Concentrations of resveratrol and derivatives in foods and estimation of dietary intake in a Spanish population: European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort

Raul Zamora-Ros1, Cristina Andres-Lacueva1*, Rosa M. Lamuela-Raventós1, Toni Berenguer2, Paula Jakšyn2, Carmen Martínez3, María J. Sánchez3, Carmen Navarro4, María D. Chirlaque4, María-José Tormo4, Jose R. Quirós5, Pilar Amiano6, Miren Dorronsoro6, Nerea Larranaga6, Aurelio Barricarte7, Eva Ardanaz7 and Carlos A. González2

1Nutrition and Food Science Department, XaRTA, INSA, Pharmacy School, University of Barcelona, Av. Joan XXIII, s/n. 08028, Barcelona, Spain
2Unit of Epidemiology, Catalan Institute of Oncology, Institute of Biomedical Research of Bellvitge, L’Hospitalet de Llobregat, Spain
3Andalusian School of Public Health, Granada, Spain
4Servicio de Epidemiología, Consejería de Sanidad, Murcia, Spain
5Consejería de Sanidad y Servicios Sociales de Asturias, Oviedo, Spain
6Dirección de Salud de Guipúzcoa, San Sebastián, Spain
7Instituto de Salud Pública de Navarra, Pamplona, Spain

(Received 12 September 2007 – Revised 25 October 2007 – Accepted 6 November 2007 – First published online 21 December 2007)

Resveratrol has been shown to have beneficial effects on diseases related to oxidant and/or inflammatory processes and extends the lifespan of simple organisms including rodents. The objective of the present study was to estimate the dietary intake of resveratrol and piceid (R&P) present in foods, and to identify the principal dietary sources of these compounds in the Spanish adult population. For this purpose, a food composition database (FCDB) of R&P in Spanish foods was compiled. The study included 40 685 subjects aged 35–64 years from northern and southern regions of Spain who were included in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort. Usual food intake was assessed by personal interviews using a computerised version of a validated diet history method. An FCDB with 160 items was compiled. The estimated median and mean of R&P intake were 100 and 933 mg/d respectively. Approximately, 32 % of the population did not consume R&P. The most abundant of the four stilbenes studied was trans-piceid (53·6 %), followed by trans-resveratrol (20·9 %), cis-piceid (19·3 %) and cis-resveratrol (6·2 %). The most important source of R&P was wines (98·4 %) and grape and grape juices (1·6 %), whereas peanuts, pistachios and berries contributed to less than 0·01 %. For this reason the pattern of intake of R&P was similar to the wine pattern. This is the first time that R&P intake has been estimated in a Mediterranean country.

Resveratrol (3,5,4'-trihydroxystilbene) is the parent compound of a family of molecules, including glycosides (piceid) and polymers (viniferins), existing in cis and trans configurations classified as stilbenes (1). The essential structural skeleton comprises two aromatic rings linked by a methylene bridge (Fig. 1). Resveratrol and piceid (R&P) are mainly present in grape and wine derivatives and their composition is affected by grape cultivar, degree of maturity at harvest, fungal pressure, climate and wine-making technology (2,3). Secondary food sources of stilbenes are peanuts, pistachios and berries (4–7). Recently R&P were also detected in the skin of tomatoes, although the concentrations are 3000 times lower than those found in red table grapes, and R&P have not been found in all kinds of tomato (8). The importance of R&P food sources depends on food composition and the amount of consumption of them (standard serving size: grapes, 150 g; wine, 125 ml; berries and peanuts, 30 g). The total qualitative and quantitative R&P profile is also affected by the source: trans-piceid is mainly present in red and white wines and grape juice; cis-piceid in rosé and sparkling wines and trans-resveratrol in grapes, berries, peanuts and pistachios (4–7,9–11). Until now, viniferins have only been described in grape derivatives (12,13). Resveratrol is of great interest in nutrition and medicine due to its potential health benefits, such as anti-carcinogenic (14,15), neuroprotector (16) and antioxidant effects (17), as a modulator of...
of lipid and lipoprotein metabolism, as an antiplatelet aggrega-
tor\(^{(18)}\) and its oestrogenic activity\(^{(19)}\). Indeed, it has been
hypothesised that resveratrol uses the same pathways activated
by energy restriction\(^{(20-22)}\). The biological effects have been
studied mainly in vitro, although there is also growing in vivo
evidence\(^{(20)}\). Some effects required a high concentration of
resveratrol in tissues, although chemopreventive and che-
thropic cancer effects are an exception\(^{(14,15)}\). In this
case, resveratrol, at micromolar concentrations, affects the
activity of transcriptional factors involved in proliferation and
stress responses and leads to the modulation of survival and
apoptotic factors in carcinogenesis\(^{(14,15)}\). In atherosclerotic
and neurodegenerative diseases, the effects of resveratrol are
not only due to its antioxidant and scavenging activities, but
also to its participation in the modulation of signal transduction
pathways and in the activation of several enzymes at micromolar
concentrations\(^{(14,23,24)}\).

