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Abstract

We study the problem of certifying programs combining imperative and functional features

within the general framework of type theory. Type theory is a powerful specification language

which is naturally suited for the proof of purely functional programs. To deal with imperative

programs, we propose a logical interpretation of an annotated program as a partial proof of

its specification. The construction of the corresponding partial proof term is based on a static

analysis of the effects of the program which excludes aliases. The missing subterms in the

partial proof term are seen as proof obligations, whose actual proofs are left to the user. We

show that the validity of those proof obligations implies the total correctness of the program.

This work has been implemented in the Coq proof assistant. It appears as a tactic taking an

annotated program as argument and generating a set of proof obligations. Several nontrivial

algorithms have been certified using this tactic.

Capsule Review

At the end of his famous paper on the program Find (1971), which gave the proof of correctness

and termination of a rather complex algorithm, C.A.R. Hoare noticed in the conclusion that

‘in the future, it may be possible to enlist the aid of a computer in formulating the lemmas,

and perhaps even in checking the proofs.’ The present paper offers an elegant approach to

the representation of proofs of imperative programs in proof systems such as Coq, Isabelle or

PVS. The method relies on a translation of an annotated imperative program in an annotated

functional program with missing parts, seen as proof obligations. The correctness of the

method is established, relying on ideas from Wright & Felleisen (1994). Nontrivial algorithms

have been analysed as case studies (the program Find being one of them).

1 Introduction

This paper is a presentation of the author’s thesis (Filliâtre, 1999b). It proposes a

new approach to the certification of imperative programs, which combines old ideas

about software correctness with recent work on logical frameworks.

∗ This article was written while the author was an International Fellow at Computer Science Laboratory,
SRI International, Menlo Park, CA, USA.
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710 J.-C. Filliâtre

A formal method to establish software correctness can involve several steps. The

first is the specification; the second a method to generate some proof obligations;

and the third a framework to establish their validity. The second step, which

expresses what must be proved to establish the correctness, has been widely studied.

Pioneers were Floyd (1967), Hoare (1969) and Dijkstra (1976), quickly followed

by many others. Some methods derive the proof obligations from the programs,

following Floyd-Hoare logic (Jones, 1980; Reif, 1995), and others derive them

from specifications following Dijkstra (Back, 1981; Morgan, 1990; Abrial, 1996).

But almost nothing has been done regarding the other two steps, where standard

mathematics were assumed most of time. Although the proof of a program can be

conducted on paper mathematically, as has been done brilliantly by Hoare (1971),

formal specification languages and formal proof tools were expected and still had

to be defined.

Formal logical frameworks appeared later and, paradoxically, independently of

the software correctness concern. Rather, they were a rehabilitation of logic and

λ-calculus, deprecated by traditional mathematicians. The first implementation of a

logic was deBruijn’s Automath (de Bruijn, 1980), followed by many others, including

Nqthm, PVS, HOL, Nuprl and Coq. Some of them implement highly expressive logics,

whose counterpart is a relatively poor automation. The Coq system implements the

Calculus of Inductive Constructions, an extension of Girard’s system F (Girard, 1972)

developed by Huet, Coquand and Paulin-Mohring (Coquand & Huet, 1988; Paulin-

Mohring, 1989b), which belongs to the family of type theories.

Type theory identifies types with propositions and terms with proofs, through the

widely known Curry–Howard isomorphism. There is no real difference between the

usual first-order objects of the mathematical discourse – such as naturals, sets and so

forth – and the proof objects. The natural 2 is a first-order object of type nat, and a

proof that 2 is even is a first-order object of type even(2). One can define a function

f taking as arguments a natural n and a proof that n is even, and its type would be

something like ∀n : nat. even(n) → τ. Such a function represents a partial function

on naturals, where the proof of even(n) may be seen as a precondition. Similarly,

one can define a function returning a proof term. For instance, the function f could

return a natural p and a proof that n = 2 × p. Finally, the type of f will look like

∀n : nat. even(n)→ ∃p : nat. n = 2× p, where the proof of n = 2× p may be seen as

a postcondition. More generally, a type of the form

∀x : nat. P (x)→ ∃y : nat. Q(x, y) (1)

is the type of a function with a precondition P and a postcondition Q. Building

a term of this type is exactly like building a function together with a proof of its

correctness, and consequently type theory appears as naturally suited for the proof

of purely functional programs. Moreover, there is a systematic way to extract the

underlying program from such a proof, as has been demonstrated by Paulin-Mohring

(1989a, 1989b). Conversely, Parent showed that there is a way to partly reconstruct

a proof of (1) from a given functional program of the right type, which leads to the

expected proof obligations (Parent, 1993, 1995).
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Our objective is to cope with imperative programs in this context. We propose

an interpretation of the Hoare triple {P } e {Q} as a proof of the above proposition

(1), and then define a systematic construction of this proof from a given annotated

program, where the lacking proof terms are the so-called proof obligations. We still

have to give the precise meaning of x and y in this interpretation. Obviously, they

are the input and output of the program, but there are many ways to represent

them. The tradition in denotational semantics is to see them as memory states, often

called stores. Although it is suitable from a semantical point of view, it is far from

being natural, and is not practical, when we try to elaborate the correctness proof

of a program. Indeed, when doing the proof on a sheet of paper, we do not use a

store, but mathematical variables to represent the values of the program variables,

in the same way as when translating a piece of code from an imperative style to

a purely functional one. Thus, we choose to represent the input and output of the

program by tuples of values representing the values of the variables involved in the

computation.

Outline

The main steps of our method are the following. First, section 2 introduces

a programming language with logical annotations, which mixes functional and

imperative features. A notion of typing with effects is given for this language,

following the work of Talpin & Jouvelot (1994). The purpose of effects inference is

twofold: it determines the variables implicated in the computation and that should

therefore appear in the interpretation; and it excludes programs containing aliases,

because such programs do not have any natural functional interpretation. This static

analysis is done recursively over the structure of the program, giving a type and an

effect to each of its subexpressions.

Then, section 3 exploits the types and effects information to build an interpretation

in the Calculus of Inductive Constructions of an annotated program e, as a partial

proof term ê of a proposition expressing the specification of the program in a

functional way. The missing parts in the proof term ê are the obligations, left to

the user. This interpretation is inspired by the call-by-value translations introduced

by Moggi (1991) and Wadler (1993). Some examples are given to illustrate the

generation of proof obligations in three important situations – assignment, function

call with side effects and while loop.

Section 4 establishes the correctness of the method, namely that if all proof

obligations in ê are fulfilled by the user, then the program e satisfies its specification.

We proceed in three steps: first, we define an operational semantics for our language,

borrowed from Wright and Felleisen’s proof of type soundness for ML with

references (Wright & Felleisen, 1994). Then, we show that the functional program

underlying our interpretation, obtained by erasing the logical parts in ê following

Paulin-Mohring’s (1989b, 1989a) extraction is semantically equivalent to the initial

program e. Finally, we define the notion of correctness for the annotated programs

and we relate this notion to the one of realizability associated to extraction; it leads

to the correctness result of our method.
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Finally, section 5 gives some details about the implementation of this method

in the Coq proof assistant, discusses some completeness issues, and describes the

case studies developed by the author. Section 6 discusses possible extensions and

compares our work with other approaches.

This paper is intended to be a standalone presentation, and does not assume any

knowledge of the author’s thesis (Filliâtre, 1999b). However, in that thesis, interested

readers will find detailed proofs of the results given here, some slight generalizations,

and a comprehensive presentation of some case studies.

2 A programming language with annotations

In introducing a programming language with annotations, we first define a notion

of annotated type. Then the constructs of annotated programs are introduced and

discussed. Finally, a typing system for programs is given, which includes an effect

inference.

2.1 Types, effects and specifications

Types in programs are a first level of specification. Knowing that a function f has

type int → int prevents us from applying it to a boolean. Types express simple

properties of the programs that can be checked by the compiler, and even inferred

in some programming languages. An important point is that a good typing system

allows separate compilation: the type of a function f is the only information needed

in compiling a program that uses f.

Obviously, simple types are not enough to guarantee the correct use of a function.

If f accepts only even numbers, for instance, then it must be specified and checked

for any use of this function. In the general case, this is no longer checkable by

the compiler. But we can keep the idea of separate compilation and ask what

information is required to use a function. The specification is clearly part of it. In

the example above, it would be a precondition expressing that the argument of f

must be even. It could also be a postcondition expressing a property of the result

of the function call.

Side effects must clearly be part of the specification as well. Indeed, the two

computations f(0)+ f(0) and 2× f(0) are not equivalent as soon as f has some side

effect, such as the modification of a global reference. A possibility is to make explicit

side effects as a proposition in the postcondition of f, such as y = ←−y + 1 ∧ ∀z.z �≡
y ⇒ z =←−z , where ←−x denotes the value of the reference x before the function call.

