
J. Aust. Math. Soc. 94 (2013), 397–416
doi:10.1017/S1446788713000049

CHARACTERIZING SOME COMPLETELY REGULAR
SEMIGROUPS BY THEIR SUBSEMIGROUPS

MARIO PETRICH

(Received 29 June 2011; accepted 29 October 2012; first published online 7 June 2013)

Communicated by M. G. Jackson

Abstract

We consider several familiar varieties of completely regular semigroups such as groups and completely
simple semigroups. For each of them, we characterize their members in terms of absence of certain kinds
of subsemigroups, as well as absence of certain divisors, and in terms of a homomorphism of a concrete
semigroup into the semigroup itself. For each of these varietiesV we determine minimal non-V varieties,
provide a basis for their identities, determine their join and give a basis for its identities. Most of this is
complete; one of the items missing is a basis for identities for minimal nonlocal orthogroups. Three tables
and a figure illustrate the results obtained.
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1. Introduction and summary

The seminal example of characterizing modular (respectively, distributive) lattices by
the absence of one (respectively, two) types of sublattice has been emulated in the
study of other algebraic systems. For such a class C which is closed under taking
of subalgebras, one arrives at ‘forbidden subalgebras’, namely those algebras which
cannot occur as subalgebras of algebras in C. If the class of such forbidden objects is
large, or unmanageable, and the class C is also closed under homomorphic images, we
may consider ‘forbidden divisors’, that is, algebras that do not occur as homomorphic
images of subalgebras of members of C. All this, of course, up to isomorphism.
One then searches for the class of all forbidden subalgebras or divisors, which may
characterize the class C. We apply these ideas to some of the following classes of
semigroups.

A completely regular semigroup S (union of its subgroups) is enriched with the
unary operation of inversion, that is, for any a ∈ S , a−1 is the inverse of a in the
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maximal subgroup of S containing a. This makes it possible to consider the class
CR of all such algebras as a variety.

Among the familiar subvarieties of CR are groups, completely simple semigroups,
semilattices, semilattices of groups, cryptogroups (bands of groups), normal
cryptogroups, orthogroups, and local orthogroups. Information on these varieties can
be found in the book [6].

Some of the results for these varieties in the context of the first paragraph above
are known. We complete the picture, with the exception of one case, by providing, for
each of the above varieties, the following characterizations:

(a) a list of forbidden completely regular subsemigroups;
(b) a list of forbidden completely regular divisors;
(c) a semigroup whose homomorphic images determine the classes under study.

For each of these varieties V we list the varieties of completely regular semigroups
minimal relative to being non-V and find their join.

One of these results generalizes the main theorem in [3]. The main tool for treating
cryptogroups is the construction of all completely regular monoids with two generators
accomplished in [4].

Section 2 covers terminology and notation, and includes a complete list of
varieties which occur in the paper with bases for their identities. The varieties
of completely simple semigroups, Clifford semigroups, semilattices, and normal
cryptogroups are treated in Section 3. The next three sections contain a treatment
of orthogroups, local orthogroups, and cryptogroups, respectively. These results are
applied to groups, rectangular groups, normal orthogroups, orthocryptogroups, and
local orthocryptogroups in Section 7. Section 8 consists of a review of the results in
the paper in the form of three tables and a figure.

2. Notation and terminology

For our notation and terminology we follow the book [6] with a few exceptions
noted below. For the convenience of the reader or for emphasis, we list the most
important ones. Throughout the paper, S denotes an arbitrary completely regular
semigroup unless stated otherwise.

We work within the class CR of completely regular semigroups S considered as
unary semigroups relative to the operation a 7→ a−1, where for a ∈ S , a−1 is the inverse
of a in the maximal subgroup of S containing a. It follows that CR forms a variety,
and thus all concepts on varieties apply to it. We will refer to varieties of completely
regular semigroups simply as varieties. The lattice they form is denoted by L(CR).

In particular, if ∅ , X ⊆ CR, then 〈X〉 denotes the variety generated by X. If
V ∈ L(CR) and the set {uα = vα | α ∈ A} forms a basis for identities valid in V, we
write V = [uα = vα]α∈A. If U,V ∈ L(CR) are such that U *V, we say that U is a
non-V variety.

There are some special semigroups which occur often in this context:

L2 = {`1, `2}, R2 = {r1, r2}, Y2 = {0, 1}
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with left zero, right zero, and the usual multiplication, respectively. The semigroups
LGn and RGn are constructed in [6, page 238]; we will provide an alternative
construction of these semigroups in Lemma 6.1.

By E(X) we denote the set of all idempotents of a subset X of a semigroup. If
S is a semigroup with identity, we write S = S 1; otherwise S 1 is S with an identity
adjoined. If T is a semigroup which is not isomorphic to a subsemigroup of S , we say
that T is a forbidden subsemigroup for S . A semigroup T is a divisor of S if T is a
homomorphic image of a subsemigroup of S . If T is not isomorphic to a divisor of
S , then T is a forbidden divisor for S . Since we are dealing only with completely
regular semigroups, any subsemigroup or divisor or semigroup generated by a set
will be tacitly assumed to be completely regular, occasionally specified as such for
emphasis.

For a ≤ b in a lattice L, [a, b] denotes the interval with lower end a and upper end b.
In the list below, we denote varieties by their standard acronyms, give bases for

their identities, and in a few cases, their generators. These varieties occur frequently
in the text, sometimes as parts of intersections. Hence the bases listed provide bases
for other varieties. Most of these bases can be found in [6] and we list their exact
references whenever possible. This makes it feasible to state only the acronyms;
their bases can be readily read off from this list. Recall that L stands for the local
operator.

Unlike in [6], in composite notation we write A instead of HA; also we write
RecA for rectangular abelian groups while in [6] they are denoted by ReA. The letter
p always stands for a prime; let P denote the set of all positive prime integers. A
rectangular band isomorphic to L × R where L ∈ LZ and R ∈ RZ with |L|, |R| ≤ 2 we
call small.