The pharmacological effects are consistent with the resver-
atro metabolism in plasma, LDL and urine after oral admin-
istration in human subjects\(^{(25-32)}\). The biological effect of
resveratrol will ultimately depend on the cellular effects of the
metabolites that are effectively absorbed (glu-
curonides and sulfoxides)\(^{(30)}\) and not on the native forms in
food\(^{(33,34)}\). However, other authors have speculated that
resveratrol metabolites may become deconjugated at the
target sites of action, thereby releasing aglycone to elicit bio-
logical activity\(^{(15,35)}\).

Intake values of trans- and cis-resveratrol and piceids are
not available either since there is no complete food composi-
tion database (FCDB) of R&P. The aim of the present
study was to compile composition data of R&P in common
Spanish foods and to evaluate major food sources and their
daily intake in the Spanish adult population.

Materials and methods

Population

Dietary data and other lifestyle factors from 41 440 subjects,
aged 29–69 years, who participated in the European Prospec-
tive Investigation into Cancer and Nutrition (EPIC) in Spain,
were studied. Participants were healthy volunteers, blood
donors principally, recruited between October 1992 and July
1996 in five Spanish regions: three from the North (Asturias,
Navarra and Gipuzkoa) and two from the South (Murcia and
Granada)\(^{(36)}\). After the exclusion of 755 subjects because of
implausible dietary information, the final population studied
consisted of 40 885 subjects (15 448 men and 25 237
women) aged 35–64 years. The mean ages at recruitment
were 50.8 and 48.4 years for men and women, respectively.

Dietary information

Usual food intake during the preceding year, taking into account
seasonal variations, was estimated by personal interview using a
computerised diet history questionnaire. This was developed
and validated specifically for the EPIC study in Spain\(^{(37,38)}\).
The questionnaire was structured according to occasion of food
intake (breakfast, lunch, dinner). Trained interviewers gathered
data on preparation method, average frequency of consumption
per week, and usual portion size for each food consumed at
least twice per month (or once per month for seasonal foods).
Portion sizes were reported in natural units, household measures
or with the aid of a manual of thirty-five sets of photographs
prepared specifically for the study. The questionnaire included
a list of more than 600 foods and beverages and about 150 regional
recipes. For each food described, the final amount consumed was
calculated, taking into account the cooking method used and the
edible part consumed.

Food composition database

A literature search was conducted in MEDLINE (United States
National Library of Medicine, 2006) and in the Food Science
and Technology Abstracts (International Food Information Ser-
vice, 2006) to identify sources of resveratrol compounds in
Spanish foods in published food composition data. The search
terms included resveratrol, piceid, food composition, food,
wine, berry, peanuts, pistachios and tomato. Review papers
that did not contain new primary data were excluded. However,
the citations used in these reviews were cross-checked with
initial literature searching to identify any additional references.

The following information was extracted from each publi-
cation: (1) food information: name, food description, scientific
name and country of the study; (2) measurement information:
value, type of value (mean, median, range, other), number of
samples, sampling method and analytical method; (3) biblio-
graphic reference. With this information we assessed the data
quality for inclusion in the Database following the key points
originally developed in the EU-AIR NETTOX Project\(^{(39)}\).