But we expect a more implicit handling of side effects. We would like to declare that

f modifies the contents of the reference y, and nothing else, the invariance of the

other references being an implicit consequence. We also expect the side effects of a

function to be inferred from its definition, or at least checked.

Finally, the notions of pre- and post-conditions must be made precise. Our spe-

cification language will be the Calculus of Inductive Constructions (Cic) (Coquand

& Huet, 1988; Paulin-Mohring, 1989b), which is a typed λ-calculus extending the

system F with higher order, dependent types and inductive definitions. The terms of
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Cic and its typing rules are given in the appendix. The typing judgment is written

Γ �Cic u : t, where Γ is a typing environment and u, t are terms. Terms of type

Prop are called logical propositions in the following. We assume the base types of

our language to be definable in Cic.

As a consequence, our notion of annotated type is made of a type, an effect and

a specification.

First, we need to define the precise notion of effect. Extensive work has been done

on the static analysis of programs, among which The Type and Effect Discipline of

Talpin & Jouvelot (1994) is probably the most well known. We took some inspiration

from their work, but our notion of effect is much simpler for two reasons. First,

we do not consider aliases in programs, and therefore we do not need the notion

of regions. Secondly, we do not consider effect polymorphism – the possibility to

abstract the type of a function with respect to an effect – and hence we do not need

effect variables. We will justify those restrictions in section 2.3.

In our case, an effect is a pair of two sets of variables, the first one representing

the references possibly accessed by the program, and the second one the references

possibly modified by the program.

Definition 1 (effects)

An effect is a pair ε = (ρ, ω) where ρ and ω are two finite sets of variables such that

ω ⊆ ρ. We will write ⊥ for the empty effect, that is, (∅, ∅).

The most commonly used operation on effects is their union. It appears naturally

when two program expressions follow in a sequence. This binary operation, written

�, is defined by

(ρ1, ω1) � (ρ2, ω2)
def
= (ρ1 ∪ ρ2, ω1 ∪ ω2)

We shall also need the operation removing a variable x from an effect ε, written

ε\x, defined by

ε\x def
= (ρ\{x}, ω\{x})

Then we can introduce the notions of pre- and post-conditions. A precondition

is a logical proposition which may refer to the current values of the references

contained in the environment. The current value of the reference x will be referred

to directly as x. A postcondition is a proposition which may also refer to the current

values of the references, still with the same notation, but also to the values of the

references before the evaluation of the program. This value of the reference x will be

written ←−x .

Finally, we can introduce the notion of annotated types. As has been sketched in

the introduction of this section, the information characterizing a computation is the

type of the returned value, an effect and a specification. A type may be a base type,

like int or bool. It may also be the type of a reference containing a value of type

τ, which will be written τ ref. The last possibility is the type of a function taking

a value of some given type and returning a computation. It leads naturally to the

definitions of types for values and types for computations, in a mutually recursive

way.

https://doi.org/10.1017/S095679680200446X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200446X


714 J.-C. Filliâtre

Definition 2 (annotated types)

The type expressions for values and computations are mutually recursively defined

by the following grammar:{
values τ ::= β | (x : τ)→ κ | τ ref

computations κ ::= (r : τ, ε, P , Q)

where β is a functional base type, P a precondition and Q a postcondition. In the

value type (x : τ) → κ the variable x is bound in κ, and in the computation type

(r : τ, ε, P , Q) the variable r is bound in Q. If a type τ does not contain the construct

ref, it is said to be pure, which we will write ‘τ pure’.

Environments are lists of bindings of types to variables, as usual. If Γ is an

environment, we will write x : τ ∈ Γ to express that there exist some environments

Γ1 and Γ2 such that Γ = Γ1, x : τ,Γ2, where x is not bound in Γ2. In the following,

we will often need to refer to the sets of references of an environment, which is

defined by

Refs(Γ)
def
= {x | ∃τ.x : τ ref ∈ Γ}

For convenience, we also introduce a notation for the set of all references appearing

in a precondition P and a postcondition Q, given an environment Γ:

AllV (Γ, P , Q)
def
=

(
FV (P ) ∪ FV (Q) ∪ {x | ←−x ∈ FV (Q)}

)
∩ Refs(Γ)

To type check the pre- and postconditions, we have to define the logical envir-

onments in which they are going to be typed. It means that we must define what

can be mentioned in a pre- or a post-condition. First, all predicates, like equality,

and all purely functional operations, like addition, will be available for building

the annotations. Second, we need to express properties of (i) the values contained

in the references, and (ii) the values returned by the programs. The main difficulty

occurs when the annotations need to use the functions present in the environment

or contained in references. Indeed, if f is a function which modifies its argument in

place, what is the meaning of a proposition like f(x) = x + 1 in the specification?

Does x on the right side mention the value of x before the function call, or after?

Although it is possible to cope with this problem by considering a logical

interpretation of functions in the annotations (Filliâtre, 1999b), we consider here a

simpler case where the annotations can only mention values of base types. Notice this

eliminates the possibility of mentioning functions in the annotations and obviously

not the possibility of using them in the programs. Then, if Γ is an environment

whose references containing values of base types are x1 : β1 ref, . . . , xn : βn ref, we

define the environments of pre- and post-condition by

Pre(Γ)
def
= x1 : β1, . . . , xn : βn

and

Post(Γ, r : τ)
def
= Pre(Γ),←−x1 : β1, . . . ,

←−xn : βn, r : β if τ = β or τ = β ref

Post(Γ, r : τ)
def
= Pre(Γ),←−x1 : β1, . . . ,

←−xn : βn otherwise
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These environments being defined, we are in a position to type check the pre- and

postconditions, and so to check that an annotated type is well formed.

Definition 3 (well formed annotated types)

The judgments Γ �a τ wf and Γ �a κ wf are inductively defined over the structure of

τ and κ by the following set of rules:

Γ �a β wf

Γ �a τ1 wf Γ, x : τ1 �a κ2 wf

Γ �a (x : τ1)→ κ2 wf

Γ �a τ wf τ pure

Γ �a τ ref wf

Γ �a τ wf ω ⊆ ρ ⊆ Refs(Γ) AllV (Γ, P , Q) ⊆ ρ

Pre(Γ) �Cic P : Prop Post(Γ, r : τ) �Cic Q : Prop

Γ �a (r : τ, (ρ, ω), P , Q) wf

Well formedness of an environment Γ is inductively defined by

∅ wf

Γ wf Γ �a τ wf

Γ, x : τ wf

To summarize, our notion of annotated type includes the usual notion of type,

an effect and a specification as a pre- and a post-condition. For instance, assuming

that we have also a type τ array for arrays of values of type τ, one predicate

sorted : τ array→ Prop expressing that an array is sorted and one predicate permut:

τ array → τ array → Prop expressing that two arrays are permutations of each

other, the annotated type of an in place sorting algorithm would be the following:

κ = (t : τ array)→ (unit, ({t}, {t}),True, sorted (t) ∧ permut(t,
←−
t ))

This is the type of a function taking an array t as argument and returning no

value (i.e. the value () of type unit), modifying the contents of t (t appears in the

input as well as in the output), with no precondition (i.e. the proposition True) and

a post-condition expressing that the final value of t is a sorted array, which is a

permutation of the initial value of t.

Annotated types are defined; we can introduce now the annotated programs.

2.2 Annotated programs

We consider a programming language with both imperative and functional features.

The constructs common to both worlds include the constants, the conditional, the

function definition and the function call. As an imperative language, it contains

references, sequences and loops. As a functional language, it also contains functions

as first-order values (passed as arguments and returned by other functions), partial

application and a let in construct. This last construct allows binding of a new

reference in an expression, and thus provides local variables. This language has a

call-by-value semantics, where the argument of a function is evaluated before the

function itself and multiple arguments are evaluated from right to left. A formal

semantics of the language is given in section 4.1.
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e ::= {P } s {r | Q}
s ::= c | x | (e e) | fun (x : τ)→ e | rec f (�x :�τ) : κ {variant ν} = e

| if e then e else e | e ; e | while e do {invariant P variant ν} e done

| let x = e in e | ref e | !x | x := e

Fig. 1. Abstract syntax of annotated programs.

Termination. Since we are interested only in total correctness, we must be in a

position to justify the termination of programs, that is, of loops and recursive

functions. Such a justification usually involves a quantity, the variant, which strictly

decreases for some well founded relation. Instead of limiting the variant to a non

negative integer, or an ordinal, as is usually done, we will let the user specify a

variant as a pair ν = (φ,R) where φ is the quantity itself and R the relation, that he

or she will have to prove to be well founded.

