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A NON-LINEAR DIFFERENCE EQUATION
WITH TWO PARAMETERS. II
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Abstract

The paper discusses solutions of period 4 for the difference equation

where k and m are real parameters, with k > 0. For given values of k and m there are at
most three solutions with period 4 and equations are set up to determine the elements of
these solutions and the stability of each solution. Only real solutions are considered. The
procedure that is used to find these solutions allows unstable solutions to be identified as
well as stable solutions.

In a previous paper, solutions of period 2 and period 3 were examined for this equation
and there was evidence of anomalous behaviour in the way the stability intervals occurred.
Some preliminary information about solutions of period 4 was mentioned in the discus-
sion. The present paper provides more complete results, which confirm the anomalous
behaviour and give a better idea of how the stability criterion changes for different
families of solutions. These results are used to indicate the variety of behaviour that can
be found for one-parameter systems by imposing suitable conditions on m and k.

1. Introduction

In a previous paper [2], which will be cited as Paper I, the motivation for studying
the equation

yn+i = F(yn) = 2k/[l+(yn-m)2} (1.1)

was set out. It arose from an iteration formula for solving a cubic equation [4],
and equation (1.1), with m real and k > 0, was seen to be a standardised form of
the general problem. From that point of view, the main concern was to ensure
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146 A. Brown 12] 

that the iteration procedure converged quickly, and an adequate method was 
developed in Section 7 of Paper I. At the same time it was of interest to have 
information about periodic solutions of this two-parameter difference equation, 
since most of the information for problems of this kind is for one-parameter 
equations [3], although more recently two-parameter equations have attracted 
attention in the literature [1, 5, 6]. 

Solutions with minimum period 2 (C2 solutions) and with minimum period 3 
(C3 solutions) were studied in Paper I, and Table 2 of that paper gives critical 
values of κ for a number of values of m. For a given value of m, C2 solutions 
occur for κ > κ*, where 

κ* = (1 + ς γ){-ς + Δ1 + m2)}, (1.2) 

and there is a single C2 solution for each κ > κ*. For m < 1, all the C2 solutions 
are stable, but for m > 1 the C2 solutions are stable for κ* < κ < k5, unstable 
for ks < κ < k6, and stable again for κ > k6, where 

k5 = (1 + m2){m - Δλθ 2 - 1)}, k6 = (1 + m2){m + j{m2 - 1)}. 
(1.3) 

When κ = k5 or κ = k6, the solution is on the border-line for stability, with the 
stability criterion, S2, equal to - 1 . When m = 1, almost all the C2 solutions are 
stable. In this case, k5 = k6 = 2 and there is a C2 solution with S2 = -1 when 
κ = 2. For all other admissible values of k, the C2 solution has -1 < S2 < 1. 

It turns out that the C4 solutions (solutions with minimum period 4) occur for 
m > 1 and ks < κ < k6, that is, in the region where the C2 solutions are 
unstable. For m slightly greater than 1 there is only one C4 solution for each 
admissible κ and these solutions are stable. This is the situation up to about 
m1 = 1.2. (More precise values for m1 and other critical values are given later.) 
The next critical value, m2, is roughly 2.31 and for m1 < m < m2, there is a single 
C4 solution for each k, with two sub-intervals for κ in which the solutions are 
stable. One of these has k5 as its lower limit while the other has k6 as its upper 
limit. For m > m2, there are three C4 solutions for some values of k, and it is 
possible to have two more sub-intervals for κ where stable C4 solutions occur. In 
Paper I it was noted that for m = 3, superstable C4 solutions could be identified 
for four different values of k, and in fact each of these superstable solutions 
occurs in a separate "window of stability" whose extent is determined in the 
course of this paper. This type of behaviour occurs for m > w 3 , where w 3 is 
approximately 2.33. For m2< m < ς ٥ , there is an intermediate situation where 
stable C4 solutions occur in three discrete ^-intervals. Essentially these sub-divi­
sions arise because the stability criterion for the relevant solutions goes from + 1 
to a minimum value, and then back to + 1 (as κ increases, for a given value of m). 
If the minimum is less than - 1 , two intervals of stability occur; otherwise there is 
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(3) A non-linear difference equation 147

a single interval of stability. Note that counting superstable solutions can be
misleading. The number of superstable solutions in a stability interval can vary
from 0 to 2, depending on the level of the minimum.

If we take bv b2, b3, bA to be the elements of a CA solution, then it is a matter
of choice which element we label as bx and it is better initially to use a symmetric
function of the bt such as the sum of the four elements, a. Section 2 sets up
various equations involving a and other symmetrical functions and in Section 3
these equations are combined to give a cubic equation for a (for given values of m
and k). Once a has been determined, other symmetrical functions follow and we
can evaluate the elements of the solution and the stability criterion (Section 4).
Some details of the numerical calculations are given in Section 5. It was found
that the usual method of solution broke down for certain values of m and k,
where the equation for a has a double root, and this situation is considered in
Section 6, together with some other special cases.

In Section 7, the results are re-examined in a different way. In discussing
equation (1.1) we need information about the solutions for a two-dimensional
array of points and this information was built up by seeing how the solutions
changed along lines m = constant. In effect, this gives solutions for a family of
one-parameter problems, with k as the parameter for each particular value of m.
However we can also look at other families of one-parameter problems by, say,
specifying k as a function of m. Some examples are given in Section 7 and this
brings out a greater variety of behaviour then before. It is clear that the
" period-doubling path to chaos" is only one pattern out of a number of
possibilities for one-parameter problems.

2. Preliminary equations

If equation (1.1) is iterated four times, to obtain yn+i as a function of yn,
equating yn+4 to yn gives a polynomial equation of degree 17. The roots of this
equation include the elements of the CA solutions but they also include the C2
solution and the equilibrium solutions, since yn+4 = yn holds for these degenerate
cases also. The degenerate cases account for a factor of degree 5 in the polynomial
equation and the remaining factor, of degree 12, must provide the elements of the
CA solutions. If (bv b2, b3, b4) is a typical CA solution, then

h{yn) = (yn ~ b1)(yn - b2)(yn + b,){yn - b,) (2.1)

contributes a factor of degree 4 to the polynomial equation. We see that at most
there can be three factors of this type in the polynomial of degree 12, so at most
there should be three CA solutions for each pair (m, k).
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For a C4 solution the elements b, must be positive and distinct, with

2k = (1 + m2)b2 - 2mblb2 + b\b2 (2.2)

and with three similar equations obtained by cyclic permutation of the subscripts.
Since it does not matter which element we take as bx, it is convenient to work with
functions of the Z>, which have cyclic symmetry, for example

X > f o = b\b2 + b\b3 + b2b4 + b\bx,

where £ is used for cyclic summation over the subscripts 1,2,3 and 4. In
particular we can use

y = Y,b1b2b3,
 8 = 61M3V

With this notation,

h(y) = / - ay3 + Py2 - yy + 8, (2.3)

where y3 = /?x + fi2, and if we can determine a, Pv /?2, y, 8 the elements b, are the
roots of h(y) = 0. Our procedure is to express y and 5 in terms of a, pl and /$2,
then /il and P2 in terms of a and finally to establish an equation for a (given m
and k). As noted in Section 1, the equation for a turns out to be a cubic, in line
with our expectation that there are at most three CA solutions for any pair (m, k).