Glossary We do not list duals. The references generally contain more information
about these varieties.

LZ = [a = ax] = 〈L2〉,

RB = [a = axa] = 〈L2 × R2〉,

S = [ax = x0a] = 〈Y2〉,

NB = [axya = a0yxa] = 〈L2 × Y2 × R2〉,

LRB = [ax = axa] = 〈L1
2〉,

ReB = [axya = axaya] = 〈(L2 × R2)1〉, see [6, Theorem V.1.9],

B = [a = a0].

G = [a0 = b0],

ReG = [a0 = a0x0a0], see [6, Corollary III.5.3],

CS = [a0 = (axa)0], see [6, Proposition III.1.1],

SG = [ax0 = x0a], see [6, Theorem IV.2.4],
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NBG = [(axya)0 = (ayxa)0], see [6, Theorem IV.1.6],

RBG = [(axya)0 = (axaya)0], see [6, Proposition V.4.4],

BG = [(ab)0 = (a0b0)0], see [6, Theorem II.8.1].

NO = [axy0a = ay0xa], see [6, Theorem IV.2.7],

RO = [axya = axa0ya], see [6, Theorem V.3.3],

O = [a0b0 = (a0b0)0], see [6, Theorem II.5.3],

LO = [(ax)0(bx)0 = ((ax)0(ay)0)0], see [6, Corollary II.7.5],

OBG = [a0b0 = (ab)0], see [6, Theorem II.8.5],

LOBG = [(ax)0(ay)0 = (axay)0], see [6, Corollary II.8.6].

RecA = [a0 = axya(ayxa)−1], see [6, Proposition III.6.7(iv)],

CSA = [a0 = a0xa(axa0)−1] = 〈D∞〉, see [6, Proposition III.6.7(iii)],

NBA = [axaya = ayaxa], see [6, Theorem IV.1.12(iii)],

LROA = [(axa)2xay = ax(axa)2ya0], see [2, Theorem 6.4(v)],

ROA = [b(axa)0xayb = bax(axa)0b0yb], see [6, Corollary V.7.7],

HA = [ax(axa)0 = (axa)0xa], see [6, Proposition II.7.2].

For any prime p:

Ap = [ap = x0a−1x−1ax] = 〈Zp〉, see [2, Theorem 6.1(i)],

CSAp = [ap = ax(a0xa)−1] = 〈Dp〉 =Dp, see [2, Theorem 6.4(i)],

LROAp = [(axa)2xay = ax(axa)2yap] = 〈LGp〉, see [2, Theorem 6.4(v)].

This glossary will be used consistently. Combining these identities will yield bases
for identities for most varieties appearing in the paper.

3. Varieties CS, SG, S, andNBG

We first provide a multiple characterization of members of each of these varieties.
This is followed by the determination of minimal non-V varieties and of their join.
These are simple statements which are either well known or easy to prove, so we
move quickly.

It is useful to keep in mind the following lemma.

L 3.1. Let V ∈ L(CR) and U ⊆ L(CR) be such that each member of U is a
minimal non-V variety and every non-V variety contains a member of U. Then U
is the set of all minimal non-V varieties.

P. LetW be a minimal non-V variety. Then there existsU ∈ U such thatU ⊆W,
which by minimality ofW implies thatW =U ∈ U. �
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P 3.2. The following conditions on S are equivalent.

(i) S ∈ CS.
(ii) S has no subsemigroups isomorphic to Y2.
(iii) S has no divisors isomorphic to Y2.
(iv) If χ : Y2→ S is a homomorphism, then the image of χ is trivial.

P. Part of this is well known and the rest requires a straightforward argument. �

P 3.3. The following conditions on S are equivalent.

(i) S ∈ S.
(ii) S has no subsemigroups isomorphic to L2, R2, Z, or Zn for any n > 1.
(iii) S has no divisors isomorphic to L2, R2, or Zp for a prime p.
(iv) If χ : L2 × Z × R2→ S is a homomorphism, then the image of χ is trivial.

P. Straightforward. �

P 3.4. The following conditions on S are equivalent.

(i) S ∈ SG.
(ii) S has no subsemigroups isomorphic to L2 or R2.
(iii) S has no divisors isomorphic to L2 or R2.
(iv) If χ : L2 × R2→ S is a homomorphism, then the image of χ is trivial.

P. Straightforward. �

P 3.5. The following conditions on S are equivalent.

(i) S ∈ NBG.
(ii) S has no subsemigroups isomorphic to L1

2 or R1
2.

(iii) S has no divisors isomorphic to L1
2 or R1

2.
(iv) If χ : (L2 × R2)1→ S is a homomorphism, then the image of χ is a one- or two-

element semilattice.

P. The equivalence of (i), (ii) and (iii) and the forward implication from these to
(iv) is a direct consequence of [6, Theorem IV.1.6].

Now we prove that (iv) implies (ii). If S had a subsemigroup T isomorphic to L1
2,

then T would be a homomorphic image of (L2 × R2)1, contrary to the hypothesis. The
same goes for R1

2. �

For the four varieties V studied in this section, we now provide information
regarding minimal non-V varieties.

T 3.6. (i) S is a minimal non-CS variety. Every non-CS variety contains S.
(ii) LZ and RZ are minimal non-SG varieties. Every non-SG variety contains

either LZ or RZ. Moreover, RB is the join of all minimal non-SG varieties.
(iii) LZ, RZ, andAp for p prime are minimal non-S varieties. Every non-S variety

contains at least one ofLZ, RZ, orAp for p prime. Moreover, RecA is the join
of all minimal non-S varieties.
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(iv) LRB and RRB are minimal non-NBG varieties. Every non-NBG variety
contains either LRB or RRB. Moreover, ReB is the join of all minimal non-
NBG varieties.