Definition 4 (variant)

Γ being a well formed environment, a variant in Γ is a pair ν = (φ,R), well typed

in Pre(Γ), whose type has the form

Variant(A)
def
= A× (A→ A→ Prop)

where A is any type.

Then, loops and recursive functions will be explicitly annotated by such a variant.

In the case of a recursive function, the variant is usually defined in terms of the

function’s arguments – otherwise, we would have written a loop – and the syntax of

recursive functions introduces the variant after the arguments.

We are now in position to introduce the syntax of annotated programs.

Definition 5 (annotated programs)

The abstract syntax of annotated programs is given in figure 1, where P is a

precondition, Q a postcondition and ν a variant.

One can notice that references are handled only as variables, in the constructs !x

and x := e, while the tradition in functional programming languages with references

is to allow any expression of type τ ref to be dereferenced or assigned. This will be

justified in the next section.

A program, and any of its subexpressions, is annotated with a pre- and postcon-

dition, in the tradition of Floyd-Hoare logic. The syntax is the following:

{P } s {r | Q}

where r binds the result of s in Q. In the case of a function fun (x : τ)→ e, however,

the annotation will usually not constrain the function itself but the body e directly,

with the syntax

fun (x : τ)→ {P } s {r | Q}
Loop invariants. Among program annotations, a particular emphasis is usually made

on loop invariants. Indeed, due to the structure of the loop, which does not return a
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value but modifies some data in place, there is usually a property which persists at

each iteration of the loop, called the loop invariant. We could use the notations

already introduced to annotate a loop body e2 in the following way:

while e1 do {variant ν} {P } s2 {Q} done

but, since usually P and Q are of the form I ∧ T1 and I , where T1 is a proposition

expressing that the test e1 is satisfied, we will introduce a particular notation of the

kind

while e1 do {invariant I variant ν} e2 done

Here is an example of such an invariant on a loop computing in the reference s the

sum of the integers from 0 up to the value initially contained in the reference n:

s := 0;

while !n > 0 do

{ invariant s =
∑i=←−n

i=n+1 i variant (n,<) }
s := !s + !n;

n := !n − 1

done

{ s =
∑i=←−n

i=0 i }

Another example is given later in Example 3.

Contrary to a loop, a recursive function usually has distinct pre- and postcondi-

tions, and its annotation will look like

rec f (�x :�τ) : κ {variant ν} = {P } s {r | Q}

similarly to a nonrecursive function. For instance, a recursive function computing

the factorial will be annotated as follows:

rec fact (x : nat) : κ {variant (x,<)} =

{} if x = 0 then 1 else x× ( fact (x− 1)) {r | r = x!}

where κ = (r : nat,⊥,True, r = x!) is the result type of fact (The absence of

precondition is understood as the tautological proposition True).

2.3 Typing

In this section, we introduce the typing rules for annotated programs, from which

we will get a type checking and effect inference algorithm. Beside the computation

of effects, which is not new, the main feature of our typing system is to exclude

programs containing possible aliases. Indeed, we are looking for a direct interpretation

of programs where input variables represent the values of the accessed references

and output variables the values of the modified references. Aliases would break this

interpretation. Consider, for instance, the following function f which increases its

two arguments:

f ≡ fun x y → x := !x + 1; y := !y + 1
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Then its interpretation should be a function taking the values of x and y, let us say

vx and vy , and returning their new values, namely, vx + 1 and vy + 1. But, if x and y

are aliases for the same reference – if f has been applied twice to the same reference,

for instance – then the interpretation of f should be now a function taking a single

value v and returning v + 2. As a consequence, even the type of the interpretation

of a function depends upon the presence of aliasing.

To avoid any alias introduction, we restrict the program’s expressions via typing.

An alias is created each time a variable is bound to an existing reference, and such

a binding may be realized using the let construct or a function call. We first restrict

the use of a variable x designating a reference: it is only allowed in the constructs !x,

x := e and as the argument of a call-by-reference function. In particular, a reference

bound to a variable cannot be bound to another variable using the let construct. In

the case of a function call, we avoid aliasing by checking that a function is never

applied to a reference which appears already in its effect. Consequently, a global

reference modified by a function cannot be passed as an argument to this function

and, for the same reason, the same reference cannot be passed twice as arguments

of a function.

The typing rules for annotated programs are given below.

Definition 6 (typing of annotated programs)

The judgment Γ �a e : κ is defined by the following rule:

Γ �a s : (τ, ε) let ε′
def
= (AllV (Γ, P , Q), ∅)

Pre(Γ) �Cic P : Prop Post(Γ, r : τ) �Cic Q : Prop

Γ �a {P } s {r | Q} : (r : τ, ε � ε′, P , Q)

where the judgment Γ �a s : (τ, ε) is defined by the inference rules given in figure 2.

In those rules, the judgment Γ �a e : κ appears in a weakened form Γ �a e : (τ, ε)

to save space, since only types and effects of the subexpressions are needed for the

conclusion.

The rules dealing with constants, abstractions, conditionals, sequences and loops

are immediate. The three rules dealing directly with references – creation, access

and assignment – are also self-explanatory. The key rules, which exclude aliasing,

are the rule for variables, the two rules for function calls and the two rules for the

let construct. The first, (VARa), does not allow use of a variable as soon as it is a

reference – but, of course, it is still possible to use it with the dereference operation,

with the assignment or in a function call. The two rules for function calls, (APPa) and

(APPREFa), distinguish between the case of a functional argument and the case of

a call-by-reference. In the latter, a side condition expresses that the reference passed

to the function must not be already present in the resulting effects of the function

call. Similarly, the two rules for the let bindings, (LETa) and (LETREFa), distinguish

the case of a purely functional expression and the case of a reference binding. In the

latter, a side condition expresses that the reference should not appear in the type of

the result: it prevents the binding of a local reference in an abstraction, where the

name of this reference in the effects would not represent a valid reference anymore.

In the rules (RECa) and (LOOPa), the premise ν : Variant(A) only checks that ν is a
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Type(c) = τ

Γ �a c : (τ,⊥)
(CONSTa)

x : τ ∈ Γ τ pure

Γ �a x : (τ,⊥)
(VARa)

Γ, x : τ �a e : κ Γ �a τ wf

Γ �a fun (x : τ)→ e : ((x : τ)→ κ,⊥)
(FUNa)

Γ �a e1 : (τ2 → (τ1, ε), ε1) Γ �a e2 : (τ2, ε2) τ2 pure

Γ �a (e1 e2) : (τ1, ε1 � ε2 � ε)
(APPa)

Γ �a e : ((x : τ1 ref)→ (τ, ε), ε2) r : τ1 ref ∈ Γ r /∈ (τ, ε)

Γ �a (e r) : (τ[x← r], ε2 � ε[x← r])
(APPREFa)

Γ �a �τ wf Γ,�x :�τ �a κ wf

Γ, f : (�x :�τ)→ κ,�x :�τ �a e : κ Pre(Γ,�x :�τ) �Cic ν : Variant(A)

Γ �a rec f (�x :�τ) : κ {variant ν} = e : ((�x :�τ)→ κ,⊥)
(RECa)

Γ �a e1 : (bool, ε1) Γ �a e2 : (τ, ε2) Γ �a e3 : (τ, ε3)

Γ �a if e1 then e2 else e3 : (τ, ε1 � ε2 � ε3)
(CONDa)

Γ �a e1 : (τ1, ε1) τ1 pure Γ, x : τ1 �a e2 : (τ, ε)

Γ �a let x = e1 in e2 : (τ, ε1 � ε)
(LETa)

Γ �a e1 : (τ1 ref, ε1) Γ, x : τ1 ref �a e2 : (τ2, ε2) x /∈ τ2

Γ �a let x = e1 in e2 : (τ2, ε1 � ε2\x)
(LETREFa)

Γ �a e1 : (unit, ε1) Γ �a e2 : (τ, ε2)

Γ �a e1 ; e2 : (τ, ε1 � ε2)
(SEQa)

Γ �a e1 : (bool, ε1) Γ �a e2 : (unit, ε2)

Pre(Γ) �Cic P : Prop Pre(Γ) �Cic ν : Variant(A)

Γ �a while e1 do {invariant P variant ν} e2 done : (unit, ε1 � ε2)
(LOOPa)

Γ �a e : (τ, ε) τ pure

Γ �a ref e : (τ ref, ε)
(REFa)

x : τ ref ∈ Γ

Γ �a !x : (τ, ({x}, ∅))
(DEREFa)

x : τ ref ∈ Γ Γ �a e : (τ, (ρ, ω))

Γ �a x := e : (unit, ({x} ∪ ρ, {x} ∪ ω))
(AFFa)

Fig. 2. Typing of annotated programs.

well formed variant and does not check that the function or the loop is terminating;

it will be done together with correctness in the next section.

