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Abstract

In this paper we consider simplifying a model of the nitrogen cycle in Port Phillip Bay,
Victoria, Australia. The approach taken is to aggregate state variables that are linearly
related using a projection in state space. The technique involved is a modification of proper
orthogonal decomposition and was developed so that a resulting simplified model retains
an ecological interpretation. It can be applied automatically, and enables insights into the
system to be gained that were not obvious beforehand. In the case of the Port Phillip
Bay model, we find that the variables representing water and sand are unaffected by the
remaining variables, while only variables on the same trophic level can be grouped together.
The validity of the aggregation under several nutrient loads is also discussed.

2000 Mathematics subject classification: primary 93B11, 92D40; secondary 93A30.
Keywords and phrases: Large ecosystem models, complexity, aggregating state variables,
model order reduction.

1. Introduction

Environmental studies are often undertaken to investigaté the dynamics of a certain
variable of interest. In an aquatic setting this may be the number of a particular fish
species or a certain measure of water quality. Consequently, these studies have largely
focused on a single species ([6]). However, they have a limited capacity to describe
the influence of other species or environmental factors on the variable of interest. For
this purpose, the whole ecosystem must be considered.

A useful tool for understanding ecosystem dynamics is a whole-ecosystem model.
Such models first appeared in the 1970s (for example [13]), and a plethora have since
been developed. Examples include the forest model JABOWA ([2]) and Ecopath with
Ecosim ([4]). However, these models have large data requirements and can be difficult
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to calibrate ([1, 14, 25,271) and validate ([2, 12,25]). More importantly, they do not
necessarily perform better than simpler models ([7-10]). Indeed, the sensitivity of the
model output to the input tends to increase with complexity ([17,26]). Aside from
these problems, it may be difficult to identify the underlying cause of an observed
model behaviour from a large number of possibilities.

On the other hand, models that are too simple may distort the importance of
a possible cause of an observed behaviour ([28]), or not exhibit the behaviour at
all ([7]). Hence it is desirable to reduce model complexity where possible, but not
so much so that the model fails to serve its purpose. Thus this paper is concerned
with simplifying an ecosystem model as much as possible while retaining adequate
estimates of the given performance measures.

In particular, we are concerned with reducing the order of models described by
ordinary differential equations via the aggregation of state variables. To this end there
has been little work done in the context of complex ecological models. Indeed, the
most common model structures examined are the linear ([3, 21]) and Lotka-Volterra
forms ([18, 21}). Furthermore, most of the test cases have a small number of state
variables. For example the model of Kooi ef al. [15] has only one equation per trophic
level. While these can be instructive in the construction of larger models (Murray and
Parslow, [20]), their analysis is not a substitute for the analysis of the larger models.

Aggregation of variables in large complex models has largely been realized via
systematic comparison of models with different groupings ([5,7,22]). While this
approach is informative about the selection of an appropriate model structure, its
implementation requires knowledge of the system. In this study, a method is presented
for aggregating state variables that can be implemented automatically. It is based on
the method of Proper Orthogonal Decomposition ([23, 24]), which is briefly described
in Section 2. Although the method can be applied to a variety of complex systems
models, it is demonstrated here on the model described in Section 3. The results and
discussion comprise Section 4.

2. The method

2.1. Proper Orthogonal Decomposition (POD) - The basic idea The method
of POD ([23,24]) has its origin in data fitting, in particular, statistical regression.
The basic idea is to identify a line of best fit to a given set of data. Here “best
fit” refers to minimizing the sum of squares of the Euclidean distances betweer
the data set {x;} i = 1,..., N and its estimate {x;}. In several dimensions, the
“line” is a hyperplane. This concept can be extended to the reduction of dynamical
systems models described by ordinary differential equations. After collecting data
from simulated system trajectories and identifying the plane of best fit, we not only
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FIGURE 1. The idea of POD. A. Data with a line of best fit. B. The point x is orthogonally projected onto
the line at the point x. C. The derivative v at x is shown with the derivative at £. D. The derivative at % is
projected onto the line, resulting in 3, the approximation of v.

project the data onto the plane, but also the time derivative vectors of the projected
points. Figure 1 illustrates this idea. More formally, suppose that we have a model

x = flx@®),u@),),

where x(t) is the n-dimensional state vector, u(t) is a vector-valued input function
and x(0) = x,. Its estimate of dimension & < n is given by

x(t) = PFE@E), u(r), 1), @1

where £(0) = P(xo — x*) + x* and x* is the origin of the plane of best fit (see [23]
for details). In this study we shall refer to the original model as the full model, and
its estimates as reduced models. In simple models x* might be an equilibrium point,
but since we are dealing with a non-autonomous system under a set of inputs {u,, ()},
1 <m <s, we take x* to be the overall mean x = f an=l X,., Where x,, is the mean
under the m™ input {u,,(t)}.