P. Parts (i) and (ii) require a simple argument. In part (iii), it should be observed
that LZ, S, RZ, and Ap are the atoms of L(CR) and that

∨
p Ap =A, the variety of

abelian groups.
(iv) It is well known that LRB, RRB *NBG and that LRB ∨ RRB = ReB. That

all proper subvarieties ofLRB andRRB are minimal follows from [6, Theorem V.1.7].
Hence LRB and RRB are minimal non-NBG varieties. LetV be a non-NBG variety
and S <NBG. In view of Proposition 3.5, S must contain an isomorphic copy of
either L1

2 or R1
2. By [6, Lemma V.1.4] and its dual, either LRB ⊆V or RRB ⊆V. �

4. Variety O

Here we follow the pattern of the preceding section for the varietyO of orthogroups.
The reference [2, Section 3] contains further information for this case; we adopt its
notation as follows.

For n > 1, let

Dn =M

(
{0, 1}, Zn, {0, 1};

[
0 0
0 1

])
,

D∞ =M

(
{0, 1}, Z, {0, 1};

[
0 0
0 1

])
.

These semigroups play a central role in [2] for the characterization of minimal non-O
varieties. We start with homomorphic images of D∞.

L 4.1. A semigroup S is a homomorphic image of D∞ if and only if S is
isomorphic to one of the following semigroups: D∞, Dn for n > 1, small rectangular
bands.

P. Necessity. Let ρ be a congruence on D∞. By [6, Theorem III.4.6], we have
ρ = ρ(r,N,π) for some admissible triple (r, N, π); see also [6, Lemma III.4.4]. Here r and
π are equivalence relations on the set {0, 1} and N is a subgroup of Z satisfying the
conditions

i r j =⇒ pki − pk j ∈ N for all k ∈ {0, 1}, (4.1)

i π j =⇒ pik − p jk ∈ N for all k ∈ {0, 1}. (4.2)

We distinguish the following cases.

Case 1. r = π = ε. Now conditions (4.1) and (4.2) are vacuous and S/ρ is isomorphic
either to D∞, or to Dn for some n > 1, or to L2 × R2.

Case 2. r = ω, π = ε. Condition (4.2) yields p12 − p22 ∈ N, so that −1 ∈ N which
implies that N = Z. We thus arrive at S/ρ � R2.
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Case 3. r = ε, π = ω. This is dual to Case 2. Hence S/ρ � L2.

Case 4. r = π = ω. The same type of argument yields ρ = ω and thus S/ρ is a trivial
semigroup.

Sufficiency. A straightforward argument shows that each of the semigroups listed
is a homomorphic image of D∞. �

T 4.2. The following conditions on S are equivalent.

(i) S ∈ O.
(ii) S has no subsemigroups isomorphic to D∞ or to Dn for any n > 1.
(iii) S has no divisors isomorphic to Dp for any prime p.
(iv) If χ : D∞→ S is a homomorphism, then the image of χ is a small rectangular

band.

P. (i) implies (ii). In D∞, e = (0, 0, 1) and f = (1, 0, 0) are idempotents but e f is
not. Similarly for Dn.

(ii) implies (iii). By [6, Corollary III.5.5], S must be orthodox. Hence all its divisors
are orthodox as well. Since none of Dn and D∞ is orthodox, they cannot be divisors
of S .

(iii) implies (iv). This follows directly from Lemma 4.1 and [2, Lemma 3.2].
(iv) implies (i). By contrapositive, assume that S is not orthodox. By [6,

Corollary III.5.5], S has a subsemigroup isomorphic to Dn for some n > 1 or to D∞.
By Lemma 4.1, Dn is a homomorphic image of D∞ and is not a rectangular band. �

In order to handle minimal non-O varieties, we need the following lemma.

L 4.3. For every n ∈ Z and every prime p, define np by n = pq + np for some q ∈ Z
with 0 ≤ np < p, and let [np]p be the corresponding element of Zp. The mapping

χ : n −→ ([np]p)p∈P (n ∈ Z)

is an embedding of Z into
∏

p Zp.

P. Straightforward. �

T 4.4. For every prime p, letDp = 〈Dp〉 andD∞ = 〈D∞〉.

(i) Dp = CSAp.
(ii) Dp is a minimal non-O variety.
(iii) Every non-O variety containsDp for some prime p.
(iv) IfDp =Dq for some primes p and q, then p = q.
(v) D∞ =

∨
p Dp = CSA.

P. Part (i) was proved in [2, Lemma 4.7], while parts (ii) and (iii) follow from [6,
Corollary III.5.5].

(iv) Groups in Dp are abelian with exponents dividing p. Hence if Dp =Dq, then
p divides q and q divides p so that p = q.
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(v) Define a mapping by

ϕ : (i, n, j) −→ (i, nχ, j) ((i, n, j) ∈ D∞)

where χ was defined in Lemma 4.3. By this lemma and in view of the form of the
sandwich matrices of D∞ and Dp, we deduce that ϕ embeds D∞ into

∏
p Dp. It follows

thatD∞ ⊆
∨

p Dp. The opposite inclusion follows from Lemma 4.3.
Since D∞ ∈ CSA, we deduce that D∞ ⊆ CSA. From the list of overabelian

completely simple semigroups in [6, Theorem VIII.9.3], we see that D∞ is contained
only in CSA, which shows that D∞ is not contained in any proper subvariety of CSA
and thusD∞ = CSA.

If S ∈ CSA, then by [6, Proposition III.6.3], S satisfies the identity a0xa = axa0,
whence

ax(a0xa)−1 = (axa0)(a0xa)−1 = (a0xa)0 = a0.

Conversely, if S satisfies the identity a0 = ax(a0xa)−1, then S is completely simple and
its subgroups are abelian. �

5. Variety LO

We continue with the same pattern. Locally orthogroup varieties were studied in
[2, Section 4]. In particular, [2, Corollary 4.6], where unfortunately the word ‘non’ is
missing, provides the complete set of minimal non-LO varieties. Also the variety at
the very top of [2, Diagram 2] should beD1

p and notDp.

L 5.1. A semigroup S is a homomorphic image of D1
∞ if and only if S is

isomorphic to one of the semigroups in Lemma 4.1 with an identity adjoined or is
trivial.