The appropriate methods of analysis were HPLC diode
array or GC/MS. When cis- and trans-piceid were quantified
by spectrophotometric method and were expressed as resver-
atro, conversion factors were applied: × 1.57 and × 1.75 for
trans- and cis-piceid, respectively. These factors were cal-
culated using the relationship between the molar absorptivities
of trans-resveratrol (UV \(\lambda\) (10 % ethanol) nm (\(\varepsilon\)) 306 (31 800/
M/cm)) and trans-piceid (UV \(\lambda\) (10 % ethanol) nm (\(\varepsilon\)) 306
(20 100/M/cm)) (R Zamora-Ros et al., unpublished results),
and the relationship between cis-resveratrol (UV \(\lambda\) (10 % etha-
nol) nm (\(\varepsilon\)) 286 (13 100/M/cm)) and cis-piceid (UV \(\lambda\)
(10 % ethanol) nm (\(\varepsilon\)) 286 (7500/M/cm)) (R Zamora-Ros
et al., unpublished results), respectively.

Units of measurements and modes of expression varied across
the studies. To standardise, values were converted into mg/100 g
fresh weight. Data for similar foods were aggregated as weighted
means, taking into account the number of samples, sampling
plan and frequency of consumption of Spanish food\(^{(41)}\).

When we did not find Spanish food values for important
sources of resveratrol such as peanuts, pistachios or berries
we selected foreign food values. Other unknown values were
estimated using a biologically similar food or calculating

![Fig. 1. Structures of resveratrol and derivatives: (a) trans-resveratrol, (b) cis-
resveratrol, (c) trans-piceid, (d) cis-piceid.](https://www.cambridge.org/core/doi/10.1017/S0007114507882997/10.1017/S0007114507882997)
recipes. Despite the use of other countries’ and estimated values, data were still not available for some foods.

Statistical analyses

Distributions were expressed as means, standard deviations, medians, and as 25th and 75th percentiles, and were measured separately for men and women. Because R&P intakes were skewed toward higher values, we used median values to compare results. The average estimates of dietary intakes were standardised by sex and age of the Spanish population aged 35–64 years(42). The contribution of each food to the total intake of individual and total R&P was calculated as a percentage.

To assess the differences in R&P intake with respect to the categories of age, region, educational level, tobacco smoking, BMI and energy intake, estimations of the proportion of consumers and R&P median intake among consumers were calculated using linear regression analysis, respectively. All these models were adjusted by sex, age, region, BMI and energy intake (kJ/d). To perform the linear regression analysis, a Box–Cox transformation of the response variable was necessary to observe the assumptions of the model, and the inverse transformation was applied to the resulting estimates to interpret them as medians(43). Data were analysed with the R language and environment for statistical computing and graphics(44).

Results

Food composition database

Resveratrol values from fifty-four studies were used to compile the final food database. The compilation included 160 food items with information on the concentrations of trans- and cis-resveratrol, trans- and cis-piceid and sum of R&P. Table 1 summarises the resveratrol content from all references compiled for all the common Spanish foods considered. Red wine (0.847 mg/100 g) and itadori tea (0.974 mg/100 g) were the highest sources of R&P, but itadori tea is not consumed in Spain. Intermediate sources of R&P (0.08–0.547 mg/100 g) corresponded to other kinds of wine, grapes, grape juice and peanut butter. Lowest sources of R&P (<0.01 mg/100 g) were peanuts, pistachios and berries.

Estimated resveratrol intake

Table 2 shows the mean and median values and percentiles of trans- and cis-resveratrol, trans- and cis-piceid and total resveratrol intake by sex in the studied population. Average intake of R&P was 933 μg/d, with a median of 100 μg/d. As indicated by the median and percentiles, the distribution was skewed to higher values. A total of 13,175 participants (39.0 and 200.0 % of total women and men standardised by sex and age of the Spanish population respectively) had a total resveratrol intake of 0 μg/d (non-consumers). trans-Piceid contributed 53.7 % of total resveratrol intake, trans-resveratrol 20.8 %, cis-piceid 19.3 % and cis-resveratrol 6.2 %.