A number of equations can be obtained directly from equation (2.2) and the
three similar equations. Adding the equations gives

(1 + m2)a - 2m^1 + Y,b2b2 = 8A:. (2.4)

Multiplying equation (2.2) by b3 and summing cyclically gives

(1 + m2)Px - 2my + Y,b2b2b3 = 2ka (2.5)

and in the same way we can multiply equation (2.2) by b4, b2, b3b4, b2b3b4, b3b\,
64 — b2b3 and then sum cyclically in each case. This gives

2(1 + m2)/?2 - 2my + Y.t>ib2b3 = 2ka, (2.6)

(1 + m2)Ebj ~ 2mZblb
2 + Zb\b2

2 = 2ka, (2.7)

(1 + m2)y - &m8+ a8 = 2k^, (2.8)

(1 + m2)Y,b\b2b3 - 2ma8 + ^8 = Iky, (2.9)

(1 + /fi2)2>i*2*3 - 2ma8 + ^8 = 2kY.bxb\, (2.10)
2b3 - b2b3) - 2mZ{b\b2b3 - bxb

2b3)

. (2-11)
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We can also make use of identities such as

= «2 - 2)8, (2.12)

2 + blb
2) = aPl-2y, (2.13)

= «/?2 - Y = E^A 2 . (2-14)

+ 2'£blb
2b3 = p2-48, (2.15)

b3 = ay - 48 - & & , (2.16)

2b3 + b1b2bl) = P1P2, (2.17)

|63 + btfbj) = Pty - 2aS. (2.18)

Another way of using (2.2) is to multiply by bA and to subtract the correspond-
ing equation with the subscripts moved forward (cyclically) by two. This gives

2 k ( b 4 - b 2 ) = b 2 b A ( b 3 - b x ) { 2 m - b x - b 3 ) . (2.19)

Similarly,

2 k { b x - b3) = b 2 b , { b A ~ b 2 ) ( 2 m - b 2 - b , ) , (2.20)

and we can multiply the two equations together, cancel out a non-zero factor
(br — b3)(b2 — b4) and end with

2-2ma +Pj. (2.21)

3. Combination of equations in Section 2

In equation (2.11), we can substitute for Y.b\b3, Hblb3, Hb\b2b3, Hbybjb^ and
bl from equations (2.14), (2.4), (2.5), (2.6) and (2.12). This gives

{(a - 4m)(l + m2) + 4k}p2

m2)2 - %k{\ + m2) -2ka2, (3.1)

or if we put 2k = p(l + m2)

y = 3/70! + (o -4m + 2p)02 +(a - 4p)(l + m2) -pa2. (3.2)

In the same way, we can eliminate T.b2, T.blb2, Hb^l, T,bjbl and T.bxb
2b^

between equations (2.4), (2.6), (2.7), (2.12), (2.13) and (2.15). This gives

Pi = 48 +(2 + 2ma - 2m2)p1 - ( 2 + 2m2)P2

+ (1 +m2){p(3a - 8m) + 2 m « - a 2 } . (3.3)

A similar equation, obtained by eliminating T.bxblb3 between equations (2.6) and
(2.16), is

PXP2 = (a - 2m)y - 48 + (l + m2)(2p2 - pa). (3.4)
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The summations on the left-hand side of equation (2.18) do not occur in any of
the other equations, but we can write

b3)(bib2)} = Eb2b,{2k - ( 1 + m2)b2 + 2mblb2)

i - ( 1 + m2)X>fo + 2rn£,bxb\bz

and the summations on the right-hand side are available from equations (2.4) and
(2.6). In the same way,

Now Y.bxb\ can be replaced from equation (2.14) and we can combine equations
(2.17), (2.5) and (3.4) to give

Y.bxb2b\ = (a - 4m)y - 4fi + (1 + in2)(A + 2/32 - 2pa). (3.5)

With this information available for the two summations in equation (2.18) we can
make use of this equation and obtain

( 4 m 2 - 2ma + fi^y

= a8 + ( 1 + m2){2/>/81 +(2p - a)p2 - 2mpa) +{a- 4p)(l + m2f.

(3.6)
This is after using equation (2.8) to simplify the terms involving S.

If we compare equations (2.21) and (3.6), we note that the co-factor of 8 in the
first of these equations is the same as the co-factor of y in the second. This
suggests that we combine them, using equation (2.8) in the process. From
equation (2.8),

(4m2 - 2ma + )31){(1 + m2)y + S(a - 8m)}

= (4m2-2ma + /31){p(l+m2)/31} (3.7)

= (1 + m2){p(4m2 - 2ma){il +p/l2}.

If we use equations (3.6) and (2.21) on the left-hand side and equation (3.3) to
replace /?2 on the right-hand side, the resulting equation is

(a - 4/;)(l + m2){8 - ( 1 + m2)(& - I - m2 - pa + 4mp)} = 0. (3.8)

Hence, provided a # 4p, we come out with

6 = (1 + m2){P2- 1 - m2 - p{a-4m)}. (3.9)
Strictly we should add another proviso, that a =t 8m, since we multiplied equa-
tion (2.21) by a — 8/w in the argument above.

If we substitute for y and 8 in equation (2.8), using equations (3.2) and (3.9), we
can cancel a common factor 2 + 2m2 and get

pPl +(a + p - 6m)02=p(a2 - 6ma + 2 + 18m2) - 4m(l + m2).