P. Necessity. Let ρ be a congruence on D1
∞. We consider two cases.

Case 1. 1 ρ (i, n, j) for some (i, n, j) ∈ D∞. By [6, Theorem III.4.6], we have
ρ|D∞ = ρ(r,N,π) for an admissible triple (r, N, π). Since S/ρ is a monoid, it follows that
r = π = ω, which as in the proof of Lemma 4.1 implies that N = Z. It follows that ρ = ω
and S/ρ is a trivial semigroup.

Case 2. {1} is a ρ-class. In view of Lemma 4.1, we conclude that D∞/(ρ|D∞) is
isomorphic to one of the semigroups in that lemma. But then D∞/ρ is isomorphic
to one of the semigroups in that lemma with an identity adjoined.

Sufficiency. This requires a straightforward argument. �

T 5.2. The following conditions on S are equivalent.

(i) S ∈ LO.
(ii) S has no subsemigroups isomorphic to D1

∞ or to D1
n for any n > 1.

(iii) S has no divisors isomorphic to D1
p for any prime p.

(iv) If χ : D1
∞→ S is a nontrivial homomorphism, then the image of χ is a small

rectangular band with an identity adjoined.
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P. (i) implies (ii). See the proof of Theorem 4.2.
(ii) implies (i). By contrapositive, assume that S is not locally orthodox. Then

there exists e ∈ E(S ) such that eS e is not orthodox. By Theorem 4.2, eS e contains a
subsemigroup T isomorphic either to D∞ or to Dn for some n > 1. Clearly e < T , so
that T ∪ {e} must be isomorphic either to D1

∞ or to D1
n.

(i) implies (iii). Since the class of all locally orthogroups is a variety and neither
D1
∞ nor D1

n is locally orthodox, S cannot have divisors isomorphic to D1
∞ or to D1

n for
any n > 1.

(iii) implies (iv). This follows from Lemma 5.1 and [2, Lemma 4.2].
(iv) implies (i). The argument here is similar to that in ‘(ii) implies (i)’ above. �

T 5.3. For every prime p, letD1
p = 〈D1

p〉 andD1
∞ = 〈D1

∞〉.

(i) D1
p is a minimal non-LO variety.

(ii) Every non-LO variety containsD1
p for some prime p.

(iii) IfD1
p =D1

q for some primes p and q, then p = q.
(iv) D1

∞ =
∨

p D
1
p.

P. Parts (i) and (ii) were proved in [2, Theorem 4.5], while the argument for
part (iii) is the same as in Theorem 4.4(iv).

(iv) We have seen in the proof of Theorem 4.4 that D∞ can be embedded into∏
p Dp. In

∏
p D1

p, the identity element has all coordinates equal to 1, so we may
embed D1

∞ into
∏

p D1
p by mapping 1 to (1)p, and the rest of the elements of D1

∞ as for
D∞. This givesD1

∞ ⊆
∨

p D
1
p.

Since Dp is a homomorphic image of D∞, it follows easily that D1
p is a

homomorphic image of D1
∞. But then D1

p ⊆D
1
∞ for all primes p, and thus∨

p D
1
p ⊆D

1
∞. �

In [2] we did not have a basis forD1
p. In this paper also a basis forD1

∞ is missing.

6. Variety BG

We continue here with the pattern of the preceding three sections, now for
cryptogroups (bands of groups). Our statements and notation rely heavily on the
paper [4] where arbitrary completely regular monoids with two generators were
constructed. We start with the devices needed from that paper.

From [4, Construction 3.1] we borrow the following. Let G be a group generated
by the set {gn | n ∈ Z}, where we allow that gm = gn if m , n. Let P = (pnm) be a Z × Z
matrix with

pnm =


g−1

0 · · · g
−1
n−1gm+n−1 · · · gm if n > 0,

1 if n = 0,
g−1 · · · gng−1

m+n · · · g
−1
m−1 if n < 0,

and let
Γ∗ =M(Z,G, Z; P).
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Note that P is normalized at 0. Let θ = (α, ϕ; ψ, β) where

αn = n + 1, ϕn = gn, nψ = pn1g0, nβ = n + 1 (n ∈ Z).

We will now specialize the construction in [4] to the present situation. For reasons
of economy, we will use the material in that paper without repetition except for the
following. Let Ω(Γ∗) be the translational hull of Γ∗ and

Ω(Γ∗) = {(α, ϕ; ψ, β) ∈ (T (Z) wl G) × (G wr T ′(Z)) | (nψ)pnβ,m = pn,αm(ϕm), m, n ∈ Z}

and note that Ω(Γ∗) �Ω(Γ∗).
By [4, Lemma 3.2], θ is in the group of units of Ω(Γ∗). Next we follow the notation

introduced before Lemma 3.4 of [4]. Let B = 〈θ〉, the (cyclic) group generated by θ,
and B0 be B with a zero adjoined. Further, let Γ be the ideal extension of Γ∗ by B0

determined by the action of θ, that is, by θk for k ∈ Z.
We now modify the above construction; see [4, Section 4]. Let ` > 0 be an integer

and let
I` = {0, . . . , ` − 1}, G` = 〈g0, . . . , g`−1〉.

Extend the sequence g0, . . . , g`−1 to the sequence {gn | n ∈ Z} with the proviso that

gm = gn ⇐⇒ m ≡ n (mod `).

Now let

Γ∗` =M(I`,G`, Z; P|Z×I` ),

α` = (0, . . . , ` − 1) be a cycle,

θ` = (α`, ϕ|I` ; ψ, β).

By [4, Lemma 4.1], θ` is in the group of units of Ω(Γ∗`). Denote by Γ` the ideal
extension of Γ∗` by 〈θ`〉0 determined by θ`, that is, by θk

` for k ∈ Z.
We denote by Γ′` the (left–right) dual of Γ`.
Next we let r > 0 be an integer, and

Λr = {0, . . . , r − 1}, and βr = (0, . . . , r − 1) be a cycle.