A typing algorithm, associated to the above typing rules, realizes type checking

and effect inference. Its existence can be formalized as follows:

Proposition 1 (typing algorithm)

There exists an algorithm which, given a well formed environment Γ and an

annotated program e, terminates and either indicates that e is not typeable in

Γ, or returns a (unique) type of computation κ such that Γ �a e : κ.
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Proof

The algorithm proceeds by induction over the structure of e. For any construct,

there is only one rule that matches e. If one of the premises is not satisfied, then the

algorithm fails and e is not typeable in Γ. Otherwise, the type κ is built in a unique

way from the rule and the types returned by the recursive calls, which are unique by

induction hypothesis. The termination of the algorithm is justified by the fact that

the program’s size strictly decreases for each recursive call. �

The above typing algorithm needs some comments:

• Effects are inferred in all cases, except for the bodies of recursive functions;

indeed, the type κ in rule (RECa) contains an effect, which is thus explicitly

given. In practice, it is possible to adopt a simpler syntax for recursive functions

where only the type of the body is given and where the effect is inferred.

However, this is not immediate: the effect of a recursive function must be

computed as a least fix-point, and the number of steps may be arbitrarily

large. See Filliâtre (1999) for details.

• We made the pre- and postconditions mandatory for each subexpression,

mostly to simplify the theoretical presentation. In practice, it would be a

burden to introduce so many annotations, most of them being redundant. In

the next section, we still assume annotations everywhere, for the simplicity of

the definitions, but the examples at the end of the section will be given with a

minimum number of annotations. Section 5.3 on case studies will also give an

idea of the respective proportions of code and annotations in practice.

3 A logical interpretation

In this section, we define the interpretations of types and programs in the Calculus

of Inductive Constructions. The main idea is that an annotated type κ = (r : τ,

(ρ, ω), P , Q) will be translated into a proposition of the form

∀x. P (x)→ ∃(y, r). Q(x, y, r)

and a program of type κ will be translated into a partial proof term of this

proposition. Here x and y will be states containing respectively the values of

references from ρ and ω; then P (x) (resp. Q(x, y, r)) stands for the precondition P

now referencing the values in x (resp. the postcondition Q referencing the values in

x and y).

Formally, the terms of the Cic (Coquand & Huet, 1988; Paulin-Mohring, 1993)

that we need to consider in this paper obey the following grammar:

t ::= Set | Prop | Type(i) | c | x | ∀x : t. t | λx : t. t | (t t)

The product ∀x : t1. t2 is written t1 → t2 whenever x does not occur free in t2. The

typing judgment is written Γ �Cic u : t and the typing rules are given in Appendix

A. We do not need to present inductive types; therefore, the existential quantifier is

considered here as a primitive construct, although it can be defined as an inductive
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type (Paulin-Mohring, 1993). Its type, constructor and elimination are introduced by

the following constructs:

t ::= . . . | ∃x : t. t | (t, t) | let (x, x) = t in t

Similarly to the product, ∃x : t1. t2 is written t1 × t2 whenever x does not occur free

in t2. The pair (u1, u2) builds a proof of ∃x : t1. t2, where u1 is the witness of type t1
and u2 is of type t2[x ← u1], and a pair of type t1 × t2 in the non-dependent case.

The let in construct is the corresponding destructor. The typing rules for existential

quantification are given in the appendix.

As we already assumed, the pure functional base types of our languages (written

β in the previous pages) are among the constants c. And so are the predicates

used to specify the programs – like equality, order relations, etc. – and all the

purely applicative functions used in the programs – like arithmetical operations, test

functions, etc. We also assume the definition of a well founded induction principle1

WF of type

WF : ∀A : Set. ∀R : A→ A→ Prop. (well founded A R)→
∀P : A→ Set.

(∀x : A. (∀y : A. (R y x)→ (P y))→ (P x))→
∀a : A. (P a)

Finally, for clarity of the presentation, we assume that Cic contains a primitive

notion of records.2 Record types are written {x1 : t1; . . . ; xn : tn} and their elements

are written {x1 = t1; . . . ; xn = tn}. If v is such a record, then v.x stands for the value

of its field x. We assume that it is possible to abstract a term with respect to a field

variable, and to apply a term to a field variable, the corresponding reduction still

being the β-reduction.3 In the following, we need an operation to ‘update’ records

with respect to another one. This operation, written ⊕, is formally defined as follows:

if x and y are two records, then x⊕ y is a record containing all the fields of x and

y and where the value of the field a is y.a, if a is a field of y, and x.a otherwise.

3.1 Interpretation of types

Let us define first the interpretation of types in Cic. According to the informal ideas

given in the introduction, we expect the interpretation of a specification (i.e. a type

of computation κ) to be a formula of the kind ∀x. P (x) → ∃(y, v). Q(x, y, v) where

x and y are records of values, and v is a value. Since values and computations

are mutually recursive, their interpretations depend upon each other. The precise

definition is given below.

1 See, for instance, the Coq standard library (Coq, 2001).
2 Although this is not the usual case in implementations, we do show (Filliâtre, 1999b) how to cope with

this problem using anonymous tuples.
3 This assumption allows a nice interpretation of functions taking references as argument. Since our

implementation uses anonymous tuples instead of records, this abstraction no longer appears explicitly.
See Filliâtre (1999b) for details.
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Definition 7 (interpretation of types)

The interpretations of types of values and computations in Cic, respectively written

τ̂ and κ̂, are mutually recursively defined in a typing environment Γ by

values β̂ = β

̂(x : τ ref)→ κ = ∀x.κ̂ where x is a field

(̂x : τ)→ κ = ∀x : τ̂. κ̂ otherwise

τ̂ ref = τ̂

computations ̂(r : τ, (ρ, ω), P , Q) = ∀x : ρ̂. P (x)→ ∃(y, r) : ω̂ × τ̂. Q(x, y, r)

effects {̂x1, . . . , xn} = {x1 : τ̂1; . . . ; xn : τ̂n} where xi : τi ref ∈ Γ

where the propositions P (x) and Q(x, y, r) are formally defined as follows:

P (x)
def
= P [v ← x.v]

for v ∈ FV (P ) ∩ Refs(Γ), and

Q(x, y, r)
def
= Q[←−v ← x.v][w ← x.w][z ← y.z]

for v ∈ {x | ←−x ∈ FV (Q) ∧ x ∈ Refs(Γ)}, w ∈ (FV (Q) ∩ Refs(Γ))\ω and z ∈
(FV (Q) ∩ Refs(Γ)) ∩ ω.

Interpretation of typing environments is then defined as follows:

x̂ : τ, Γ = x : τ̂, Γ̂ when τ �= τ′ ref

x̂ : τ, Γ = Γ̂ otherwise

In the above definition, P (x) is defined as the predicate P where all references

are replaced by their values in the record x, as expected. For the postcondition Q,

the interpretation is a bit more subtle. Indeed, the postcondition may mention the

current value of some references which are not modified by the program, that is,

which do not appear in ω. Therefore, they must be substituted by their values in

the input record x instead of the output record y. This is the reason for the three

substitutions in the definition of Q(x, y, r). For example, if Refs(Γ) = {u; v}, ω = {u}
and Q ≡ u >←−u ∧ u = v then Q(x, y, r) ≡ y.u > x.u ∧ y.u = x.v.

Finally, notice that references do not appear anymore in the interpretations of

environments: indeed, the interpreted programs do not refer to references anymore

but are now functions manipulating their values.

3.2 Interpretation of programs

We now define the interpretation of programs. If e is an annotated program of type

κ, then its interpretation ê will be a partial term in Cic of type κ̂. In this term,

all the computational part will be given, and the logical part will appear as proof

obligations, written ? : P , where P is a proposition and ‘?’ a term of type P (i.e. a

proof of P ) to be given by the user. To build the computational part of ê means to
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construct a functional interpretation of the imperative program e. Due to the strong

restrictions we put on the language constructs and on the typing rules to avoid

aliasing, such an interpretation is not difficult, and we define it directly. It follows

the main ideas of monadic call-by-value translations, where monadic lets are used to

express the sequentiality of computations.

In the following, we make a slight abuse of notation: if a function f takes a record

as argument with fields l1, . . . , ln, then we write (f x) even for a record x containing

fields additional to the li’s, with the implicit convention that they are forgotten.

Similarly, when defining a function returning a record, we allow the return of a

record with more fields than the expected ones, the additional ones being implicitly

forgotten. Notice that such assumptions would not be necessary in the presence of

subtyping.