Table 3 shows the differences in R&P intake according to sex, age, geographic area, energy intake, BMI, education and tobacco smoking. Medians and percentages of consumers were adjusted by sex, age, BMI, region and energy consumption. R&P consumption was lower in quantity and percentage of women consumers (137 μg/d and 61.0 %) than in men (686 μg/d and 80.0 %). Mean of R&P and percentage of

Table 1. Food composition data sources for resveratrol content (mg/100 g fresh weight)

<table>
<thead>
<tr>
<th>Food item</th>
<th>trans-resveratrol</th>
<th>cis-resveratrol</th>
<th>trans-piceid</th>
<th>cis-piceid</th>
<th>Total resveratrol</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wine, not specified</td>
<td>0.114</td>
<td>0.037</td>
<td>0.303</td>
<td>0.105</td>
<td>0.568</td>
<td>Calculated*</td>
</tr>
<tr>
<td>Red wine</td>
<td>0.181</td>
<td>0.044</td>
<td>0.495</td>
<td>0.127</td>
<td>0.847</td>
<td>Lamuela-Raventós et al.(10), Moreno-Labanda et al.(46), Goldberg et al.(60), Rodriguez-Delgado et al.(61)</td>
</tr>
<tr>
<td>Rosé wine</td>
<td>0.041</td>
<td>0.041</td>
<td>0.071</td>
<td>0.154</td>
<td>0.307</td>
<td>Romero Perez et al.(11)</td>
</tr>
<tr>
<td>White wine</td>
<td>0.010</td>
<td>0.016</td>
<td>0.26</td>
<td>0.022</td>
<td>0.074</td>
<td>Romero Perez et al.(11), Rodriguez-Delgado et al.(61), Alvarez-Sala et al.(62), Martinez-Ortega et al.(63)</td>
</tr>
<tr>
<td>Sparkling wine</td>
<td>0.005</td>
<td>0.014</td>
<td>0.018</td>
<td>0.055</td>
<td>0.092</td>
<td>Andres-Lacueva et al.(64), Pozo-Bayon et al.(65)</td>
</tr>
<tr>
<td>Fortified wine</td>
<td>0.110</td>
<td>0.095</td>
<td>0.141</td>
<td>0.040</td>
<td>0.366</td>
<td>de Lima et al.(66), Goldberg et al.(67)</td>
</tr>
<tr>
<td>Grapes, not specified</td>
<td>0.166</td>
<td>–</td>
<td>0.067</td>
<td>–</td>
<td>0.223</td>
<td>Cantonos et al.(9,68,69)</td>
</tr>
<tr>
<td>Red grapes</td>
<td>0.250</td>
<td>tr</td>
<td>0.060</td>
<td>–</td>
<td>0.310</td>
<td>Cantaos et al.(9,68,69)</td>
</tr>
<tr>
<td>White grapes</td>
<td>0.068</td>
<td>tr</td>
<td>0.025</td>
<td>–</td>
<td>0.093</td>
<td>Cantonos et al.(9,68,69)</td>
</tr>
<tr>
<td>Must</td>
<td>0.070</td>
<td>0.012</td>
<td>0.465</td>
<td>–</td>
<td>0.547</td>
<td>Vinas et al.(70)</td>
</tr>
<tr>
<td>Grape juice</td>
<td>0.010</td>
<td>tr</td>
<td>0.036</td>
<td>0.043</td>
<td>0.088</td>
<td>Martinez-Ortega et al.(63), Roldan et al.(71), Romero-Perez et al.(72)</td>
</tr>
<tr>
<td>Sangria†</td>
<td>0.091</td>
<td>0.022</td>
<td>0.248</td>
<td>0.063</td>
<td>0.424</td>
<td>Recipe</td>
</tr>
<tr>
<td>Peanuts, toasted</td>
<td>0.006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.006</td>
<td>Sobolev & Cole(68), Lee et al.(67)</td>
</tr>
<tr>
<td>Pistachios, toasted</td>
<td>0.007</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.007</td>
<td>Tokusoglu et al.(7)</td>
</tr>
<tr>
<td>Peanut butter</td>
<td>0.065</td>
<td>nd</td>
<td>0.014</td>
<td>nd</td>
<td>0.080</td>
<td>Ibern-Gomez et al.(73)</td>
</tr>
<tr>
<td>Cranberry juice</td>
<td>tr</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>Zhang & Zuo(74)</td>
</tr>
<tr>
<td>Berries‡</td>
<td>0.008</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>Rimmendo et al.(75), Lyons et al.(75)</td>
</tr>
<tr>
<td>Itadori tea (infusion)</td>
<td>0.068</td>
<td>nd</td>
<td>0.906</td>
<td>nd</td>
<td>0.974</td>
<td>Burns et al.(76)</td>
</tr>
</tbody>
</table>