(3.10)
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Similarly, equations (3.3) and (3.4) can be rewritten as

ft = (2 + 2ma - 2m2)p1 + 2(1 + w2)#,

+ (1 + m2){p(8m- a) + 2ma- a2} - 4 ( 1 + m2f, (3.11)

^1j82 = (3a - 6m)pP1 + {(2a - 4m)p + a2 - 6ma + 6m2 - 2}P2

+p{-a3 + 2ma2 - ( a + 8m)(l + m2)}

+ (1 + m2)(a2 - 2ma + 4 + 4m2). (3.12)

Equations (3.10), (3.11) and (3.12) provide three relationships between /?j and /?2,
so in theory it should be possible to eliminate them and get an equation for a. In
practice, it is more convenient to look for further linear relationships between /^
and fi2-

If we insert 8 from equation (3.9) into equation (2.21), the only non-linear term
in fil and /J2 is fiiP2

 a nd this can be replaced by linear terms from equation (3.12).
This leads to a linear equation

{p(2m - 2a) + 1 + m 2 } ^ +{p(4m - 2a) - a2 + 8ma - 10m2 + 2}02

= (1 + m2)(p2 + a2 + 4) +p{-a3 + 4ma2 - ( 1 + 13m2)a - 8w + 8m3}.

(3.13)

We can obtain a slightly neater alternative if we use equation (3.10) to replace
pP^lm - 2a). This leaves

(1 + m2)Px +(2mp + a2 - 6ma + 2m2 + 2)/32

= (1 + m2)(p2 + a2 + 4 + 8w2 - 8ma)

+p {a3 - 10ma2 + (3 + 35w2)a - 12m - 28m3}. (3.14)

There are several ways of obtaining a third linear relationship between PY and
/?2. Subtracting equation (2.10) from equation (2.9) gives

(1 + m2){X>2V>3 - Zb1b2b
2} = 2k{y - L^ftf }

and we can use equations (2.5), (3.5), (2.13) and (2.4) to replace the summations.
This brings in terms in y and S but equation (3.2) and (3.9) allow them to be
expressed in terms of /?j and /}2. The resulting linear equation is fairly cumber-
some but by using equations (3.10) and (3.14) it reduces to

3/>20i +{2/>2 + (a - 4m)p - a2 + lOma - 2 - 26m2}/?2

= />2a2 +(1 + m2)(2p2 - a2 + lOma - 4 - 28m2)

+p {-a3 + 14ma2 - ( 3 + 67w2)a + 16m + 112m3}. (3.15)

In general, equations (3.10), (3.14) and (3.15) are linearly independent and lead to
a cubic equation for a.
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If we eliminate j8x from equations (3.10) and (3.14), we get an equation of the
form

LJ2 = Nlt (3.16)

where

L1 = Imp2 + p(a2 - 6ma + 1 + m2) -{a - 6m)(l + m2), (3.17)

Nx = />3(l + m2) + p2{a3 - 10ma2 + (3 + 35w2)« - 12m - 28m3}

+p(l + m2)(2 - 10m2 - 2ma) + 4m(l + m2)2. (3.18)

In the same way, if we eliminate /Jx from equations (3.10) and (3.15) we get

L2p2 = N2, (3.19)

where

L2 = p2 + p(2a - 14m) + (a2 - lOma + 2 + 26m2), (3.20)

JV2 = p2(2a2 - Uma + 4 + 52m2)

+/>{a3 - Uma2 +(3 + 67m2)a - 28 - 124m3}

+ (1 + m2)(a2 - lOma + 4 + 28m2). (3.21)

For equations (3.16) and (3.19) to be consistent, the condition is that

G(a,m,p) = L2Nl-L1N2 = O. (3.22)

From the expressions for Lx, L2, Nx and N2,

G(a, m, p) = goa
3 + gltx

2 + g2a + g3, (3.23)

with

go = P4 ~ 6mP3 + (3 + l lm2) / ; 2 - 6mp(l + m2) + (l + m2)2

= (p2 - Imp + 1 + m2)2 + p2, (3.24)

gj = -14m/?4 +(1 + 77m2)/;3 -(38m + 134m3)p2

+ 72m2(l + m2)p- \2m(\ + m2)2, (3.25)

g2 = (5 + 73m2)p* -(42m + 362m3)p3 +(11 + 226m2 + 567m4)/>2

- m ( l + m2)(28 + 292m2)p +(4 + 48m2)(l + m2)2, (3.26)

g3 = p5(l + m2) - m/>4(34 + 146m2) + m2/>3(188 + 604m2)

-mp2(52 + 496m2 + 828m4) + m2p(l + m2)(112 + 400m2)

- 1 6 m ( l + 4m2)(l + m2)2. (3.27)

From equation (3.24), g0 is positive for p > 0 and indeed it is straightforward to
show that gQ has a minimum value 16/25. Hence G(a, m, p) = 0 gives a cubic
equation for a for any pair (m, p). Also, for m < 0 and p > 0, g0, gx, g2 and g3
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are all positive and in this case G — 0 cannot have a positive root. This rules out a
C4 solution since we need bt > 0 for a periodic solution. (From equation (1.1), we
have 0 < y1 < 2k for all values of y0 and indeed 0 < yn < 2k for n > 1. This
means that in looking for equilibrium solutions or periodic solutions, we can take
0 < _y0 < 2k and regard the iteration as a mapping of an interval into itself.)

4. Stability criterion and solution for cyclic elements

For given values of m and k, we have p = 2k/(l + m2) and g0, gv g2, g3 can
be calculated. The only problem is that we may be losing some accuracy by taking
the difference between large terms. For example, when m = 3

g2 = 662/>4 - 9900/73 + 47972/?2 - 79680/7 + 43600

and we want to use values of p between 0 and 6. For some of the calculations a
change of origin was made to alleviate this problem. When g0 to g3 have been
found, the next step is to solve the cubic equation for a and this was done by
using the iteration procedure developed in Section 7 of Paper I. For each real
positive a, equation (3.16) or equation (3.19) gives /?2 (provided Ll and L2 are not
too close to zero) and equation (3.14) then gives Pv Equations (3.2) and (3.9) give
y and 8, while /? is simply /Jj + /?2. Thus we can form h(y), as given by equation
(2.3), and solve h(y) = 0 to obtain bv b2, b3 and bA. Some comments on this are
given below. It was also convenient to evaluate the stability criterion, 5, for each
C4 solution after a, /?, y and 8 had been determined. The stability criterion is

S = F'(bl)F'{b2)F'(b,)F'(b4), (4.1)

and S must be between -1 and +1 for local stability. From equations (1.1) and
(2.2)