Finally, we sometimes omit the domain type in a λ-expression, when obvious from

the context, and write let (x, v, q) = e1 in e2 for let (y, q) = e1 in let (x, v) = y in e2.

Definition 8 (interpretation of programs)

Let Γ be a well formed environment and e a program such that Γ �a e : κ, with

κ = (r : τ, (ρ, ω), P , Q). Then the interpretation of e in Cic, written ê, is an incomplete

term of type κ̂ in the context Γ̂, recursively defined on the structure of e in the

following way:

e ≡ {P } s {Q} with s = c | x : Then

ê = λx0.λp : P (x0).({}, s, ?1)

with Γ̂, x0 : ρ̂, p : P (x0) �Cic ?1 : Q(x0, {}, s). In the following, we omit the contexts

of obligations for clarity. (The context of an obligation is made of Γ̂ and of all

the variables bound up to its placeholder.)

e ≡ {P } (e2 e1) {Q} : We know that Γ �a e2 : ((x : τ1) → (τ, ε, P ′, Q′), ε2, P2, Q2).

We distinguish two cases according to the type of e1:

• If Γ �a e1 : (τ1, ε1, P1, Q1), with τ1 �= ref, then

ê = λx0.λp : P (x0). let (x1, a, q1) = (ê1 x0 ?1) in

let (x2, f, q2) = (ê2 (x0 ⊕ x1) ?2) in

let (x3, v, q) = (f a (x0 ⊕ x1 ⊕ x2) ?3) in

(x1 ⊕ x2 ⊕ x3, v, ?4)

with ?1 : P1(x0), ?2 : P2(x0⊕x1), ?3 : P ′(x0⊕x1⊕x2) and ?4 : Q(x0, x1⊕x2⊕x3, v).

• If e1 = r : τ′1 ref then

ê = λx0.λp : P (x0). let (x1, f, q2) = (ê2 x0 ?1) in

let (x2, v, q) = (f r (x0 ⊕ x1) ?2) in

(x1 ⊕ x2, v, ?3)

with ?1 : P2(x0), ?2 : P ′(x0 ⊕ x1) and ?3 : Q(x0, x1 ⊕ x2, v).

e ≡ {P } fun (x : τ1)→ e1 {Q} : we distinguish two cases:

• If τ = τ′1 ref then

ê = λx0.λp : P (x0).({}, λx.ê1, ?1)

with ?1 : Q(x0, {}, λx.ê1).
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• else

ê = λx0.λp : P (x0).({}, λx : τ̂.ê1, ?1)

with ?1 : Q(x0, {}, λx : τ̂.ê1).

e ≡ {P } rec f (�x :�τ) : κ {variant ν} = e1 {Q} : we have ν = (φ,R) : Variant(A)

and Γ, f : (�x :�τ)→ κ,�x :�τ �a e1 : (τ1, ε1, P1, Q1). We build the interpretation of e

using the well founded induction principle WF. Since the variant may depend on

the current state, we apply WF on the generalized proposition

K(ϕ)
def
= ∀�x.∀x0. ϕ = φ(�x, x0)→ P1(x0)→ ∃(x1, r). Q1(x0, x1, r)

The recursive function is interpreted by the term

f̂ : (̂�x :�τ)→ κ = λ�x.λx0.

(WF A R ?1 λϕ.K(ϕ)

λϕ.λf.λ�x.λx0.λh : ϕ = φ(�x, x0). (ê1 x0)

φ(�x, x0) �x x0 ?)

with ?1 : (well founded A R). The unnumbered obligation corresponds to a proof

of φ(�x, x0) = φ(�x, x0), which can be automatically inserted. In the interpretation ê1,

each occurrence of f applied to the arguments �a and to the state xi is interpreted

by

(f φ(�a, xi) ?2 �a xi ? ?3)

with ?2 : (R φ(�a, xi) ϕ) and ?3 : P1[�x ← �a](xi). The unnumbered obligation

corresponds to a proof of φ(�a, xi) = φ(�a, xi), which can be automatically inserted.

Then the interpretation of e itself is defined by

ê = λx0.λp : P (x0).({}, f̂, ?4)

with ?4 : Q(x0, {}, f̂).

Notice that, for the last two constructs fun and rec, we usually have neither

the precondition P nor the postcondition Q, which simplifies the interpretation.

Indeed, in practice we are not interested in the function as a value, but we rather

specify its body, as a computation, the annotations being then the ones of e1.

e ≡ {P } if e1 then e2 else e3 {Q} : we have Γ �a e1 : (bool, ε1, P1, Q1), Γ �a e2:

(τ, ε2, P2, Q2) and Γ �a e3 : (τ, ε3, P3, Q3). Then

ê = λx0.λp : P (x0). let (x1, b, q1) = (ê1 x0 ?1) in

if b then

let (x2, v, q2) = (ê2 (x0 ⊕ x1) ?2) in (x0 ⊕ x1 ⊕ x2, v, ?3)

else

let (x2, v, q3) = (ê3 (x0 ⊕ x1) ?4) in (x0 ⊕ x1 ⊕ x2, v, ?3)

with ?1 : P1(x0), ?2 : P2(x0 ⊕ x1), ?3 : Q(x0, x1 ⊕ x2, v) and ?4 : P3(x0 ⊕ x1).

e ≡ {P } let x = e1 in e2 {Q} : we have Γ �a e1 : (τ1, ε1, P1, Q1) and Γ, x : τ1 �a
e2 : (τ, ε2, P2, Q2). We distinguish two cases according to the type of e1:

• If τ1 �= ref then

ê = λx0.λp : P (x0). let (x1, x, q1) = (ê1 x0 ?1) in

let (x2, v, q2) = (ê2 (x0 ⊕ x1) ?2) in

(x1 ⊕ x2, v, ?3)

with ?1 : P1(x0), ?2 : P2(x0 ⊕ x1) and ?3 : Q(x0, x1 ⊕ x2, v).
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• If τ1 = ref then

ê = λx0.λp : P (x0). let (x1, v0, q1) = (ê1 x0 ?1) in

let (x2, v, q2) = (ê2 (x0 ⊕ x1 ⊕ {x = v0}) ?2) in

(x1 ⊕ x2\x, v, ?3)

with ?1 : P1(x0), ?2 : P2(x0 ⊕ x1 ⊕ {x = v0}) and ?3 : Q(x0, x1 ⊕ x2\x, v).

e ≡ {P } e1 ; e2 {Q} : the interpretation is similar to the one of a construct let,

using the equivalence e ≈ let = e1 in e2.

e ≡ {P } while e1 do {invariant I variant ν} e2 done {Q} :

We have Γ �a e1 : (r1 : bool, ε1, P1, Q1) and Γ �a e2 : (unit, ε2, P2, Q2). We also

have ν = (φ,R) : Variant(A). We define ê in a way similar to the case of a re-

cursive function, applying WF to the following proposition

K(ϕ)
def
= ∀x0. ϕ = φ(x0)→ I(x0)→ ∃(x1, r). Q(x0, x1, r)

It leads to the following definition:

ê = λx0.λp : P (x0).

(WF A R ?1 λϕ.K(ϕ)

λϕ.λw.λx0.λh0 : ϕ = φ(x0).λh1 : I(x0).

let (x1, b, q1) = (ê1 x0 ?2) in

if b then

let (x2, , q2) = (ê2 (x0 ⊕ x1) ?3) in

(w φ(x0 ⊕ x1 ⊕ x2) ?4 (x0 ⊕ x1 ⊕ x2) ? ?5)

else

(x0 ⊕ x1, (), ?6)

φ(x0) x0 ? ?7)

with ?1 : (well founded A R), ?2 : P1(x0), ?3 : P2(x0⊕x1), ?4 : (R φ(x0⊕x1⊕x2) ϕ),

?5 : I(x0⊕x1⊕x2), ?6 : Q(x0, x0⊕x1, ()) and ?7 : I(x0). The unnumbered obligations

corresponds to proofs of φ(s) = φ(s) for some state s, which can be automatically

inserted.

e ≡ {P } ref e1 {Q} : we have Γ �a e1 : (τ1, ε1, P1, Q1). Then

ê = λx0.λp : P (x0).let (x1, v, q1) = (ê1 x0 ?1) in (x1, v, ?2)

with ?1 : P1(x0) and ?2 : Q(x0, x1, v).

e ≡ {P } !x {Q} :

ê = λx0.λp : P (x0).({}, x0.x, ?1)

with ?1 : Q(x0, {}, x0.x).

e ≡ {P } x := e1 {Q} : we have Γ �a e1 : (τ1, ε1, P1, Q1). Then

ê = λx0.λp : P (x0).let (x1, v, q1) = (ê1 x0 ?1) in (x1 ⊕ {x = v}, (), ?2)

with ?1 : P1(x0) and ?2 : Q(x0, x1 ⊕ {x = v}, ()). �

https://doi.org/10.1017/S095679680200446X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680200446X


726 J.-C. Filliâtre

Some examples should help in understanding how the proof obligations look.