We extend the sequence g0, . . . , gr−1 to {gn | n ∈ Z} as above. In addition, we impose
the condition
(C) gr−1 · · · g0 = gm+r−1 · · · gm (m = 1, . . . , ` − 1).

Let γ be the congruence on G` induced by condition (C) and let G`r = G`/γ. Define

Γ∗`r =M(I`,G`r; Λr; P |Λr×I` ),

θ`r = (α`, ϕ|I` ; ψ|Λr , βr).

By [4, Lemma 5.1], θ`r is in the group of units of Ω(Γ∗`r). Let Γ`r be the ideal extension
of Γ∗`r by 〈θ`r〉0 determined by θ`r, that is, by θk

`r for k ∈ Z.
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[11] Completely regular semigroups 407

Now let B be a cyclic group of order s (finite or infinite) generated by an element b.
If s > 0, we assume that for some positive integers p and q,

s = p` = qr, (g`−1 · · · g0)p = (gr−1 · · · g0)q = 1.

Let τ : B→ 〈θ`r〉 be the homomorphism induced by the mapping b 7→ θ`r. Then τ
produces an ideal extension Γ`rs of Γ∗`r by B0.

We now construct a special case of Γ as follows; see [4, Section 6]. Let H = {hn |

n ∈ Z} where hm = hn only if m = n. Denote by FH the free group on H. We specify
the parameters and notation of Γ as

G −→ FH, Γ −→ Γ∞, Γ∗ −→ Γ∗∞,

θ = (α, ϕ; ψ, β) −→ κ = (ξ, σ; τ, η),

gn −→ hn, pnm −→ qnm,

with all the formulae for Γ retaining their meaning in the new notation. For details and
results concerning the above concepts and notation, consult [4].

Recall that the semigroups LGn and RGn were constructed in [6, page 238]. Next
we give an explicit characterization of LGn; the semigroup RGn can be constructed in
a dual manner.

L 6.1. Let n > 1.

(i) Denote by Ln the left zero semigroup on the set {0, . . . , n − 1}. On Ln ∪ Zn define
a multiplication such that the operations in Ln and Zn remain unchanged and

[ i ]n ∗ j =

{
i + j if i + j < n
i + j − n otherwise,

j ∗ [ i ]n = j.

Denote the resulting groupoid by Ln ∪ Zn.
(ii) Let Z′n = {[0′]n, . . . , [(n − 1)′]n} with the usual operation for Zn and Z′n, and

[m]n ∗ [k′]n = [(m + k)′]n, [k′]n ∗ [m]n = [k′]n.

Denote the resulting groupoid by Z′n ∪ Zn.

Then Ln ∪ Zn � Z
′
n ∪ Zn � LGn and LGn is not cryptic.

P. The verification is straightforward. We note only that ([0]n, [1]n) ∈ H and
[0]n ∗ 0 = 0 but [1]n ∗ 0 = 1 and (0, 1) <H , so LGn is not cryptic. �

L 6.2. Let S ∈ {Γ, Γ`, Γ`rs}, k ≥ 2, and let k divide `. For every m ∈ Z, let m satisfy

0 ≤ m < k, m ≡ m′ (mod k).

Define α by
αm = m + 1 (0 ≤ m < k),
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give Ik the left zero multiplication, and set

αn ∗ m = αnm, m ∗ αn = m (0 ≤ m, n < k).

Then 〈α〉 ∪ Ik � LGk and the mapping

χ :
{

bn 7→ αn

(m, g, n) 7→ m

is a homomorphism of S onto LGk.

P. Note that k divides ` and ` divides s. The argument consists of a straightforward
verification. �

T 6.3. The following conditions on S are equivalent.

(i) S ∈ BG.
(ii) S has no subsemigroups isomorphic to any Γ, Γ`, Γ

′
`, Γ`rs for ` + r > 2.

(iii) S has no divisors isomorphic to LGp or RGp for any prime p.
(iv) If χ : Γ∞→ S is a homomorphism, then the image of χ is a semilattice of one or

two cyclic groups.

P. (i) implies (iii). This follows directly from Lemma 6.1 and its dual.
(iii) implies (ii). This is a direct consequence of Lemma 6.2 and its dual.
(ii) implies (i). Let a ∈ E(S ) and b ∈ S satisfy a < b0 and let T be the completely

regular subsemigroup of S generated by the set {a, b}. By [4, Theorem 6.3], T is
isomorphic to one of the semigroups Γ, Γ`, Γ′`, Γ`rs and the hypothesis implies that
r = s = 1. But then ab = ba. It remains to apply [3, Theorem 3.3] to see that S ∈ BG.

(ii) implies (iv). Let T = Γ∞χ. Then T is generated by some set {a, b} with
a ≤ b0. If a = b0, then T = 〈b〉 and is thus a cyclic group. If a < b0, then in view of
[4, Theorem 6.3], the hypothesis implies that T � Γ11s for some s, and T is a semilattice
of two cyclic groups.

(iv) implies (ii). By [4, Theorem 6.3], the homomorphic images Γ∞χ having two
components are of the form Γ, Γ`, Γ′`, Γ`rs. Among these only Γ11s is a semilattice of
two cyclic groups. Hence S cannot have subsemigroups isomorphic to Γ, Γ`, Γ′`, and
Γ`rs with ` + r > 2. �

The equivalence of parts (i) and (iii) in the above theorem is Rasin’s theorem
(see [6, Theorem V.7.6]), for which the above argument provides a new proof. In
the case where eachD-class of S contains only a finite number ofH-classes, the main
result in [3, Theorem 8.1] essentially asserts the equivalence of parts (i) and (ii) in
Theorem 6.3 (with suitable modification and in different notation).