The rank k matrix P is equal to p7 p ([23]), where p is the k x n matrix whose rows
are the k eigenvectors corresponding to the k largest eigenvalues of the covariance
matrix cov of the model output. In this investigation we seek relationships between
state variables that hold under all the {«,, (¢)}, so we choose cov = 5 3 €OV, Where
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cov,, is the covariance (centred about x) under the m'* forcing. The coordinates of
the approximated data are then given by X(t) = P(x — X) + X.

2.2. Modified Proper Orthogonal Decomposition (MPOD) The model described
by Equation (2.1) can be represented in k-dimensional space (with origin at x) using
the transformation z = p(x — x) ([23]). This alternative representation is as follows:

2= pf(p"z,u,1). (2.2)

From Equation (2.2) we can see that the state variables of the reduced model are in fact
linear combinations of the original state variables. Although this is mathematically
sound, the ecological interpretation of such combinations is difficult. The interpre-
tation of their interactions, as described by the right-hand side of Equation (2.2), is
harder still.

In particular, the trophic structure is obscured because the projection matrix P (see
Equation (2.1)) has in general nonzero entries. We can see from Equation (2.1) that
each reduced model derivative contains terms that are not present in its full-model
counterpart. That is, every variable directly affects every other variable, so that a graph
representation of the network would be complete. This is not only difficult to interpret,
it obscures insights into trophic dynamics and does not enhance our understanding
of the system. Also, although the model order has decreased, the complexity of the
derivatives has increased.

With this in mind, we seek to aggregate subsets of the variables, so that the reduced
model retains an ecological interpretation, and so that the complexity of the derivatives
is not increased. This approach also allows variables to remain unaggregated, so that
variables in which we are particularly interested can remain explicitly represented. The
reduced model is found by projecting each subset onto a separate one-dimensional
line using POD. We shall refer to this version of POD simply as Modified Proper
Orthogonal Decomposition (MPOD).

2.3. Choosing the aggregates for MPOD The projections of MPOD are based on
minimizing the Euclidean distance between a trajectory x (¢) and its projection Px(t).
The error measure is given by

J Ilx@) = Px(®)|* dt

(2.3)
JT Ilx@2de

where T is the simulation time frame and | vy denotes the magnitude of the vector v.
Since the vectors x(¢t) — Px(t) and Px(t) are orthogonal we have at any time ¢

@I = lx(e) — Px®))® + | Px()))*. 24
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By integrating Equation (2.4) over time, dividing both sides by fOT llx(£)|? dt and then
substituting into (2.3), we see that the error measure (2.3) can be written as

| J IPx@IP dr

. (2.5)
Jo Ix@l2de

The second term in (2.5) ranges between zero and one. This is a measure of variance
in the trajectory that is accounted for by the projected trajectory, and is thus anal-
ogous to the r? value used in regression analysis. We shall use it as a measure of
“appropriateness” of the aggregate described by the projection axis.

For computational purposes, we note that it is equal to

Yok
E;:l A’l ’

where k is the dimension of the subspace, and the A; are the eigenvalues of the covari-
ance matrix cov of the model output. They are ordered such that A, > A, > --- > A,
([23]). For MPOD, we have k = 1 for each projection, so that the appropriateness

measure is given by
A
Zj:l A’J .

If one of the variables in the aggregate is large compared to the others, then A; will be
much larger than the remaining A;. Thus the measure will be close to one, regardless
of whether the variables really are linearly related. To avoid this problem, each state
variable is standardized so that the effects of scale are removed. The covariance
matrix of these standardized variables is the correlation matrix. Thus the metric A
in Equation (2.6) is calculated using the correlation matrix rather than the covariance
matrix.