Example 1

Let us first consider the very simple assignment

e ≡ {x � 0} x := !x + 1 {x >←−x � 0}

in a context Γ containing at least a reference x of type int ref. We have

Γ �a e : (unit, ({x}, {x}), x � 0, x >←−x � 0) (2)

and therefore the interpretation of e has type

ê : ∀x0 : {x : int}. x0.x � 0→ ∃(x1, r) : {x : int} × unit. x1.x > x0.x � 0 (3)

Following Definition 8, the interpretation of e is the proof term

ê = λx0. λp : x0.x � 0. let v = x0.x + 1 in (x0 ⊕ {x = v}, (), ? : v > x0.x � 0)

After the reduction of this last let in redex, the only proof obligation is the expected

one:

∀x. x � 0→ x + 1 > x � 0

where x stands here for a new variable generalizing x0.x. Thanks to reductions in the

proof term ê, we have found exactly the same proof obligation as the one obtained

in Floyd-Hoare logic by combining the rules of consequence and assignment.

Example 2

In the same environment Γ, let us consider now a more complex situation where x

is assigned the result of a function call with possible side effects:

e ≡ {x � 1} x := (f 1) {x <←−x }

Let us assume that f has the following annotated type:

f : (y : A)→ (r : int, ({x}, {x}), x � y, x =←−x − y ∧ r = x)

We assume that the function call (f 1) is annotated in the following way:

e ≡ {x � 1} x := {x � 1} (f 1) {r | x =←−x − 1 ∧ r = x} {x <←−x }

which can be done automatically. (Actually, it is done automatically in the im-

plementation as soon as the function argument is purely functional.) Then the

interpretation of e is the proof term

ê = λx0.λp : x0.x � 1. let (x1, v, qf) =

let (x1, r, qf) = (f 1 x0 ?1) in (x1, r, ?2)

in (x1 ⊕ {x = v}, void, ?3)

where ?1 : x0.x � 1, ?2 : x1.x = x0.x − 1 ∧ r = x1.x and ?3 : v < x0.x. The

obligation ‘?1’ is trivially discharged by p, since the preconditions of the program

and the function f are the same. Similarly the second obligation ‘?2’ is directly

established by qf (its proof is qf), since the function call was precisely annotated

with the postcondition of f. Then only obligation ‘?3’ remains. It states that the final
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postcondition has to hold after the assignment; generalizing x0.x and x1.x, it can be

written as

∀x. x � 1→ ∀x′, v. x′ = x− 1 ∧ v = x′ → v < x

Contrary to Example 1, the value assigned to x is no more substituted but abstracted

as a variable v; and so is the effect of the function call, abstracted in the variable x′.

Then the function postcondition (that is x′ = x−1∧ v = x′) can be used to establish

the final postcondition (that is v < x).

Example 3

As a last example, let us consider a very simple while loop which stores in the

reference x the least power of 2 greater or equal than a given integer k:

e ≡ x := 1;

while !x < k do

{ invariant ∃i � 0. x = 2i variant (2k − x,<n) }
x := 2 × !x

done

{ x � k ∧ ∃i � 0. x = 2i }

where <n is defined by x <n y ≡ 0 � x < y. Let I(x) ≡ ∃i � 0. x = 2i be the

invariant and Q(x) ≡ x � k ∧ ∃i � 0. x = 2i be the postcondition. We have

Γ �a e : (unit, ({x}, {x}), , Q(x)) and therefore

ê : ∀x0 : {x : int}. ∃(x1, r) : {x : int} × unit. Q(x1.x)

Regarding annotations, we assume that the postcondition Q of e is also the

postcondition of the while loop and that the test !x < k is given the postcondition

!x < k { b | if b then x < k else x � k }

This can be done automatically, at least when the test is functional, and is actually

done in the implementation. Then, following Definition 8, we have

ê = λx0. let (x1, v1) = (x0 ⊕ {x = 1}, ()) in

let (x2, v2, q) = (ŵ (x0 ⊕ x1)) in

(x1 ⊕ x2, v2, ?)

where ŵ is the interpretation of the loop. The only obligation above is immediately

discharged by q since the postcondition of the loop is also the postcondition of e.

The interpretation of the loop itself is

ŵ = (WF int <n ?1 λϕ.K(ϕ)

λϕ.λw.λx0.λh0 : ϕ = (2k − x0.x).λh1 : I(x0.x).

let ({}, b, q1) = (!̂x < k x0) in
if b then

let (x2, ) = (x0 ⊕ {x = 2× x0.x}, ()) in

(w (2k − x2.x) ?2 (x0 ⊕ x2) ? ?3)

else

(x0, (), ?4)

φ(x1) x1 ? ?5)
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There are five non-trivial proof obligations:

• The order relation is well founded: ?1 : (well founded int <n).

• The variant decreases: ?2 : ϕ <n (2k − x2.x).

• The invariant is preserved: ?3 : I((x0 ⊕ x2).x).

• The postcondition is established when the loop terminates: ?4 : Q(x0.x).

• The invariant is initially true: ?5 : I(x1.x).

After rewriting ϕ using h0, reducing some let in redexes and generalizing over the

relevant hypotheses, the four proof obligations above are as follows:

?2 : ∀x. (∃i � 0. x = 2i)→ x < k → 0 � 2k − 2x < 2k − x

?3 : ∀x. (∃i � 0. x = 2i)→ x < k → ∃i � 0. 2x = 2i

?4 : ∀x. (∃i � 0. x = 2i)→ x � k → x � k ∧ ∃i � 0. x = 2i

?5 : ∃i � 0. 1 = 2i

They are the expected obligations and are all easy to establish.

A practical concern illustrated by these examples may be the size of the proof

obligations. As one can deduce from the interpretation, the context of an obligation is

proportional to the number of annotations and constructs preceding the obligation

point. Thus obligations are never too big for programs of reasonable size. In

section 5.3, we give more detailed figures about several case studies.

Monads and effects. In the above interpretation, there is a genericity which is

related to the monadic call-by-value translation. Monads were indeed introduced in

computer science by Moggi (1991) and Wadler (1993) to express the semantics of

programming languages within purely functional frameworks. In Filliâtre (1999b),

we proposed a generalization of the notion of monad, parameterized by an ab-

stract notion of effect. This allows generic interpretations of several constructs,

independently of the nature of the effect. If, for instance, exceptions were added

to our programming language, the interpretation of many constructs would stay

unchanged if they were defined using the monadic operator. Indeed, the notion

of effect would be extended with sets of possibly raised exceptions – following

Guzmán & Suárez (1994) or Leroy & Pessaux (2000), for instance – and only the

monadic operators would have to be redefined. The formal definition of monads

parameterized by effects and their properties are given in Filliâtre (1999b, 1999a)

and are beyond the scope of this paper.

4 Correctness

We establish the correctness of our method, namely, that if all proof obligations

appearing in the interpretation ê are completed, then the program e satisfies its

specification. We begin by defining a formal semantics for our programs. Then

we define the computational contents of the interpretation ê and we show that

it preserves the semantics of e. Finally, we introduce the notion of imperative

realizability, which expresses the correctness of the imperative programs. By relating
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this notion to the usual notion of functional realizability, we establish the correctness

of our method.

4.1 Formal semantics

Our interpretation in Cic is actually already a denotational semantics of imperative

programs. However, an operational semantics will make the definition of correctness

more intuitive and will allow us to state the absence of aliasing in an explicit

way. We chose to adopt the operational semantics used by Wright & Felleisen

(1994) to establish the type soundness of ML with references, because it is an

intuitive semantics, close to a handmade evaluation of programs. This is a small-

step semantics driven by the syntax. Indeed, it consists in a syntactic notion of

reduction over programs, which use a syntactic distinction between values and

expressions:

expressions e ::= v | (e e) | let x = e in e | θ.e | if e then e else e

values v ::= c | x | Y | λx.e | ref | ! | := | (:= v)

states θ ::= {(x, v), . . . , (x, v)}

(4)

where λ stands for the usual λ-abstraction and Y for a fixed-point operator. Paren-

theses are put around applications and only there. The constructs ref, ! and :=

are not considered as primitive, but directly as functional values, then reducing the

number of cases to study in many situations.