For the calculation of
∨

p Lp, we will need the following construction.
Denote by L∞ the left zero semigroup on the set L∞ = {n′ | n ∈ Z}. On LG∞ =

L∞ ∪ Z define a product by

m ∗ n′ = (m + n)′, n′ ∗ m = n′,

and let L∞ and Z retain their multiplication.
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L 6.4. LG∞ is a completely regular semigroup. For any n > 1, the mapping

χn :
{

m 7→ [m]n (m ∈ Z)
m′ 7→ [m′]n (m′ ∈ L∞)

is a homomorphism of LG∞ onto Z′n ∪ Z (see Lemma 6.1).

P. Straightforward verification will show that the multiplication in LG∞ is
associative, whence it obviously follows that LG∞ is completely regular. Comparing
the above product for LG∞ with Lemma 6.1(ii) makes it clear that χ has the properties
claimed. �

By duality, we define R∞ and RG∞.

T 6.5. For every prime p, let Lp = 〈LGp〉 and Rp = 〈RGp〉.

(i) Lp =LROAp, Rp = RROAp.
(ii) Lp and Rp are minimal non-BG varieties.
(iii) Every non-BG variety contains either Lp or Rp for some prime p.
(iv) For V ∈ {L, R} and primes p and q, if Vp =Vq, then p = q. Also, Lp , Rq for

all primes p and q.

Let L∞ = 〈LG∞〉 and R∞ = 〈RG∞〉.

(v) L∞ =
∨

p Lp =LROA = [(axa)2xay = ax(axa)2ya0],
R∞ =

∨
p Rp = RROA = [yax(axa)2 = a0y(axa)2xa].

(vi) L∞ ∨ R∞ = ROA = 〈LG∞ × RG∞〉 = [bax(axa)0yb = b(axa)0xab0yb].

P. The first part of part (i) was proved in [2, Theorem 6.4(v)]; the second is its
dual. Parts (ii) and (iii) are from [6, Corollary V.7.7].

(iv) Subgroups of semigroups in Lp are abelian groups whose exponents divide p.
IfVp =Vq, then both p divides q and q divides p so that p = q. Moreover,Lp contains
all left zero semigroups and only the trivial right zero semigroup; a dual statement is
valid for Rq and thus Lp , Rq.

(v) We consider the first part; the second part is its dual. Define a mapping by

χ :
{

m 7→ ([m]p)p∈P (m ∈ Z)
m′ 7→ ([m′]p)p∈P (m′ ∈ L∞).

It follows from Lemma 6.4 that χ is a homomorphism of LG∞ into
∏

p(Lp ∪ Zp). If
mχ = nχ, then taking a prime p such that p > m, n, we get m = n; similarly m′χ = n′χ
yields m′ = n′. We cannot have mχ = n′χ. Therefore χ is injective and thus an
embedding. But then L∞ =

∨
p Lp; see [6, Lemma I.8.11].

Since LGp ∈ LROA, we obtain Lp ⊆ LROA and thus
∨

p Lp ⊆ LROA. One may
extract easily from the proof of [2, Theorem 6.4(v)] that

LRO ⊆ [(axa)2xay = ax(axa)2ya0] ⊆ L∞; (6.1)

we omit the details.
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(vi) In view of part (v), for the first equality, it suffices to prove that

LROA ∨ RROA = ROA. (6.2)

The inclusion LROA ∨ RROA ⊆ ROA is trivial, and the reverse inclusion follows
from the implication (i)⇒ (iii) of [6, Theorem V.3.3].

In view of part (v) and equality (6.2), we obtain

ROA = 〈LG∞〉 ∨ 〈RG∞〉 ⊆ 〈LG∞ × RG∞〉 ⊆ ROA

and equality prevails.
By [6, Theorem V.3.3 and Proposition II.7.2], a basis for identities of ROA is

given by
axya = axa0ya, ax(axa)0 = (axa)0xa. (6.3)

Assume the validity of the identity in (6.1). For a = x0, we get bxyb = bxb0yb, and for
b = y = a0, we obtain ax(axa)0 = (axa)0xa, so (6.3) holds. Conversely, obviously the
identities in (6.3) imply those in (6.1). �

7. Varieties G, ReG,NO, OBG, and LOBG

These varieties can be obtained as suitable intersections of CS, SG, NBG, O, LO,
and BG. The first three of these were treated in Section 3, and the next three in
Sections 4–6. The type of information we provided in those sections can be treated
for the varieties in the title of this section in a unified way. Hence we change the style
of presentation by treating these varieties in a unified way, and in particular, heavily
using information from previous sections.

We start our discussion with a lemma which has the desired unifying effect.

L 7.1. LetU,V ∈ L(CR).

(i) Let U ⊆ L(CR) be such that:

(a) X ∈ U⇒X *U;
(b) Y ∈ L(CR),Y ⊂ X ∈ U⇒Y ⊆U ∩V;
(c) W∈L(CR),W *U⇒W contains a member of U.

(ii) Let V ⊆ L(CR) have analogous properties.

Then U ∪ V is a set of minimal non-U ∩V varieties and each non-U ∩V variety
contains a member of U ∪ V.

P. (a) Let X ∈ U ∪ V. We may assume that X ∈ U. Then X *U and thus
X *U ∩V.

(b) Let Y be a proper subvariety of X where X ∈ U ∪ V. Again we may suppose
that X ∈ U. The hypothesis implies that Y ∈U ∩V.

(c) Let W∈L(CR) be such that W *U ∩V. Then either W *U or W *V.
Again we may assume that W *U. By hypothesis there exists Z ∈ U such that
Z⊆W. But thenZ ∈ U ∪ V. �
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Observe that in Lemma 7.1 conditions (a), part of (b), and (c), in view of
Lemma 3.1, mean that U above is the set of all minimal non-U varieties, and that
every non-U variety contains a minimal non-U variety.

In the special cases below, we have a stronger property than (b), namely

Y ⊂ X ∈ U⇒Y ⊆U, X ⊆V.

For the special cases ofU andV, we can easily check that conditions in Lemma 7.1
are satisfied, thereby obtaining the statement forU ∩V.

For G = CS ∩ SG, see Theorem 3.6 parts (i) and (ii). We have CS ∼ S and
SG ∼ LZ, RZ, where S ⊂ SG and LZ, RZ ⊂ CS.