-Ak{bx - m) Ak(m - bx) b\(m - bx)
F{b^ {l+{bi.mff {2k/blf

 = * • ^
It follows that

S = {b^b^fim - b^im - b2)(m - b3)(m - bA)/k4

= (82/k*)h(m). (4.3)

Thus S can be evaluated without knowing blt b2, b3, bA explicitly and indeed S
can be found and used even for cases where the solution for the 6, is complex.
(This occurs when the transition from S > 1 to S < 1 marks the transition from
complex to real solutions.)
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In solving for the cyclic elements, we note from equations (2.19) and (2.20) that
1m — bx — b3 and 2m — b2 — b4 must have opposite signs. (From equation (2.21)
their product, 4m2 - 2ma + fix, is non-zero and negative.) If we take bx + b3 >
2m, then we must have

bx + b3 > 2m > b2 + b4. (4.4)

Now bx + b3 and b2 + b4 are the roots of the quadratic

0 = (X- bx -b3)(X- b2~b4) = X2- aX+ $x, (4.5)

and for real, distinct roots we must have a2 > 4/3x. If this condition is satisfied we
can take bx + b3 as the larger root of equation (4.5), with b2 + b4 as the smaller
root. This is simply a matter of how we label the elements and in the same way we
can assume that bx is the larger of the pair bx and b3. From equation (2.20),
bx > b3 then implies that b4 > b2. If we write

Xx = bx + b3, X2 = b2 + b4, Yx = bxb3, Y2 = b2b4, (4.6)

then a knowledge of Xx and Yx is enough to give bx and b3, and a knowledge of X2

and Y2 is enough to give b2 and b4. We can say that Yx and Y2 are the roots of the
quadratic

0 = {Y-bxb3){Y- b2b4)= Y2- P2Y+ S (4.7)

but unfortunately we do not know whether bxb3 or b2b4 is the larger root. (Again,
fl2 > 48 is a necessary condition for real roots.) However we can get around this
difficulty by using equations (2.19) and (2.20) to obtain

2kbxb3(b4 - b2f{2m - b2 - b4)

= 2kb2b4(bx - b3f{bx + b3 - 2m).

This gives

Yx{(2m - I 2 ) I 2
2 } - Y2{XX - 2m)Xx

2} = 45(4w - a) . (4.9)

Also, from equation (2.14),

aP2 - y = bxb3{bx + b,) + b2b4(b2 + b4)

= YXXX + Y2X2. (4.10)

From these two equations

Xi(2mX2)}

= 48(4m - a)X2 +(a02 - y)X2(Xl - 2m),

with a similar equation for Y2. The equation Yx + Y2 = fi2 might have been used
as an alternative to equation (4.9) but instead it was incorporated in a check,
which was to evaluate Yx — @2YX + 8 and Y2 - fi2Y2 + 8 and ensure that they
were close to zero. (From equation (4.7), these expressions should be exactly
zero.)
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To find bl and b3 we have to solve the quadratic

0 = (Z - bx){Z - Z>3) = Z 2 - XXZ + Y1

and for real distinct roots we must have

(bx - b,f = X,2 - 4YX > 0. (4.12)

If this condition is satisfied, we can take

bl-b3 = l/(x}-4Y1), (4.13)

and in the same way we can take

b4-b2 = j(X2
2-4Y2), (4.14)

provided X2 > 4Y2. Thus the solution for bx, b2, b3, and b4 can be obtained
without solving h(y) = 0 as a quartic equation. The knowledge of Pl and /?2

allows us to compute the bt via linear and quadratic equations.
The procedure given above was adequate in most cases although some modifi-

cation was made for a few values of m and k where special difficulties arose.
These difficulties are probably easier to explain in relation to the general run of
the numerical results, which are discussed in the next section.

5. Numerical results

The computational work was carried out on a Univac 1100 computer, using
double precision for all variables. A number of numerical checks were included
and at the end the quantities

e4 = b, - F(b4) (5.1)

were calculated. The e's represent deviations from an exact fit to equation (1.1)
and provide an obvious check on the accuracy of the solutions for br, b2, b3, b4.
The normal practice was to evaluate /J2 from equation (3.16) and from equation
(3.19), then to use the mean of the two estimates in the later calculations unless
some discrepancy was apparent. It became clear that Lx and L2 could be zero for
some values of m and k, so a lower limit of 0.8 was imposed on the modulus of
these quantities. When \LX\ and \L2\ were both less than 0.8, /?2 was obtained from
a quadratic equation

(6m - a - p)0i - 0lfi2 + v2 = 0, (5.2)
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where

vx = a3 - ( / > + 12m)a2 +(2 + 46m2 + 6mp)a

- 4 8 m 3 - 20m2p - Ap, (5.3)

v2= p{a4 - 16ma3 + (2 + 94m2)a2

-(20m + 244m3)a - 4 + 24m2 + 220"?4}

+ (1 + m 2 ) { a 3 - 12ma2+(4 + 4Sm2 - p2)a - 8m - 56m3 + Ump2}.

(5.4)

This quadratic comes from equation (3.12) for /?x/?2- If we multiply equation
(3.12) by p, we can replace/?/?! on the left-hand side from equation (3.10) and on
the right-hand side we can replace 3p2^1 + 2p2P2 from equation (3.15). This
eliminates (ix and leaves the quadratic equation for /?2.

Equation (5.2) gives two values for fi2 and we can use equation (3.14) to
determine the corresponding values for /?1# Each pair was then substituted in
equation (3.11) and the pair which gave better agreement was taken as the
appropriate pair in the subsequent calculations. (Occasionally other information
was taken into account in deciding which pair to use.) Once fi1 and /?2 had been
found the solution for y, 8, S, />,, e, followed as before.

Although no real C4 solutions were expected for m < 1, some runs were made
with m between 0 and 1 and with k between 0.25 and 3.0. In each case there was a
single real value for a but the solution for the elements Z>, was complex, with
S > 1. It was clear that, for a given value of m, S had a minimum around
k = 2.0. The minimum value decreased as m increased, with a minimum of 1.8,
1.4 and 1.1 recorded for m = 0.9, 0.95 and 0.99, respectively. For m = 1.0 and
k = 2.0, a solution with S = 1 was recorded and for m > 1 real solutions
appeared for some values of k.