A construct θ.e has been introduced. It represents the program expression e in the

state θ, a state being a finite mapping from variables – representing references – to

values. This mapping is represented as a finite set of pairs (x, v) where x is a variable

and v a value. We write dom(θ) the set of variables mapped in θ. We assume that

each variable of dom(θ) appears exactly once as a first component of an element of

θ. Then we write θ(x) when x ∈ dom(θ) to designate the unique element v such that

(x, v) ∈ θ. Finally, we define the operation � on states in the following way:

θ1 � θ2
def
= {(x, v) | (x, v) ∈ θ2 ∨ ((x, v) ∈ θ1 ∧ x �∈ dom(θ2))}

Before introducing the operational semantics, we can translate our program

expressions into the above syntax. First, we get rid of types, which are not involved

in the definition of the semantics. Secondly, some program expressions, such as

sequences or loops, can have simpler constructs. So we assume having applied to

our programs the following set of translation rules, recursively:

fun x : τ→ e � λx.e

rec f (�x :�τ) : κ = e � (Y λf.λ�x.e)

e1 ; e2 � let = e1 in e2

while e1 do e2 done � ((Y λw.λu.if e1 then let = e2 in (w ())

else ()) ())

Then Wright and Felleisen define the notion of reduction. There are six reductions

for the functional fragment and five for the imperative fragment. The latter need a
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(c v) −→ δ(c, v) if δ(c, v) is defined (δ)

(λx.e v) −→ e[x← v] (β)

let x = v in e −→ e[x← v] (let)

(Y v) −→ (v λx.((Y v) x)) (Y )

if true then e1 else e2 −→ e1 (if-true)

if false then e1 else e2 −→ e2 (if-false)

(ref v) −→ {(x, v)}.x x fresh4 (ref )

θ.R[!x] −→ θ.R[v] (x, v) ∈ θ (deref )

θ.R[x := v] −→ θ � {(x, v)}.R[()] x ∈ dom(θ) (assign)

θ1.θ2.e −→ θ1 � θ2.e (θmerge)

R[θ.e] −→ θ.R[e] if R �= [] (θlift )

Fig. 3. Notion of reduction.

notion of context R in which the state can be accessed or modified. These contexts

are defined by the following grammar:

R ::= [] | (R v) | (e R) | let x = R in e | if R then e else e

The notion of reduction is given in figure 3.
4 With respect to Wright & Felleisen (1994), we added two rules for the conditional

and we modified the rule for assignment since it does not return any value in our

case. The reduction of constants assumes an interpretation δ of the constants, as a

partial function taking a constant and a value as arguments and returning a value.

Then, Wright and Felleisen introduce the evaluation contexts, defined by

E ::= [] | (E v) | (e E) | let x = E in e | if E then e else e | θ.E

These contexts set the evaluation order for the different constructs of the language.

Finally, the evaluation is the transitive closure of the small-step reduction �−→
defined by

E[e] �−→ E[e′] if and only if e −→ e′

A key result in Wright & Felleisen (1994) is type preservation and we assume this

property in the following. The reader should refer to Wright & Felleisen (1994) for a

type system and a proof of type preservation. Notice, however, that here we are in a

simpler situation, since we do not have the delicate issue of polymorphic references.

4.2 Computational content

The main reason for the correctness of the method is that the computational part of

ê, which computes the output from the input, respects the semantics of e. To express

and to establish this property, we give a formal definition to the ‘computational

contents’ of a proof term. We follow the work of Paulin-Mohring (1989a, 1989b)

on extraction and realizability in the Calculus of Inductive Constructions. The set

of propositions can be split between informative propositions, which are types t

4 x has to be different from all the variables already appearing in this evaluation.
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E(∀x : t1. t2)
def
= ∀x : E(t1). E(t2) if t1 informative; E(t2) otherwise

E(λx : t1. t2)
def
= λx : E(t1). E(t2) if t1 informative; E(t2) otherwise

E((t1 t2))
def
= (E(t1) E(t2)) if t2 informative; E(t1) otherwise

E(∃x : t1. t2)
def
= ∃x : E(t1). E(t2) if t2 informative; E(t1) otherwise

E((u1, u2))
def
= (E(u1),E(u2)) if u2 informative; E(u1) otherwise

E(let (x, y) = u1 in u2)
def
=


let (x, y) = E(u1) in E(u2) if u1 : ∃x : t1. t2,

with t2 informative;

let x = E(u1) in E(u2) otherwise

E({xi : ti})
def
= {xi : E(ti)}

E({xi = ui})
def
= {xi = E(ui)}

E(t)
def
= t, otherwise

Fig. 4. Definition of the extraction operator.

such that Γ �Cic t : Set, and logical propositions, which are types t such that

Γ �Cic t : Prop. Similarly, terms are split between informative and logical ones,

depending on whether their types are informative or logical. Then the computational

content of informative types and informative terms is introduced by mean of an

extraction operator, written E, whose definition is given in figure 4 (see Paulin-

Mohring (1989b, p. 77) for the general definition). This is nothing else than erasure

of logical parts.

Then we can formally define the computational contents of the interpretation ê

as the extraction of this proof term.

Definition 9 (computational contents)

Let Γ be a well formed environment and e an annotated program of type κ in Γ.

Then we write e for the extraction of ê, that is, a term of type E(κ̂):

e
def
= E(ê)

The following two theorems express the correctness of the functional interpret-

ation e. The first one mainly says that if a program e evaluates to v then the

functional interpretation applied to the interpretation of the input state will give

the interpretation of the output state and the interpretation of the result. (There is

a special case when the returned value is a reference, since a references is directly

interpreted as its value in the functional world; this is possible since it is necessarily

a new reference, according to the typing rules.)

In the following, if θ is a state and ρ (resp. ω) a set of references {x1, . . . , xn}, then

θ(ρ) (resp. θ(ω)) denotes the record {x1 = θ(x1); . . . ; xn = θ(xn)}.

Theorem 1 (Correctness of the functional interpretation)

Let Γ be a well formed environment whose references are x1 : τ1 ref, . . . , xn : τn ref

and e a program such that Γ �a e : (τ, (ρ, ω), , ). Let vi be values of types τi and θ
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the state mapping the xi to the vi. Then5

∀θ′, v. θ.e �−→� θ′.v =⇒ (e θ(ρ)) =

{
(θ′(ω), θ′(v)) if τ = τ′ ref

(θ′(ω), v) otherwise

where equality stands here and in the following for the conversion
cic
= in the

Cic (defined in the appendix).

Proof

The proof is by induction over the length of the derivation �−→� and by case analysis

on e. Let us detail the proof for the case e = ref e1. If E stands for the evaluation

context ref [], the evaluation of e is

θ.E[e1] �−→� θ1.E[v1] with θ.e1 �−→� θ1.v1

�−→ θ1.{(x, v1)}.x (ref )

�−→ θ1 � {(x, v1)}︸ ︷︷ ︸
=θ′

. x︸︷︷︸
=v

(θmerge)

Since θ.e1 �−→� θ1.v1, and since the effect of e1 is (ρ, ω) by rule (REFa), we have by

induction hypothesis

(e1 θ(ρ)) = (θ1(ω), v1)

Then, by definition of e, we have

(e θ(ρ)) = (e1 θ(ρ))

= (θ1(ω), v1)

= (θ′(ω), θ′(v))

The proofs of the other constructs require several lemmas. The first one expresses

that the set ω is really what it pretends to be, that is, that it contains at least all the

variables modified by e. This lemma is as follows:

Lemma 1

Under the hypotheses of Theorem 1, we have

∀θ′, v. θ.e �−→� θ′.v =⇒ ∀x ∈ dom(θ)\ω. θ′(x) = θ(x)

Another lemma establishes the absence of aliasing in the programs. This property

is stated as follows:

Lemma 2

Under the hypotheses of Theorem 1, and when τ is the type of a reference, i.e.

τ = τ1 ref, then v is necessarily a variable and we have

v �∈ dom(θ)

These two lemmas are proved by induction over the length of �−→� and by case

on e. At last, the proofs for the let in construct and for the function call require the

following substitution lemma:

5 In the expression θ.e, e is to be understood as its interpretation in the formal semantics language given
above.
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Lemma 3 (Substitution lemma)

Let Γ be a well formed environment and e a program well typed in Γ. If z : τ ∈ Γ

with τ �= ref and if v is a value of type τ, then

e[z ← v] = e[z ← v]

The proof is by induction over the structure of e.

The detailed proof of this theorem, and of the lemmas above, are given in Filliâtre

(1999b, pp. 32–35, 157–162). �

The second theorem expresses that, conversely, if the functional interpretation

e evaluates on some input store to some output store and some value, then the

imperative program e should also evaluate (i.e. should also terminate).