For ReG = CS ∩ O, see Theorems 3.6(i) and 4.4(i). We have CS ∼ S and O ∼
CSAp, where S ⊂ O and CSAp ⊂ CS.

For NO =NBG ∩ O, see Theorems 3.6(iv) and 4.4(i). We have NBG ∼
LRB, RRB and O ∼ CSAp, where LRB, RRB ⊂ O and CSAp ⊂ NBG.

For OBG = BG ∩ O, see Theorems 6.5(i) and 4.4(i). We have BG ∼
LROAp, RROAp and O ∼ CSAp, where LROAp, RROAp ⊂ O and CSAp ⊂ BG.

For LOBG = BG ∩ LO, see Theorems 6.5(i) and 5.3(i). We have BG ∼
LROAp, RROAp and LO ∼D1

p, where LROAp, RROAp ⊂ LO andD1
p ⊂ BG.

In all the cases considered, ifU ∼ U andV ∼V, thenU ∩V ∼ U ∩V.
Next we compute the join of the varieties in U ∪V. First we make a digression

which will be used in the proof of the next theorem. The following is [7, Corollary 5.3]
in the present notation.

F 7.2. LetV ∈ [RB, LOBG] and let

V ∩ CS = [uα = vα]α∈A, V ∩B = [r = s, a2 = a].

Then a basis for identities inV is

u∗α = v∗α, (α ∈ A), (7.1)

r0 = s0, (7.2)

(xry)0 = (xsy)0, (7.3)

(xa2y)0 = (xay)0, (7.4)

(xax)0(xbx)0 = ((xax)0(xbx)0)0. (7.5)

According to [7, Theorem 4.4], [u∗α = v∗α]α∈A is the greatest member ofL(CR) whose
intersection with CS equals [uα = vα]α∈A. The words u∗α and v∗α are constructed from
uα and vα, respectively, in an explicit way. We show next that (7.2) and (7.4) are
redundant.

For any word w, let h(w) denote the head (the first letter) of w, and t(w) denote the
tail (the last letter) of w.

(1) The hypothesis that RB ⊆V implies that h(r) = h(s) and t(r) = t(s). By setting
x = (h(r))0 and y = (t(r))0, the equation in (7.3) implies that in (7.2).
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(2) According to the proofs of [6, Corollaries II.7.5 and II.8.6], the identity in (7.5)
defines the variety LOBG of locally orthodox cryptogroups.

(3) Since LOBG ⊆ BG, and the latter obviously implies (7.4), we may omit (7.4) as
well.

(4) There remain relations (7.1), (7.3), and LOBG in Fact (7.2). In the special case
that CS ⊆V, we can also omit (7.1) since (CS)∗ = CR.

F 7.3. The varieties CS, B, and O are neutral in L(CR).

P. See [8, Proposition 2.2 and Corollary 2.9]. �

We are now ready for the desired result.

T 7.4. For V ∈ L(CR), denote by V∨ the join of all minimal non-V varieties
(ifV has any).

(i) G∨ = S ∨ RB =NB.
(ii) ReG∨ = S ∨ CSA =NBA.
(iii) NO∨ = ReB ∨ CSA = LO ∩ RBG ∩ HA.
(iv) OBG∨ = ROA ∨ CSA = LO ∩ (RO)T ∩ HA.
(v) LOBG∨ = ROA ∨D1

∞.

P. In view of the preceding comments, we express each of the varieties above as
the intersection U ∩V where for U and V we have computed the join of minimal
non-U and non-V varieties, and determine their join. Hence the first equality in each
part follows from the results in the preceding four sections.

We now prove the second equality in each part.
(i) It is well known that S ∨ RB =NB.
(ii) This forms part of [6, Theorem IV.1.12(iii)].
(iii) LetV = ReB ∨ CSA. We set up the situation in order to apply Fact 7.2. First

note that RB ⊆V ⊆ LOBG. Fact 7.3 asserts that CS is a neutral element of L(CR),
and thus

V ∩ CS = (ReB ∩ CS) ∨ (CSA ∩ CS) = CSA.

By the same reference, also B is neutral in L(CR), and hence

V ∩B = (ReB ∩ B) ∨ (CSA ∩ B) = ReB.

If U = [uα = vα]α∈A ∈ L(CR), we write U∗ = [u∗α = v∗α]α∈A; see Fact 7.2 and the
comments following it. Clearly A∗ = HA. By the modified version of Fact 7.2, we
obtain

V = LOBG ∩ [(uaxyav)0 = (uaxayav)0] ∩ HA. (7.6)

For u = v = a0, the identity in (7.6) yields (axya)0 = (axaya)0. Conversely, assume the
validity of the last identity. By [6, Proposition V.4.4], it determines the variety RBG.
Thus we can use the cryptic property to get

(uaxyav)0 = (u(axya)0v)0 = (u(axaya)0v)0 = (uaxayav)0.
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We have proved that the middle variety in (7.6) equals RBG. Now (7.6) implies that

V = LOBG ∩ RBG ∩ HA = LO ∩ RBG ∩ HA.

(iv) For any U ∈ L(CR), by [1, Section 6], U+ defined in [7] coincides with UT ,
the upper end of the trace class ofU. Recall that

CU = {S ∈ CR |C(S ) ∈ U}

where C(S ) is the core of S (the subsemigroup of S generated by E(S )). Now [7,
Proposition 3.5] implies that OT = CBG. Recall the notationU∗ in part (iii).