tr. Traces; nd, not detected.

* Calculated from consumption of Spanish population: 57 % red wine, 25 % white wine and 18 % rosé wine.
† Recipe of sangria (typical Spanish beverage): 50 % of red wine and 50 % of orange juice, fruit mix (peaches, oranges, lemons, etc.) and sugar.
‡ Berries included: blueberry, bilberry, sparkleberry, deerberry, cranberry, lingonberry and partridgeberry.
consumers tended to increase in the older age categories. Individuals from the northern regions consumed more resveratrol than from the southern regions (513 μg/d), although the percentage of consumers was approximately the same (88.3 % ± 69.4 %). Increasing intake of R&P and percentage of consumers seemed to be correlated with higher energy intake. Individuals with a BMI between 25 and 30 kg/m² had the highest intake of total resveratrol (333 μg/d) and the obese group had the smallest percentage of consumers (66.3 %). Individuals with a high level of education (technical and professional, secondary school or university degree) had a higher intake of R&P than those with only primary education or no education (340–346 μg/d) and the proportion of consumers was also higher in this group (69.8–72.4 % v. 68.0–68.6 %). There was a decrease in R&P intake and percentage of consumers in non-smokers (259 μg/d and 71.0 %) and former smokers (342 μg/d and 69.4 %).

Sources of resveratrol

Table 4 shows the major contributors to R&P intake. The richest source was red wine (82.6 %). As grouped foods, the main contributors were wines (98.4 %), grapes (1-1 %), must and juices (0.5 %) and, finally, peanuts and pistachios (<0.01 %). For trans-piceid, the major contributors were wines (98.7 %), must and juices (0.7 %) and grapes (0.6 %). For trans-resveratrol, we identified the following food items: wines (95.9 %), grapes (3-8 %), must and juices (0.3 %) and peanuts, pistachios and berries (0.03 %). For cis-isomers, we observed the next ranking: wines (99.9 % and 99.7 %) and must and juices (0-1 % and 0.3 %) for cis-resveratrol and cis-piceid, respectively.

Discussion

The present study represents the first attempt to compile the available literature for R&P in common Spanish foods. After developing an FCDB, we estimated dietary intakes and food sources of R&P in Spanish adults.

Previous papers have compared results of the trans-resveratrol content but have not compiled data from trans- and cis-piceid and cis-resveratrol(4,20). R&P are characteristic components of Vitis vinifera L. and are present in grape derivatives. R&P is not unique to Vitis because it is also present in at least seventy-two other plant species(45), but only berries, peanuts and pistachios are components of the human diet. The high variability in R&P food composition, red wines ranged between 2.86(30) and 32.33 mg R&P per 100 ml(46), was solved with weighted means, adjusted according to Spanish food consumption(47). Another consideration in the FCDB was the potential losses in R&P from foods during cooking. The data available from the study by Lee et al.(47) suggest that average losses during toasting peanuts are approximately 30 %. The most common method for the measurement of R&P is HPLC coupled to a UV detector. Until 2004–5, due to the non-availability of a commercial standard, the piceid results were expressed as equivalents of resveratrol, underestimated 1.57- and 1.75-fold for trans- and cis-piceid, respectively. We, therefore, applied a correction factor to minimise this error. FCDB also reported a quality index for each value to guarantee the individual quality data and the global control of FCDB. However, further investigation is required toanalyse new sources of R&P, because to date many foods have not yet been studied. In a recent study, R&P were found in the tomato skin, but in very small concentrations (0–18-4 parts per million of dried tomato skin)(8). This value was not used in this FCDB because not all kinds of tomato contain R&P, the concentration is very low (3000 times lower than in red table grape skin) and, at this moment, only one paper reported this compound in American varieties of tomato(8) and not in European varieties(48).