For each variable x;, the variables {x;} that can be grouped with it are identified by
calculating the corresponding value of A (see Equation (2.6)). The aggregate initially
includes only x;, and is built by successively adding the variable x; that gives the
highest value of A. If a variable x; is added that results in an aggregate with a nonsen-
sical ecological interpretation, then x, is removed from the aggregate and the process
resumes. For example, suppose that sand is aggregated with phytoplankton. Since
this aggregate has no ecological interpretation, sand is removed from the aggregate
and the remaining variables are scrutinized for their suitability for aggregation with
phytoplankton.

After all the suitable variables have been added, up to n — 1 values of A have been
calculated. The aggregate corresponding to the highest value of A is then selected
for the reduced model (note that A does not necessarily increase with the number of
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variables in the aggregate). If a variable x; can be a part of two different aggregates,
it is assigned to the aggregate that results in the higher value of A.

Once a set of aggregates has been identified, they are ordered by appropriateness
as measured by Equation (2.6). One by one they are implemented in the model
and the results assessed. This is achieved by a POD projection of each aggregate
using the covariance matrix of the variables in the aggregate. Thus the order of the
reduced model is equal to the number of aggregates plus the number of unaggregated
variables. Here we note that MPOD is equivalent to aggregating the variables in the
same block. Indeed an aggregate is a linear combination of variables. Moreover,
the linear relationship between the reduced-model estimates of an aggregate and its
constituent variables is uniquely determined by the projection (that is, the line of best
fit).

3. Model description

The MPOD method is demonstrated on a model of Port Phillip Bay, Australia -
a semi-enclosed marine environment with an area of about 1930km? and a narrow
opening to Bass Strait. It is a modified (and smaller) version of the Port Phillip Bay
Integrated Model ([19]), which was developed by the CSIRO in the 1990s as part of
the Port Phillip Bay Environmental Study ([11]). In our model the bay is divided into
water column and sediment layers, and is subject to biological and physical processes.
The main currency of the model is nitrogen in the form of nitrates (NO) and ammonia
(NH), collectively called dissolved inorganic nitrogen (DIN). The state variables in our
model are listed in Table 1, where the subscript “s” denotes a sediment variable. The
values in Bass Strait are held constant.

TABLE 1. The state variables in the model, their units and their symbols used throughout the discussion.
The columns labelled WC, Sed contain variables that appear in the water column and sediment layers

respectively.
Variable name Units WC variables | Sed variables
Dissolved Inorganic Nitrogen | mg Nm™3 DIN DIN;
Phytoplankton mg Nm™3 Phy Phy;
Zooplankton mg Nm™3 z

Detritus mg Nm™3 DET DET,

Water Column Sand mg WCs m~3 WCS

Water Column Volume m’ wCcv
Sediment Water Volume m’ SWV
Sediment Solid Volume m’ 4%

The model equations are given next, with the terms briefly described in Sections 3.1
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and 3.2. A more detailed description is available in [16]. Our notation is as follows.
/ N'(t) = breakdownp + releasez — uptake, + exchange, — settling, \
+resuspensiony + tidey + load

P’(t) = growth, — grazing, — settling, + resuspension, — dilutionp + tidep
Z'(t) = growth, — mortality, — settling, + resuspension, — dilution + tide;
D'(t) = production, — breakdownp — decayy, — settling;, + resuspensiony,
—dilutionz + tidez

WCS' (1) = —settlingycg + resuspensionyes — dilutionwcs + tidewcs
N/(t) = releasep, — exchange, + settling,
P/(t) = settling, — mortality,
D.(t) = mortality, — breakdownp, — decay;, + settling,

WCV'(t) = resuspensiongyy — settlingy,cy + inflows + tidez

SWV'(r) = settlingy,cy — resuspensiongyy

QS V'(t) = settling,,, — resuspensionggy /

3.1. Biological processes The biological processes involve the DIN content of the
organic state variables. Here they are merely outlined; see Murray and Parslow [19] for
details. The main biological processes for the living variables are growth, mortality and
grazing. The corresponding rate parameters incorporate a time-dependent oscillation
representing seasonal temperature variation. Phytoplankton growth rates involve
limitations of nutrients and light, while that of zooplankton depends on how efficiently
it can assimilate its prey. What is not assimilated is either excreted back to the water as
DIN, or becomes detritus. Loss due to mortality also becomes detritus, which breaks
down at a constant rate (rp, ) and is remineralized into DIN.

