p), and S = {p £ M\0(p) > 2} the singular points of 
[ j / , ^ ] . 

T H E O R E M 4.1. Let s/ and 38 be two admissible families of generalized continua 
on a 2-manifold M. If for each A G se and B G 38, A C\ B is discrete and A\J B 
bounds no relatively compact Jordan domain, then [$/, 3ë~\ is a conjugate net. 

Proof. Let p G M and D b e a disk about p. I t is easily seen tha t seB and SeD 

are admissible families in D. For any A G s/D and B Ç SSDy the discrete set 
A C\ B, consists of a t most one point, else AVJ B would bound a simply con
nected domain in D [10, IV, 20] and hence in M contrary to the hypothesis. 
T h u s [p/D, 38D~\ is a planar net and Theorem 3.1 yields a canonical neighbor
hood for p. I t remains to show the fibers ois/ and 38 are locally connected. 

If, say, A is not locally connected a t p, it is clear from the s tructure of a 
canonical neighborhood tha t there is a sequence {An} of components of A C\ N 
ms/N — s/p limiting in Av G s/N. But Bv 6 38N meets every fiber of s/N and 
hence each An. Thus if B is the fiber of 38 containing Bp, p is a cluster point of 
A C\ B, contrary to the hypothesis. 

The converse of Theorem 4.1 is not true. The condition on the unions is 
global in na ture whereas the condition defining a conjugate net is local. For 
example on the torus represented in the plane by the square [0, 1] X [0, 1] the 
lines parallel to the vectors (1, \) and ( — 1 , \) form two families s/ and 38 
which form a conjugate net, yet A \J B bounds a relatively compact Jordan 
domain for any A Ç s/ and B G 38. In particular, a conjugate net locally 
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structured by zn need not be generated globally by a light open map. However 
in the plane, the converse is t rue. 

T H E O R E M 4.2. A pair [&/, SS] of families of closed generalized continua in the 
plane form a conjugate net if and only if se and SS are admissible and for each 
A G se and B G SS, A C\ B is discrete and A\JB bounds no relatively compact 
Jordan domain. 

Proof. I t suffices to prove the necessity. Let A £ s/ and B G SS and 
p G A C\ B. Let N be a canonical neighborhood of p. If p is a cluster point of 
A r\ B, let {pn} be a sequence in (N C\ A (~\ B) — p converging to p. Since 
each element of s/N meets each element of SeN in a t most one point then there 
exists infinitely many distinct elements of S$N or SeN containing \pn}, say of 
o/N. Let An be the element of s/N containing pn so t ha t {An} (components of 
A H N) is an infinite subset. But since pn —» p it is clear from the s t ructure of 
sé'N t ha t [An\ converges to a limit cont inuum in Av containing p. Hence A is 
not locally connected a t p, contrary to the hypothesis. 

Finally, for A £ sf and B G Se assume AVJ B bounds a relatively compact 
Jordan domain. By [15, VI, 2.51] there is a simple closed curve in A KJ B. First 
it is noted tha t no fiber of se or Se contains an end point or an open set by the 
s t ructure of s# and SS in canonical neighborhoods, and so by Theorem 3.2 
neither A nor B contains a simple closed curve. T h u s a simple closed curve C 
can be formed of arcs a and /3 in A andB respectively joining points/?, qr G A C\ B, 
such tha t a C\ /3 = {p, q] (discreteness of A C\ B). If D is the bounded domain 
in <g(ct \J 13), let SS' = {B Ç 3§clD\B C\ a ?± 0}. For each B G Se', B C\ a 
consists of more than one point, since if not, B would be a locally connected 
cont inuum with a t most one end point (necessarily in a), and by Lemma 3.1 
would contain a simple closed curve. Bu t this implies t h a t some fiber of SS 
contains a simple closed curve, contrary to the remark above. Thus , since B C\ a 
is discrete with more than one point, B contains an arc which spans /3D and so 
separates D [15, VI , 3.5]. Consequently, if p', q' G B C\ a, then for any other 
fiber B' G SS', either each point oiB' C\ a is between p' and q' on a or else none 
are. 

Now SS' is part ial ly ordered as follows: for Bu B2 G SS', define B1 g B2 if 
and only if B\ = B2 or there exists pi, qi G B\ C\ a such tha t each point of 
B2 r^ a is between pi and gi on a. Again, just as in Theorem 3.2, one obtains a 
contradiction to Zorn 's lemma. 

COROLLARY. A pair \sé, SS] of families of closed generalized continua on a 
2-manifold M forms a conjugate net if and only if 

1 ) A C\ B is discrete for any A G s/ and B G SS ; and 
2) for any Jordan domain D C M, A\J B does not bound a relatively compact 

Jordan domain for any A G s/D and B G SSD. 

Remarks. The necessity in Theorem 4.2 tells us in part icular t ha t a conjugate 
net in the plane is in fact a planar net. If M = S2, then any fiber of a conjugate 
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net on S2 must be a continuum without an end point and so by Lemma 3.1 
contains a simple closed curve contrary to the above corollary. Thus S2 cannot 
support a conjugate net, suggesting another view of Liouville's theorem. 
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