LetV = ROA ∨ CSA. ThenV ⊆ LO ∩CBG and [7, Theorem 5.1] implies that

V = LO ∩ (V ∩ O)T ∩ (V ∩ CS)∗. (7.7)

By Fact 7.3, the variety O is neutral in L(CR) and thus

V ∩ O = (ROA ∩ O) ∨ (CSA ∩ O) = ROA ∨ RecA = ROA. (7.8)

By the same reference, also CS is neutral in L(CR) so that

V ∩ CS = (ROA ∩ CS) ∨ (CSA ∩ CS) = CSA. (7.9)

As in part (iii), we have (CSA)∗ = HA. By (7.7), (7.8), (7.9), and [5, Theorem 6.2],
we get

V = LO ∩ (ROA)T ∩ HA = LO ∩ (RO)T ∩ (HA)T ∩ HA = LO ∩ (RO)T ∩ HA. �

We may write

NB = LO ∩NB ∩ HA, NBA = LO ∩NBG ∩ HA.

Comparing this with parts (iii) and (iv) of Theorem 7.4, we begin to see a pattern.
In order to characterize the varieties in the title of this section in terms of a

homomorphism, we need the following construction.
Let D(e)

∞ be the semigroup D∞ with an element e adjoined with products

e = e2, (m, k, n)e = (m, k, n)(0, 0, 0), e(m, k, n) = (0, 0, 0)(m, k, n).

Then D(e)
∞ is a retract extension of D∞ with retraction

ψ :
{

(m, k, n) 7→ (m, k, n)
e 7→ (0, 0, 0).

(7.10)

We may say that we ‘inflated’ the element (0, 0, 0) of D∞ by an idempotent e.

T 7.5.

(i) S ∈ G if and only if whenever χ : L2 × Y2 × R2→ S is a homomorphism, then the
image of χ is trivial.
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(ii) S ∈ ReG if and only if whenever χ : D(e)
∞ → S is a homomorphism, then the image

of χ is a small rectangular band.
(iii) S ∈ NO if and only if whenever χ : D1

∞→ S is a homomorphism, then the image
of χ is a one- or two-element semilattice.

P. (i) Straightforward.
(ii) Necessity. The image of χ is a subsemigroup of a rectangular group and thus

must itself be a rectangular group. Clearly eχ = (0, 0, 0)χ and χ|D∞ is a homomorphism
of D∞ into S . By Lemma 4.1, its image must be a small rectangular band. But
D(e)
∞ χ = D∞χ so the same holds for D(e)

∞ .
Sufficiency. The argument is by contrapositive. Hence assume that S is not a

rectangular group. First assume that S is completely simple. Then S is not orthodox,
and by Theorem 4.2, there is a homomorphism ϕ : D∞→ S whose image is not a small
rectangular band. Using the retraction ψ in (7.10), the composition ψϕ : D(e)

∞ → S is a
homomorphism whose image is not a small rectangular band. Suppose next that S is
not completely simple. Then it contains idempotents f > g. Defining a mapping

χ :
{

e 7→ f
(m, k, n) 7→ g ((m, k, n) ∈ D∞),

we obtain a homomorphism χ : D(e)
∞ → S whose image is a nontrivial semilattice, and

is thus not a rectangular band.
(iii) From Lemma 5.1, we deduce that homomorphic images of D1

∞ are, up to
isomorphism,

D1
∞, D1

n for n > 1, (L2 × R2)1, L1
2, R1

2, Y2, {0}.

Only the last two of these are normal orthogroups. The assertion now follows from
Theorem 5.2. �

We do not have the corresponding statements for OBG and LOBG.

8. Review

Besides the intrinsic interest of some of our results as isolated statements, their
comparison may even be more useful if we have in mind some general patterns. For
this purpose, we now tabulate essential parts of our results for all varieties considered.

In Table 1 we exhibit the main results of Section 3. These are simple statements
whose proofs are essentially omitted, and most of which are folklore.

Table 2 is a review of cases studied in Sections 4–6. This is the main part of the
paper.

Table 3 reviews the varieties which can be obtained as intersections of some
previously treated. These results rely heavily on previously proved statements, and
are only briefly summarized.

We have not stated bases for these varieties since they follow immediately from the
glossary of varieties and their bases are in Section 2.
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T 1. Varieties from Section 3.

VarietyV CS S SG NBG

See Theorem 3.6 and Proposition 3.2 3.3 3.4 3.5

Forbidden subsemigroups Y2 L2, Z, Zn, R2 L2, R2 L1
2, R1

2

Forbidden divisors Y2 L2, Zp, R2 L2, R2 L1
2, R1

2

Minimal non-V varieties S LZ,Ap, RZ LZ, RZ LRB, RRB

Their join S RecA RB ReB

Its generator Y2 L2 × Z × R2 L2 × R2 (L2 × R2)1

Test semigroup Y2 L2 × Z × R2 L2 × R2 (L2 × R2)1

Its image trivial trivial trivial trivial or Y2

T 2. Varieties from Sections 4–6.

VarietyV O LO BG

See Theorems 4.2 and 4.4 5.2 and 5.3 6.3 and 6.5

Forbidden subsemigroups Dn, D∞, n > 1 D1
n, D1

∞, n > 1 Γ, Γ`, Γ
′
`, Γ`rs

Forbidden divisors Dp D1
p LGp, RGp

Minimal non-V varieties CSAp D1
p LROAp, RROAp

Their join CSA D1
∞ ROA

Its generator D∞ D1
∞ LG∞ × RG∞

Test semigroup D∞ D1
∞ Γ∞

Its image Trivial or L2 or R2 Trivial or L1
2 Semilattice of one or

or L2 × R2 or R1
2 or (L2 × R2)1 two cyclic groups

T 3. Some intersections of varieties from Sections 3–6.

VarietyV Join of minimal Test semigroup Its image
non-V varieties

See Theorem 7.4 7.5 7.5

G = CS ∩ SG NB L2 × Y2 × R2 Trivial

ReG = CS ∩ O NBA D(e)
∞ Trivial or L2 or R2 or L2 × R2

NO =NBG ∩ O LO ∩ RBG ∩ HA D1
∞ Trivial or Y2

OBG = BG ∩ O LO ∩ (RO)T ∩ HA

LOBG = BG ∩ LO ROA ∨D1
∞
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F 1.

In Figure 1 the vertices are labelled by the varieties V studied as well as V∨ in
parentheses.
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