As mentioned in Section 1, there is a C2 solution which has S2 = -1 for m = 1
and k = 2. Its elements are bx = 2 + j2 and b2 = 2 - ^2 and we can think of it
as the limiting case of a C4 solution which has bx = b3, b2 = b4 and S = (-1)2 = 1.
The computed C4 solution for m = 1 and k = 2 gave values of a, /?, y, 8,
(bx - b3)

2 and (b2 — b4)
2 which agreed with this interpretation (to 12 decimal

places), although the solution for the b, was recorded as complex. Presumably
(&x - 63)2 and (b2 — bA)2 came out as very small negative numbers and the
programme stopped (as instructed) when that happened.

This difficulty appeared in a slightly different form for m > 1 and k close to k5

or k6. For example, for k slightly greater than k5 the computations gave a real
solution with errors et that were larger than usual, rising to 10"6 or 10"5 in some
instances. This appeared to be because bx - b3 and b2 — b4 were close to zero and
the calculated values of (bx — b2)

2 and (b2 — b4)2 had errors of about the same
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size as the calculated values, say about 10 ~12. When the square root was taken to
obtain bx — b3 and b4 — b2, the square root had an error of order 10~6.

For m > 1, real C4 solutions were obtained for /c5 < k < k6. The cubic
equation for a always has at least one real root, and for in < m 2 = 2.305976 there
was only one real root. We can call this the a0 root, and refer to the correspond-
ing solutions for bt as the a0 family or main family of solutions. For this family, S
was greater than 1 for k < k 5 and for k > k6 and the solution for the b, was then
complex. For k5 < k < k6, S decreased rapidly from +1 to a minimum and then
increased again more slowly, with S -» 1 as k -» k6. For 1 < m < mx = 1.202517
the minimum was greater than -1 so there was a single interval of stability
(/c5, k6). For m > m1 the minimum was less than -1 and there were two intervals
of stability (/c5, kf) and (kg, k6), where kg and kg are the values of k for which
S = - 1 . Some values for k*, k5, kg, kg, k6 are given in Table 1 and it will be seen
that the length of the (k5, kf) interval is tending to decrease as m increases, but
the (kg, k6) interval is getting larger.

TABLE 1. Critical values of k (for a given m )

m
1.00
1.25
1.50
2.00
2.50
3.00
3.50
4.00

k*
0.8284
0.8989
0.9840
1.1803
1.3962
1.6228
1.8557
2.0928

ki
2.0000
1.2812
1.2414
1.3397
1.5132
1.7157
1.9331
2.1593

Main family of C4 solutions

1.6125
1.3593
1.3918
1.5468
1.7409
1.9533
2.1762

m. = 1.2

Is*

-

2.7762
5.1146

11.2151
20.5265
33.9905
52.4775
76.8405

12517. rr

k6

2.0000
5.1250
8.5086

18.6603
34.7368
58.2842
90.8169

133.8407

Additional C4 solutions

k-!
-
-
-
-

1.879595
1.917941
2.078314
2.274070

, = 2.305976. m, =

*7*
-

-

-

-

1.888580
1.919330
2.078917
2.274430

2.334496.

kt
-
-
-
-

3.12443
5.27415
8.00027

11.52553

kf,

-
-
-
-

3.44141
6.10187
9.57957

14.11337

For m > m2, three real solutions occurred over an interval kn < k < ks, where
k-i and /c8 were determined numerically for various values of m. One of these
solutions was the a0 solution, which was unstable in (k7, ks), and two additional
families of solutions were recognisable. For one of these additional families, S
was greater than 1 in (klt k&) and we can refer to these solutions as the unstable
additional family. For this family, S-*lask^k7 and as A: -» ks, with S rising
to a maximum at some intermediate value of k. For the other additional family,
S = 1 at k — k7, with S decreasing to a minimum at an intermediate value of k
and approaching 1 again as k -» ks. We can refer to this as the "stable" family of
additional solutions since it has \S\ < 1 for some values of k. For m > m3 =
2.334496, the minimum value of S was less than -1 and hence there were two
intervals of stability, say (k7, k^) and (k$, /c8), where k^ and k% are the values of
k at which S = -1 for this family of solutions. For m2 < m < nt3 the minimum S
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was greater than -1 and the interval of stability was then (k7, ks). Some
numerical values are given in Table 1 and for comparison the corresponding
critical values for C3 solutions are listed in Table 2. (The notation is that C3
solutions occur for K1 < k < K2 and one of the solutions is stable for KY < k <
K{ and for K2* < k < K2.)

At k = k1 and k = k%, the two additional solutions coalesce to give a single
solution, with 5 = 1.

TABLE 2. Critical values of k (for a given m )

d solutions

fit /Cj Ai J\ 2 2

yT 2.3094 - - 2.3094
2.0 1.6667 1.7503 2.9784 5.0000
2.5 1.6850 1.7014 5.6889 10.3984
3.0 1.8350 1.8432 9.2799 18.1650
3.5 2.0256 2.0308 14.1180 28.8911
4.0 2.2352 2.2391 20.4424 43.0981

In determining the critical values for m and k, it was often useful to improve
the solutions for the elements b, by a simple but effective device. If we have a
value bx which is an approximation to the exact value £f for an element for the
C4 solution then we can iterate equation (1.1) four times to obtain, say b5. Now,
to the first order in bY - b*, the iteration should give

bi-bf = S{bl-bt), (5.5)
and it follows that

(1 - S)b* = b5- Sbv (5.6)
In general, this gives an improved estimate of b*, and we can use this improved
estimate to re-calculate b2, b3, b4, a, /?, y, S and S. The procedure can then be
repeated and the solution errors e, calculated to monitor the process. One
interesting point is that the C4 solution need not be stable; a large value of |.S|
becomes an advantage rather than a nuisance. Clearly, equation (5.6) does not
help when S = 1 but in practice the equation was used with 1 — S of order 10 "6,
without any difficulty arising. (Occasionally there were indications that the
iterations were settling into periodic solutions of small amplitude for S.)

6. Special cases

In the derivation of equation (3.9) from equation (3.8), it was assumed that
a — 4/7 was non-zero and it was noted also that a proviso a ¥= Sm was needed.
From the numerical work, solutions with a = 4p and solutions with a = 8m
occur, although there was no indication that anything unusual happened in either
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case. To check this, it was assumed that a = 4p and the various equations were
developed on this assumption. For p =£ 2m, the basic equation for a was replaced
by an equation Unking/? and m, which proved to be the same as G(4p, m, p) = 0
[equation (3.22)].

In the same way, assuming a = 8m ¥= 4p led to an equation between p and m
which was simply G(8m, m, p) = 0. The other equations used in the solution
were also unaffected.