In the sediment, some DIN is denitrified to nitrogen gas and released from the bay
altogether. This is the bay’s most significant way of expelling nitrogen. In the model
denitrification is represented empirically, and is zero when remineralization is below
zero or above the level Ry. Between these values denitrification varies linearly with
remineralization, with efficiency reaching a maximum when remineralization is Rp.

3.2. Physical processes Besides denitrification there are three main ways that the
bay interacts with its surroundings. These are the tidal exchange of water between
the bay and Bass Strait, freshwater fluxes from rivers, rainfall and evaporation, and
nutrient inputs from Bass Strait, the rivers and the atmosphere. These processes are
described by time-dependent functions obtained from auxiliary models ([19,29]) and
have units of m* day~! for the flows and mg day~"' for the nutrient inputs.

Within the bay all horizontal and most vertical movement of water is accounted for
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by the aforementioned hydrodynamic processes. Some water is transferred between
layers when sand and detritus settle to and are resuspended from the sediment. The
constant settling speeds are given in m day~!, while resuspension is dictated by the
erosion rate also given in m day~!. This is the product of a constant erosion rate, and a
dimensionless time-dependent function representing stress on the bay floor. There is
also an exchange of water between layers at a rate given in m* day~!, though it causes
no change in layer volume. Finally, detritus decays at a constant rate with units sec™'.
Full descriptions of these processes can be found in Walker and Sherwood [30].

3.3. The goals of this investigation There are two goals in this investigation.
Firstly, we seek insights into the internal mechanisms of the Port Phillip Bay system.
Secondly, we seek a smaller model than that described earlier that performs “similarly”
in some sense.

In particular, we examine the response of the bay to increased nutrient loads over a
decade or so. The simulation period is T = 4384 days (12 years) and the current input
of DIN, referred to as the base load, is scaled by factors of 0.5, 1, 1.5, 2, 2.5, 3, 3.5
and 4. The response we are primarily interested in is the average annual phytoplankton
production, which is expressed mathematically as

1 4383
production = 7 f growthy, dt 3.1
0

where growthy,, denotes the growth rate of water column phytoplankton (there is no
production in the sediment). The full-model values of production under each load are
shown in Figure 2.

Production,
14| mgm-3year-3 .

18
18 *
114

12

110 T T v
] 05 1 15 2 25 3 35 4
Relative load

FIGURE 2. The values of production under each nutrient load predicted by the full model. Here load s
expressed relative to the base load.

The adequacy of the reduced model is measured by its values of production, cal-
culated from Equation (3.1) for each load. We are particularly interested in approx-
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imating production to within a given tolerance a% under all loads. In this study we
arbitrarily choose o = 5%.

4. Results and discussion

Both goals prescribed in Section 3.3 were achieved. Regarding reduced models,
the simplest model obtained using the MPOD procedure had four aggregates, each with
two constituent variables. These are described in Table 2, which shows the A values
(see Equation (2.6)) calculated for each aggregate. Since there are four aggregates
and three unaggregated variables, the reduced model has order 7.

TABLE 2. Aggregates in the reduced model

Aggregates A
DIN, DET | 0.795
Phy, Phy; | 0.918
DIN,, DET; | 0.903
Swv, ssv | 1.000

The largest relative error between the full-model production and its reduced-model
estimate was about 1.4% - well within the « = 5% tolerance. Hence the reduced
model is an adequate approximation of the full model for the purpose of investigating
phytoplankton production.

Regarding our goal of gaining insights into the system, we notice that the biological
variables within any given block are on the same trophic level. Indeed, DIN and DET
are at the lowest level, while phytoplankton in the water column and sediment are
obviously at the same level. This is consistent with Fulton’s ([7]) conclusions that only
variables on the same trophic level should be aggregated. Therefore, the dynamics of
detritus and DIN need not be explicitly represented in the model. Rather, they can be
aggregated in both layers.

Considerable insight can be gained by comparing the trajectories from the full
and reduced models. In particular, we measure the similarity of the time series of a
variable x;(t) to its reduced-model estimate x;(t) by the correlation r? between them.
Table 3 shows these correlations for each variable, averaged over the loads.

The most striking values in Table 3 are those of water and sand in the water column
and sediment (WCS, WCV, SWV, SSV), and DIN. Since these variables are almost
perfectly correlated we learn that they are not affected by being aggregated or by the
approximation of the other variables. That is, they are robust to the simulated range
of values of the other variables. Moreover, we learn that most of the top centimetre
of the sediment is sand and not detritus. Indeed, the dynamics of water column sand
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TABLE 3. The r?2 values for each variable averaged over the loads.