The median and the mean of the estimated daily intake of R&P were 100 and 933 μg/d respectively, and were standardized according to the age and sex structure of the Spanish population aged 35–64 years. The median of intake was significantly higher in males, in oldest age, current smokers, highest educational levels, Northern region and highest energy intake. The large discrepancies between the mean and median values were due to the fact that more than 32 % of the participants did not consume R&P, and there was a
Table 3. Estimated intake (µg/d) and percentage of consumers of total resveratrol in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Spain cohort by age and selected demographic and lifestyle factors*

<table>
<thead>
<tr>
<th></th>
<th>Subjects (n)</th>
<th>Consumers (%)</th>
<th>Adjusted (%)</th>
<th>Percentage lower 95 %</th>
<th>Percentage upper 95 %</th>
<th>Median adjusted</th>
<th>Lower 95 %</th>
<th>Upper 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>25237</td>
<td>57.1</td>
<td>61.0</td>
<td>60.3</td>
<td>61.8</td>
<td>137</td>
<td>131</td>
<td>144</td>
</tr>
<tr>
<td>Male</td>
<td>15448</td>
<td>84.7</td>
<td>80.0</td>
<td>79.0</td>
<td>88.9</td>
<td>686</td>
<td>664</td>
<td>709</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td>13877</td>
<td>65.7</td>
<td>67.3</td>
<td>66.3</td>
<td>68.3</td>
<td>271</td>
<td>259</td>
<td>283</td>
</tr>
<tr>
<td>45–54</td>
<td>16107</td>
<td>68.8</td>
<td>69.5</td>
<td>68.7</td>
<td>70.4</td>
<td>324</td>
<td>312</td>
<td>336</td>
</tr>
<tr>
<td>55–64</td>
<td>10701</td>
<td>68.2</td>
<td>70.8</td>
<td>69.8</td>
<td>71.9</td>
<td>365</td>
<td>349</td>
<td>382</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Spain</td>
<td>24752</td>
<td>69.5</td>
<td>68.3</td>
<td>67.5</td>
<td>69.0</td>
<td>513</td>
<td>498</td>
<td>528</td>
</tr>
<tr>
<td>South Spain</td>
<td>15933</td>
<td>64.8</td>
<td>69.4</td>
<td>68.5</td>
<td>70.3</td>
<td>125</td>
<td>119</td>
<td>131</td>
</tr>
<tr>
<td>Energy intake (kJ/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1 (1350–6900)</td>
<td>8137</td>
<td>45.6</td>
<td>53.2</td>
<td>51.4</td>
<td>55.0</td>
<td>130</td>
<td>115</td>
<td>146</td>
</tr>
<tr>
<td>Q2 (6900–8410)</td>
<td>8137</td>
<td>59.2</td>
<td>62.4</td>
<td>60.0</td>
<td>62.4</td>
<td>202</td>
<td>189</td>
<td>217</td>
</tr>
<tr>
<td>Q3 (8410–9960)</td>
<td>8137</td>
<td>69.1</td>
<td>69.5</td>
<td>71.7</td>
<td>70.4</td>
<td>266</td>
<td>253</td>
<td>280</td>
</tr>
<tr>
<td>Q4 (9960–12050)</td>
<td>8137</td>
<td>77.4</td>
<td>74.9</td>
<td>73.9</td>
<td>76.0</td>
<td>375</td>
<td>357</td>
<td>392</td>
</tr>
<tr>
<td>Q5 (12050–42680)</td>
<td>8137</td>
<td>86.8</td>
<td>78.5</td>
<td>81.0</td>
<td>79.7</td>
<td>520</td>
<td>492</td>
<td>550</td>
</tr>
<tr>
<td>BMI (kg/m²)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>8965</td>
<td>67.7</td>
<td>70.5</td>
<td>69.2</td>
<td>71.7</td>
<td>298</td>
<td>281</td>
<td>317</td>
</tr>
<tr>
<td>25–30</td>
<td>19390</td>
<td>70.5</td>
<td>70.2</td>
<td>69.4</td>
<td>71.0</td>
<td>333</td>
<td>321</td>
<td>346</td>
</tr>
<tr>
<td>> 30</td>
<td>12219</td>
<td>63.0</td>
<td>66.3</td>
<td>65.2</td>
<td>67.3</td>
<td>296</td>
<td>281</td>
<td>311</td>
</tr>
<tr>
<td>Highest school level†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>13936</td>
<td>64.0</td>
<td>68.0</td>
<td>66.9</td>
<td>69.0</td>
<td>298</td>
<td>283</td>
<td>313</td>
</tr>
<tr>
<td>Primary completed</td>
<td>15846</td>
<td>67.2</td>
<td>68.6</td>
<td>67.6</td>
<td>69.5</td>
<td>308</td>
<td>296</td>
<td>321</td>
</tr>
<tr>
<td>Technical/professional</td>
<td>3344</td>
<td>77.2</td>
<td>72.4</td>
<td>70.4</td>
<td>74.3</td>
<td>345</td>
<td>314</td>
<td>378</td>
</tr>
<tr>
<td>Secondary school</td>
<td>2611</td>
<td>70.1</td>
<td>69.8</td>
<td>68.7</td>
<td>71.8</td>
<td>346</td>
<td>313</td>
<td>381</td>
</tr>
<tr>
<td>University degree</td>
<td>4674</td>
<td>72.3</td>
<td>72.0</td>
<td>70.5</td>
<td>73.6</td>
<td>340</td>
<td>315</td>
<td>365</td>
</tr>
<tr>
<td>Smoking status†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former smoker</td>
<td>7180</td>
<td>75.7</td>
<td>69.4</td>
<td>68.1</td>
<td>70.8</td>
<td>342</td>
<td>324</td>
<td>360</td>
</tr>
<tr>
<td>Current smoker</td>
<td>9951</td>
<td>74.2</td>
<td>71.0</td>
<td>69.9</td>
<td>72.1</td>
<td>369</td>
<td>352</td>
<td>387</td>
</tr>
<tr>
<td>Never a smoker</td>
<td>22558</td>
<td>61.2</td>
<td>67.1</td>
<td>66.3</td>
<td>67.9</td>
<td>259</td>
<td>249</td>
<td>269</td>
</tr>
</tbody>
</table>