For the special case a = 4p = 8m, equation (2.2) is replaced by

(2m - b2)(l + m 2 ) = b\b2 - 2mb1b2, (6.1)

and several of the equations are simpler. For example,

2 > i * i = I* i* f = 7 = 2mPi, (6-2)

^ = (6m2 - 2)0! + 32m2(l + m2), (6.3)

28 = (1 + 3m2)p1 +(1 + m2)P2 - 24m2(l + m2), (6.4)

/J2 = 48 +(2 + 14m2) ^ -(2 + 2m2)/?2 - 16m2(l + m2)

= (4 + 2Om2)0! - 64m2(l + m2). (6.5)

Equation (6.5) gives either f$x = 16m2 or /?j = 4 + 4m2.
For j8x = 16m2, we get /}2 = 8m2, y = 32m3 and S = 16m4 and the corre-

sponding solution is an equilibrium solution with fex = b2 = b3 = b4 = 2m. In
similar fashion, P1 = 4 + 4m2 leads to

02 = 14m2 - 2, 0 = 2 + 18m2,

Y = 8m(l + m2), 8 = (l + m2)2

and the equation h(X) = 0 for the cyclic elements becomes

0 = XA - 8mA-3+(2+ 1 8 m 2 ) * 2 - 8m(l + m2)Ar+( l + m2)2

= (AT 2 -4m* + 1 + m2)2. (6.6)

For m2 > 1/3, the solution is real but degenerate, with

6j = />3 = 2m + / 3 m 2 - l ) , b2 = bA = 2m - / 3 m 2 - 1).
Thus the condition a = 4p = 8m does not lead to a non-degenerate solution of
period 4.

For the numerical work the special cases a = 4p and a = 8m were of no
consequence but, as mentioned in Section 5, the computational technique had to
be altered when Lx and L2 were close to zero. This suggested that it would be
worth examining points where Lx = 0 and L2 = 0 and finding what happens to
the C4 solutions at these points. From equations (3.17) and (3.20), we are
concerned with points at which

pa2 -(6mp + 1 + m2)a + 2mp2 +(p + 6m)(l + m2) = 0, (6.7)

a2 + (2p - 10m)a + p2 - Ump + 26m2 + 2 = 0. (6.8)
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Eliminating a gives an equation Q(m, p) = 0, where

Q{m,p) =p6 - Ump5 + (8 + 64m2)p4

-(46m + 110w3)/>3 +(8 + 80m2 + 12m4) p2

-20m(l + m2fp + 2(1 + m2f. (6.9)

The equation for a can be written as

(2p2 - Amp + 1 + m2)a = -p3 + I6mp2 - ( 1 + 25m2)p + 6w(l + m2).

(6.10)

For a finite C4 solution, fi2 must be finite and this implies that Ll cannot be
zero without having Nt zero also (from equation (3.16)). In the same way, N2

should be zero when L2 is zero. It can be verified that the condition Q(m, p) = 0
also arises from taking Lx = 0, L2 = 0, N2 = 0 simultaneously and from the
simultaneous equations Lx = 0, L2 = 0, Nx = 0, iV2

 = 0- The numerical work
agrees with this.

TABLE 3. Values of m and k for which Lt = 0, L2 = 0

m
1.25
1.50
2.00
2.50
3.00
3.50
4.00

vaiu

1.175541,
1.272026,
2.041693,
3.314790,
5.166206,
7.699261,

11.022819,

:s ui ft

1.444044
2.712829
6.130276

11.499324
19.357997;
30.215996;
44.577753;

5.719589,
8.329993,
11.829435,

6.101476
9.425541
13.886449

Since G(a, m, p) = L2N1 — LlN2, it follows that G and its first order partial
derivatives are zero at points where Lx, L2, Nl and Â  are all zero. However,
although this is a sufficient condition for a double root it is not a necessary
condition. Also, the double root for a need not lead to a real solution for b1 to b4.
For the double root, a is given by equation (6.10) and, for given values of m and
p, there will be another real value of a for which Lu L2, Nx and N2 are non-zero
even although Q(m, p) = 0.

Table 3 lists some values of m and k for which Q(m, p) = 0, and it will be seen
that there are two values of k for m = 1.25, 1.50, 2.00 and 2.50, with two
additional values of k for larger values of m. The numerical calculations give two
critical values for m, namely

mn = 1.233603, ml2 = 2.880208,

and for a given value of m the equation Q(m, p) = 0 has no real roots for
1 < m < mn, two real roots for mn < m < mx2 and four real roots for m > m12.
Some of these roots occur in (m, k) regions where no real C4 solutions are
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expected (for example, m = 1.25, k = 1.175541), others where a single real C4
solution is expected (for example, m = 1.50, k = 2.712829) and others where
three real C4 solutions are expected (for example, m = 3.00, k = 5.719589). It
turns out that the occurrence of these special points does not change the general
picture, although they cause some anomalous results in the numerical work.

For example, for m — 1.25 and k going from 1.17551 to 1.17558, in steps of
10 ~5, the equation for a has one real root near 6.78, well away from the value of a
given by equation (6.10). For this value of a, L1 and L2 are not close to zero and
the solution goes through in the usual way. (It comes out as a complex solution
for the bj). The equation for a also has two complex roots, g + hi, with the
imaginary part h of order 10 ~5 or 10 ~6. If we take h as positive, h should decrease
to zero as k goes through its critical value and then increase again, thus providing
a double real root when h = 0. The double root should give the value of a
required by equation (6.10). The numerical work agreed with this reasonably well,
although for k = 1.17554 the equation for a gave three real roots. Two of these
differed by 2 X 10 "6, which is about as close to a double root as we might expect.
When these values of a were used in equation (5.2) they gave complex values for
/?2 and the solution for the b, stopped at this point.

Similar results were obtained in other cases where a single real solution for a
occurred at almost all neighbouring points. Where there were three real solutions
for a at almost all neighbouring points, the double root corresponded to a
"cross-over" of two of these solutions. (In Paper I, behaviour of this type was
mentioned for the C3 solutions at k = Ko.) For example, if we take m = 3.0 and
k close to 5.166206, the main family of solutions has S = -116, the additional
stable family has S == -1.25 and the additional unstable has S = +10.5. If we use
a0, tXj and a2 for the corresponding values of a, then ao> a2> a^ for k =
5.166201 and ao> a1> a2 for k = 5.166211, with ax = a2 at the point where Ll

and L2 are zero. The values of /? x, /J2, y, S and S are appreciably different for the
<*! and a2 families in this neighbourhood so there is no difficulty in distinguishing
them. In the same way, there is a cross-over point for m = 3.0 and k = 5.719589,
where the pattern a0 > ax > a2 changes to a^> aQ> a2 as k increases, with
a0 = ax at the cross-over point. There is another cross-over point at m = 3.0 and
k = 6.101476, where ax> ao> a2 changes back to aa> ax> a2 as k increases.
Again, a0 = ax at the cross-over point, with the corresponding C4 solutions
clearly distinguishable.