Variable r?
DIN 0.996
Phy 0.300

Z 0.394
DET 0.705
WCS 1.000
DIN; 0.621
Phy; 0.442
DET; 0.736
WCV 1.000
SwWv 1.000
Ssv 1.000

(WCs) are completely unaffected (r? = 1.0, Table 3). Since WCS is resuspended from
the sediment along with detritus, either WCS is unaffected by detritus, or the dynamics
of detritus are unaffected by being aggregated. The latter possibility is not the case
since the r? values for DET and DET; are around 0.7 (Table 3).

On the other hand the aggregations have a significant effect on some of the other
variables. For example, the r? value for zooplankton (> = 0.4, Table 3) implies
that estimates of the zooplankton values would have large variability and therefore be
unreliable, even though zooplankton was not aggregated. Similarly, the phytoplankton
(Phy, Phy,) dynamics are different (r?> < 0.44, Table 3), despite the production being
accurately modelled.

The poor r? values for phytoplankton can be partly explained by the forms of their
reduced-model derivatives. In particular, they are different to their full-model coun-
terparts since they are weighted sums of the original derivatives (see Equation (2.1)).
That is, the reduced-model derivatives contain terms that were not in their full-model
counterparts.

This fact may also help explain the discrepancy in the r? values for variables within
a given aggregate. For example, the derivative of DET in the reduced model has a
scaled uptake term which the original DET derivative did not. Thus a link between
detritus and phytoplankton has been artificially created in the reduced model. No such
links are created for the DIN variable. It is possible that this is the cause of the poor
DET r? value (0.7, Table 3) relative to that of DIN (0.99), though verifying this require .
further investigation.

For comparative purposes, estimates of production were obtained using POD with
k = 7. The relative errors were similar to those obtained using MPOD, and in fact were
slightly inferior. Indeed, the largest error was about 1.9%, as opposed to 1.3% for
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the MPOD model. Thus although the magnitude of the state vector is more accurately
estimated using POD rather than MPOD (by construction), this is not necessarily the
case for functions of the state vector, such as production. This is because there is no
consideration of the direction of the state vector in the construction of the projection
matrix P.

Finally, we note that a reduced model can only be a substitute for the full model
under certain conditions. In particular, caution should be exercised when simulating
scenarios that differ widely from those used in the reduction process. In this respect,
the model reduction process is similar to that of validation. That is, confidence in the
performance of a reduced model is strongest when the model is used within the range
of scenarios and diagnostics considered in the reduction (or validation) process.

§. Conclusion

A model reduction method called Modified Proper Orthogonal Decomposition
(MPOD) was proposed, which is a modification to the method of proper orthogonal
decomposition. Its purpose is to identify meaningful linear relationships among
variables in a dynamical system, and use them to create a reduced model with an
ecological interpretation. In this regard, MPOD is more useful than POD. The method
was applied successfully to an aquatic model with the aim of estimating phytoplankton
production. Consideration of the results led to the following key findings:

o Significant reduction was possible. In particular, the model order was reduced

from 11to 7.
e The biological variables within any given aggregate were on the same trophic
level.

e Most of the top centimetre of the sediment is sand and not detritus.

e The estimates of the variables in an aggregate are affected by differences in
the forms of their original derivatives. In particular, the introduction of new terms
into a derivative as a result of the projection can cause the errors of the variables in
the same block to be notably different.

e It seems that the physical variables are independent of the biological variables,
but not vice versa. However, verifying this requires further investigation.

e The performance of MPOD can be superior to that of POD, depending on the
performance measure. This was the case when production was the performance
measure.

Aside from identifying simpler models and revealing insights into the system, the
method allowed reduction of the original model without requiring a detailed under-
standing of the system a priori. However, caution should be exercised when modelling
situations that differ widely from those used to obtain the reduced model. Neverthe-
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less, MPOD is a useful method for reducing the complexity of ecological models
without sacrificing their ecological interpretation. It is also useful for learning about
the mechanisms built into such models.

Finally, we note that this method is intended to be applied to larger models than
that examined in this study. The authors are currently investigating its applicability
to a model with 29 state variables and 7 performance indicators. The investigation
considers the effects of several different aggregations on the performance indicators,
thus highlighting certain sensitivities between different components of the system.
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