* Adjusted by age and sex of Spanish population aged 35–64 years; differences between categories for all variables P < 0.001.
† The values reported are calculated by the number of subjects with valid information. The number of subjects with missing information was as follows: BMI, n 111; highest school level, n 274; smoking status, n 996.
skewed distribution toward higher values in the consumers. This distribution of R&P intake was similar to that of wine, because more than 98% of R&P intake was due to wine. The pattern of wine consumption in the EPIC European cohort was described by Siri et al. (49). A typical high wine consumer, and consequently high R&P consumer, was an older man, a resident of northern Spain, with a high educational level, smoker, with excess weight but not obese and a high energy intake (49,50). In Spain, as in Portugal, the pattern of alcohol consumption is changing: the prevalence of wine drinkers is decreasing, and younger generations are shifting from wine to beer and spirits (51).

To our knowledge, only one case-control study estimated trans-resveratrol intake for women in the Swiss Canton of Vaud (52). One limitation to comparison of the results is that Levi et al. (52) did not include a complete description, only reporting tertiles. On the other hand, they only used grapes and white and red wine, without taking into account other sources of trans-resveratrol such as grape juice, other kinds of wine, peanuts, berries, etc. Taking into account that trans-resveratrol only corresponded to 21% of the four stilbenes investigated in the present study, the median of intake of total individuals was 31 μg/d (0 μg/d for women), and the sources of R&P were 29 μg/d for wine (98.3%) and 0.5 μg/d for grapes (12%). However, in the study by Levi et al. the distribution in food sources was very different, because the second tertiles for wine and grapes were 0.1–176.8 μg/d and 72.3–126.4 μg/d, respectively (52). This great difference in resveratrol intake from grapes can be due to using other food composition data. Furthermore, in populations with other dietary patterns, the contribution of berries and peanut butter may be different.