In contrast, we can compare what happens at m = 3.0, k = ks = 6.10187. At
this point, ax = a2 and the equation for a again has a double root but as k
increases through ks we have a transition from three real solutions for a to a
single real solution. The a0 solution continues but ax and a2 become complex for
k > ks. At the transition point the two additional solutions merge into a single
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solution, with 5 = 1 and with Lt and L2 non-zero. This is a reminder that
Q(m, p) = 0 provides a sufficient condition for a double root for a but is not a
necessary condition.

In examining the solutions near points where Lt and L2 are zero, the stability
criterion S was an important item of information, since it helped to discriminate
between different families of solutions and was usually enough in itself to classify
a solution unequivocally. In addition, it allowed solutions to he. improved (as
described in Section 5) once a first approximation had been obtained.

7. Discussion of results

The main results of the paper are the critical values of k in Table 1. For a given
value of m, the C4 solutions first appear at k = k5, as the C2 solutions become
unstable, and the C4 solutions soon become unstable as k increases. In the
table, the interval of stability (k5, k%) decreases as m increases and the ratio
(A:5 - k*)/(kf - k5) increases from 1.15 at m = 1.25 to 3.93 at m = 4.0. On the
other hand, the interval (k£, k6) becomes larger as m increases and there are no
C4 solutions for k > k6. For the additional solutions, there is a similar pattern.
The interval of stability (k7, k%) is becoming smaller as m increases and the
interval (k£, ks) becomes larger. For the values of m which give the additional
intervals of stability, there are intervals of stability (Ku Kf) and (A"2*, K2) for
the C3 solutions, with (Ku K{) between (ks, kf) and (k-,, k$) and with (K2*, K2)
between (kg, ks) and (k£, k6). Behaviour of this kind was foreshadowed from
the discussion of superstable C4 solutions in Paper I, and the new results add
corroborative detail.

One advantage of examining a problem with two parameters is that it may be
possible to discuss a variety of one-parameter problems by linking the parameters
in different ways. For example if we take 2k = m in equation (1.1) and impose
the condition m > 0 (to ensure that we are dealing with positive values of k), the
equation for the equilibrium values is

0 = y{l +(Y- mf) -m = (Y- m)(Y2- mY+ l). (7.1)

For 0 < m < 2, there is only one real equilibrium value, Y = m, but for m > 2
there are three equilibrium solutions, say Yj, Y2, Y3, with 0 < Yl < Y2 < Y3. We
can write Y2 = m,

yi = ( l / 2 ) { m - v / ( W
2 - 4 ) } , Y2 = (l/2){m + ]/(m

2-4)}, (7.2)

and note that Yx + Y2 = m, YXY2 = 1. From the discussion in Paper I, it is easy
to see that Yx is a stable equilibrium point, Y2 is unstable and 73 is stable. (For
Y = m, the stability criterion is zero.). Also, it was shown in Paper I that
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2k* — m > 0, so in this case we have 0 < k < k* for each value of m. This
means that there cannot be any C2 solutions when m = 2 k and presumably no
solutions with a longer period. Thus, by taking m = 2k, we get a one-parameter
problem where the equilibrium solutions are the only periodic solutions.

If we take k = m(l + m2), with m > 0, the equation for the equilibrium values
is

0 = (Y - 2m)(Y2 + 1 + m2), (7.3)

so the only real equilibrium solution is Y = 2m. The correspnding stability
criterion is Sx = -Am2/(I + m2), which decreases from 0 to -4 as m increases
from 0 to oo, with Sx = -1 for m1 = 1/3. Thus the equilibrium solution is stable
for 0 < m < 1/^3 and unstable for m > 1/^3. From the discussion of C2
solutions in Paper I, there is a C2 solution for m > 1//3, with elements (bx, b2)
and stability criterion S2, where

bl2 = 2rn± /(3m2 - l) , 52 = -2 + \ . (7.4)
m

It follows that the C2 solutions are stable for 1//3 < m < 1 and unstable for
m > 1. For m > 1, there will be at least one C4 solution if k5 < k < k6 and this
condition holds, since k = w(l + m2) = (l/2)(ks + k6). An inspection of the
critical value of A: in Table 1 indicates that there is only one C4 solution for each
m, and that this solution is stable for m slightly greater than 1, but becomes
unstable for some value of m between 1.25 and 1.50.

It looks as if the behaviour of the solutions in this case is more in line with the
orthodox picture, where stable equilibrium solutions give way to stable solutions
of period two as the parameter increases and these in turn give way to stable
solutions of period four and so on, with stable solutions of period three appearing
last of all. However it can be proved that no C3 solutions are possible in this
instance, so the process must come to a stop at some intermediate stage. Perhaps
the simplest way of showing that no C3 solutions can occur is to use the result
(from Paper I) that, for a given value of m, C3 solutions exist for Kl < k < K2,
where m > j3 and

"1,2 3

1),

(7.5)

k-K2=
 ( m 2

3
+ 1 } [2m - j{m2 - 3)] > 0

and k is too large for a C3 solution to be possible.
Another possibility is to see what happens when k is kept constant and m is

allowed to vary from -oo to +oo. If we take 0 < _y0 < 2k, then equation (1.1)
gives a mapping into a fixed interval [0,2/:] for all values of the parameter m.
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However, the behaviour of the solution depends on the value of k. To illustrate
this we can start with k = 0.5, which gives F(yn) = 1/{1 + (yn — m)2}. In this
case there is a single equilibrium solution for each m and the equilibrium solution
is stable. To see this, consider the graph of y = F0(x) = 1/(1 + x2). This graph
is symmetrical about x = 0 and the maximum slope occurs at x = +1 / / 3 where
the graph has a point of inflection. At the points of inflection the slope has
magnitude (3/8)v'3 = 0.65 and it follows that the slope is less iliaii i at all points.
This means that \F'(yn)\ < 1 at all points and hence the line yn+l = yn cannot
intersect the graph of j>n+1 = F(yn) in more than one point. Thus we get a single
equilibrium point, say Y, with |F ' (^) | < 1, which ensures that the equilibrium is
stable. This suggests that there should be no C2 solutions and this can be checked
by noting that k* = (m2 + l)(-m + j(m2 + 1)) has a minimum value which is
greater than 0.5. (Indeed k = 0.5 was chosen to satisfy this condition is the first
place.) We can infer that for k = 0.5 there are no periodic solutions other than
the equilibrium point.

The minimum value of k * occurs at m = 1/^3, where k * = (4/9)^3 = 0.77, so
if we take k = 1 we can be sure there will be C2 solutions for some values of m.
Now k* = 1 for m = 0 and numerical work gives k* = 1 again for m = w4 =
1.543689. Hence the C1 solutions can only occur for 0 < m < m4. From Paper I,
the stability criterion for a C2 solution is S2 = (1 + w2)(l + m2 — 2km)/k2,
and this becomes S2 = (1 + m2\m - I)2 for k = 1. With this expression for S2,
S2 has a minimum value 0 at m = 1 and S2 -» 1 as m -* 0 or m -» w4. This
checks that the C2 solutions are stable, so no solutions with longer periods should
occur. It was shown in Paper I that for equation (1.1) there could only be one
equilibrium solution for m < JJ (for any choice of k) and when k = 1 the
discussion in Paper I can be used to show that there are three distinct equihbrium
solutions only for 2 < m < m5> where ms = 2.134884. For m = 2 and m = m5

there are double root solutions and for m < 2 or m > m5 there is only one real
equilibrium solution. The equilibrium solution must be stable for m < 0, for
m4 < m < 2 and for m > m5, since 0 < k < k* in these intervals, and the
equihbrium solution is unstable for 0 < m < m4, where k > k*. Where there are
three equilibrium values, the smallest and the largest will be stable, with the
intermediate one unstable. For m > 2 we have m > 2k, so Coppel's conditions
are satisfied [4, 2], and the iteration converges monotonically to an equihbrium
value. Thus for k = 1 and m increasing we have an interval where there is a single
stable equihbrium solution {m < 0), then an interval where there is a stable C2
solution (0 < m < mA), then another interval with a single stable equihbrium
solution (w4 < m < 2), then an interval with one unstable and two stable
equilibrium solutions (2 < m < ms) and finally another interval with a single
stable equilibrium solution (w > m5). This is a long way from the standard
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picture of period-doubling sequences and much closer to the "remerging Feigen-
baum trees" described by Bier and Bountis [1].

If we take a slightly larger value for k, say k = 1.3, chosen so that k is greater
than the minimum value of k5, we can have stable Cl solutions giving way to
stable Cl solutions as m increases, then an interval where the C2 solutions are
unstable but stable C4 solutions occur. As m increases still further, the C4
solutions become complex but there are stable C2 solutions (over a shorter
interval than before) before these C2 solutions disappear and are replaced by Cl
solutions.

For k = 1.35, the pattern is similar except that there are now two w-intervals
where stable C4 solutions occur. Between these two intervals there is a gap where
C4 solutions exist but are unstable and presumably stable C8 solutions occupy at
least part of this gap.

If we move to an appreciably larger value of k, say k = 5, and keep k fixed
while m increases from -oo to +oo, the changes become more complex, and
cannot be discussed in full with the equations available in this paper and in Paper
I. We can introduce the notation that

M, = (value of m for which k, = 5) (i = 5,6,7,8),

M* = (value of m for which kf = 5) (i = 5,6,7,8),

M*, M* = (values of m for which k* = 5),

Mj = (value of m for which Kj = 5) ( j = 1,2),

M* = (value of m for which Kf = 5) ( j = 1,2),

and we can take M* < 0, M % > 0 to distinguish these two values. The various M
and M * values are now critical values of m in the sense that there will be

(i) stable Cl solutions for m < M* and m > M%,
(ii) stable C2 solutions in (M_* M6) and (M5, M%),
(iii) stable C4 solutions in (M6, M6*), (Af8, M8*), (Af7*, M7) and (M5*, Ms),
(iv) stable C3 solutions in (Af2, M2*) and (Mx*, MJ.
Numerically, these critical values are:

M* = -1.020498, M6 = 1.239384, M6* = 1.488224, M2 = 2.00,

M2* = 2.383399, M% = 2.807304, M* = 2.941606, M7* = 9.798271,

A/7 = 9.798392, M* = 9.817682, Mx = 9.819772, M5* = 9.860592,

M5 = 9.873000, MX = 9.924557.

There are obviously large gaps in the information available but it looks as if we
have period-doubling at first (as m increases) and solutions of different period
appear in the usual sequence until we have stable C3 solutions in (Af2, Af2*).
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Then there is a large interval in which solutions of all periods are present, mostly
unstable but with occasional small intervals of stability. Close to m = 10 there is
a smaller interval in which the C3 solutions are stable and then the whole process
reverses itself very rapidly as m approaches 2k. The C3 solutions disappear at
m = Mx, the C4 solutions at m = M5 and the C2 solutions at m = M*, leaving
the equilibrium solutions as the only periodic solutions for m > M*.

Similar behaviour occurs for k = 10. where the usual process of hi furcation
reverses itself very rapidly as m -» 2 k = 20. Indeed some preliminary runs
indicate that this complete reversal takes place for smaller values of k, down to
about k = 1.675. For k = 1.674 there are C3 solutions, with a single interval of
stability and no C3 solutions outside this interval. Values of the stability criterion
down to -0.997 were obtained but they appeared to remain just above - 1 . For
k = 1.675, the situation was almost the same except that the minimum value for
the stability criterion was about -1.025 and in consequence there were two
separate intervals of stability for these C3 solutions. The two intervals of stability
were of comparable length. It is only as k becomes larger that the first interval of
stability for the C3k solutions becomes much larger than the second one.

There is obviously plenty of scope for examining other relationships between m
and k, but the examples above show how wide a range of behaviour is possible for
one-parameter mappings.

In concluding, I should bice to thank Mr W. A. Coppel for drawing my
attention to the paper by Bier and Bountis [1], which encouraged me to extend the
work on solutions with k constant. The investigation was carried out as a Visiting
Fellow in the Research School of Physical Sciences, Australian National Univer-
sity and I am grateful to the Department of Theoretical Physics for the facihties it
has provided.
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