In human subjects, the proportion of nutritional resveratrol absorbed ranged from 16 to 25% of intake, measured in urine by MS techniques (25,27). Piceid may be absorbed directly, as reported for the rat small intestine (53), and/or hydrolysed by glycosidases before absorption (54), contributing to the biologically available resveratrol dose. Biomarkers of resveratrol intake, such as urinary resveratrol metabolites, can be used as an alternative to evaluate resveratrol status and to assess relationships between resveratrol and disease (52).

The use of biomarkers avoids problems associated with an FCDB (55). In a recent study, resveratrol metabolites in urine were used as a biomarker of moderate wine consumption in intervention and epidemiological studies (32). However, not all epidemiological studies are able to undertake the measurement of biomarkers due to a lack of resources or expertise. For this reason, estimation of resveratrol intake from dietary questionnaires and records using adequate food composition data is also required (36).

R&P have been shown to have health benefits in in vitro studies, and against cancer, cardiovascular and neurodegenerative diseases. Levi et al. found a significant inverse association between trans-resveratrol and breast cancer from grapes (OR 0.64 and 0.55) but not from wine (52). Polyphenols in wine may play an active role in limiting the initiation and progression of atherosclerosis (57). Localised accumulation of resveratrol in epithelial cells along the aortic digestive tract, and potentially active resveratrol metabolites, may also produce cardiovascular effects. Moreover, resveratrol has been considered to be an energy restriction mimetic in vitro and in lower organisms and mice, because it interacts with a variety of enzymes, such as sirtuin, involved in regulating stress responses and longevity (20–23). So, long-term consumption of a low concentration of polyphenol, such as resveratrol, or a synergic effect with other phenolic compounds or other micronutrients in the Mediterranean diet could be sufficient to cause beneficial effects against these alterations and could constitute a potential arm for prevention of chronic diseases and new therapeutic strategies (23). It is, therefore, of interest to study the relationship between R&P intake and the risk of chronic diseases in an epidemiological context. However, wine polyphenols are a complex mixture of flavonoids and non-flavonoids (where resveratrol would be included) and the relative contribution of each single one or synergistic contribution of them is still unclear and further investigation should be considered.

One limitation of the present study was that the EPIC-Spain cohort is based on a non-representative sample of the general population. However, the number of volunteers was very large, the participation rate was relatively high, and the subjects came from different social backgrounds and different geographical areas. In addition, the pattern of dietary intake was very similar to that observed in population-based surveys carried out in the Spanish regions included in the present study (58,59).

We conclude that R&P and especially trans-piceid are common components of the Mediterranean diet. Clearly, wine is the major contributor of R&P in this population (>98%); the contribution of non-grape derivatives is lower than 0.01%. This is the first attempt to compile the existing published scientific data on the R&P content of foods. This database allowed the quantification of intakes that can be used to investigate the role of R&P in health benefits to increase lifespan.

Acknowledgements

The present study is part of the EPIC-Spain Study. The EPIC Study in Spain has received financial support from the Health Research Fund (FIS, 02/0652) of the Spanish Ministry of
Health, the ISCHII (RETIC-RD06/0020 and the CIBER in Epidemiology and Public Health) and the Spanish Regional Government of Andalusia, Asturias, Basque Country, Murcia and Navarra and the Catalan Institute of Oncology. Some authors are partners of ECNIS, a network of excellence of the EU 6FP. AGL2006-14228-C03-02/ALI and Program Ingenio CONSOLIDER CSD2007-063 also contributed to the present study. R. Z.-R. was supported by the Departament d’Universitats, Recerca i Societat de la Informació (Catalunya). The authors are not aware of any conflict of interest.

References

Resveratrol intake in a Spanish population

43. Flanders WD, DerSimonian R & Freedman DS (1992) Interpretation of linear regression models that include transformations or interactions. Ann Epidemiol 2, 735–744.