Theorem 2 (Converse of Theorem 1)

Let Γ be a well formed environment whose references are x1 : τ1 ref, . . . , xn : τn ref

and e a program such that Γ �a e : (τ, (ρ, ω), , ). Then for any state θ mapping the

xi to values, we have

∀y, v0. (e θ(ρ)) = (y, v0) =⇒ ∃θ′, v. θ.e �−→� θ′.v

Proof

To establish this result, we show that the reduction of e requires at least as many

steps as the evaluation of e. More precisely, if the reduction of θ.e by �−→ requires

N steps, then the evaluation of (e θ(ρ)) requires at least N elementary reductions

(β-reduction or field access in a record). The proof is by induction over N and by

case analysis on the structure of e. The reductions handling the state, namely (θmerge)

and (θlift), are not taken into account (but it is clear that an infinite evaluation of

e involves an infinite number of reductions out of those two). The detailed proof is

given in Filliâtre (1999b pp. 162–165). �

The meaning of extraction is contained in the property of realizability which

expresses that the extraction of a proof of t is a program satisfying the specification

t. We restrict the notion of realizability to the case of propositions κ̂; in particular,

the informative objects appearing in logical propositions always live in base types

(which corresponds to the assumption we made on annotations). Then the notion

of realizability can be formally defined as follows:

Definition 10 (Functional realizability (Paulin-Mohring, 1989b))

The proposition x rf t is defined recursively over the informative proposition t in

the following way:

x rf ∀y : t1. t2
def
= ∀y : E(t1). y rf t1 ⇒ (x y) rf t2

x rf t1 → t2
def
= t1 ⇒ x rf t2

x rf ∃y : t1. t2
def
= x rf t1 ∧ t2[y ← x]

x rf {xi : ti}
def
= ∀i. x.xi rf ti

x rf t
def
= True, otherwise.
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This definition comes with the following realizability theorem (see Paulin-Mohring

(1989b, p. 85)).

Theorem 3 (Realizability theorem (Paulin-Mohring, 1989b))

Let Γ be a proof environment in the Calculus of Inductive Constructions. Then

Γ �Cic u : t =⇒ E(u) rf t

4.3 Correctness result

Finally, we have to define the notion of program correctness with respect to

specifications. The usual definition of total correctness for a given Hoare triplet

{P } e {Q} is a formalization of the sentence “In any state satisfying P , the execution

of e terminates and the resulting state satisfies Q”. In our case, the result also has

to be taken into account, and since it may be a function, we have to express that it

satisfies its own specification. Similarly, functions may be present in the environment,

and in particular inside references, and we have to express that the corresponding

values satisfy the declared specifications.

Inspired by the notion of functional realizability, we define the notion of correct-

ness corresponding to our programs as ‘imperative realizability’.

Definition 11 (Imperative realizability)

Let Γ be a well formed environment and τ and κ some types of values and

computations such that Γ �a τ wf and Γ �a κ wf. Then for any value v of type τ and

any program e of type κ the propositions e ri κ and v ri τ are mutually recursively

defined as follows:

e ri (r : τ, (ρ, ω), P , Q)
def
= ∀θ. θ ri ρ⇒ P (θ(ρ))⇒ ∃θ′, v. θ.e �−→� θ′.v

∧ θ′ ri ω ∧ v ri τ ∧ Q(θ(ρ), θ′(ω), v)

e ri (r : τ ref, (ρ, ω), P , Q)
def
= ∀θ. θ ri ρ⇒ P (θ(ρ))⇒ ∃θ′, x. θ.e �−→� θ′.x

∧ θ′ ri ω ∧ θ′(x) ri τ ∧ Q(θ(ρ), θ′(ω), θ′(x))

v ri β
def
= True

v ri (x : τ ref)→ κ
def
= ∀r : τ ref. (v r) ri κ[x← r]

v ri (x : τ)→ κ
def
= ∀x : τ. x ri τ⇒ (v x) ri κ

with θ ri {x1, . . . , xn}
def
= ∀i ∈ {1, . . . , n}. xi : τi ref ∈ Γ ∧ θ(xi) ri τi

The correctness of a program e expresses that in any state θ which values have

expected types (θ ri ρ) and satisfy the precondition P , the program e evaluates to

a state θ′ and a value v such that the values in θ′ have expected types (θ′ ri ω), v

satisfies its specification (v ri τ) and the postcondition Q is satisfied. The definition is

similar when the result is a reference. Regarding values, the definition resembles the

one for functional realizability. With respect to the traditional ways of expressing

the correctness of imperative programs, there is here the additional difficulty of

having functions as first-class values, thus possibly in references and as results of

computations.
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We are now in position to prove the correctness of our method, that is, that a

complete proof of ê implies e ri κ, for any program e of type κ. This is related to

the fact that e respects the semantics of e. The key lemma is the following, which

relates the imperative and functional notions of realizability.

Lemma 4

Let Γ be a well formed environment, κ a well formed type in Γ and e a program of

type κ in Γ. Then

e rf κ̂ ⇐⇒ e ri κ

Proof

We show by mutual induction over the structure of types that for any type of value

τ and any value v of type τ we have

v rf τ̂ ⇐⇒ v ri τ

and that for any type of computation e and any program e of type κ we have

e rf κ̂ ⇐⇒ e ri κ

The cases of values (base types, type of a reference and function type) are almost

immediate (using the substitution lemma above for the case of a function taking a

reference as argument). The key point is the case of a computation.

Let κ = (r : τ, (ρ, ω), P , Q), with τ �= ref. We assume e rf κ̂, that is,

∀x : ρ. x rf ρ̂⇒ P (x)⇒ let (y, r) = (e x) in y rf ω̂ ∧ r rf τ̂ ∧ Q(x, y, r) (5)

and we want to show that e ri κ, that is,

∀θ. θ ri ρ⇒ P (θ(ρ))⇒ ∃θ′, v.
θ.e �−→� θ′.v ∧ θ′ ri ω ∧ v ri τ ∧ Q(θ(ρ), θ′(ω), v)

(6)

Let θ be a state such that θ ri ρ and P (θ(ρ)). Let x = θ(ρ), that is, E(θ̂(ρ)). We have

θ ri ρ and thus by induction hypothesis applied to each field of x we have x rf ρ̂. We

also have P (x), since P only mentions objects of x of base types, which are therefore

equal to their computational contents. So the hypotheses of (5) are satisfied. Then

let (y, r) = (e x). By Theorems 1 and 2, we have

θ.e �−→� θ′.v with y = θ′(ω) and r = v

We have r rf τ̂, and thus v ri τ by induction hypothesis. Similarly, we have y rf ω̂

and thus θ′ ri ω, applying the induction hypothesis on each member. Finally, we

have Q(x, y, r) and thus Q(θ(ρ), θ′(ω), v) (remember that, as P does, Q only mentions

objects of base types; in particular, Q may mention r only if r lives in a base type

and in this case we have r = v = v). So (6) is established, that is, e ri κ.

Conversely, let us assume (6) and let us prove (5). Let x be a record of type ρ such

that x rf ρ̂ and P (x). Let θ be a state such that θ(ρ) = x. We have x rf ρ̂, and thus

θ ri ρ by induction hypothesis applied on each field of x. We have P (θ(ρ)), for the

same reason as in the converse part. Then from (6) there exists θ′ and v such that

θ.e �−→� θ′.v. By Theorem 1, we have (e x) = (θ′(ω), v). Let us write (y, r) this tuple.

By (6), we have θ′ ri ω, and thus y rf ω̂ by induction hypothesis applied on each
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field of y. Similarly, we have v ri τ from (6) and thus r rf τ̂ by induction hypothesis.

At last, we have Q(θ(ρ), θ′(ω), v) from (6), and thus Q(x, y, r) for the same reason as

in the converse part. So we have established (5), that is, e rf κ̂. �

Then we can state and prove the main result.

Theorem 4 (Correctness)

Let Γ be a well formed environment and e a program such that Γ �a e : κ. If all

the obligations in ê can be replaced by proof terms, in such a way that ê becomes

a proof of κ̂, then the proposition e ri κ holds.

Proof

If ê is a proof of κ̂ then its informative contents realizes, in the functional meaning,

the proposition κ̂. Since the informative contents of ê is exactly e, by definition, we

have e rf κ̂ by the realizability theorem. Then by Lemma 4, we have e ri κ. �

5 Implementation and case studies

This work has been implemented in the Coq proof assistant (Coq, 2001) and

is already released with the system. It is fully documented in the Coq reference

manual. In this section, we give an overview of the implementation, discuss some

completeness issues and describe some case studies.

5.1 Implementation in the Coq system

The implementation consists of 6000 lines of Objective Caml code. It appears as a

tactic called Correctness taking an annotated program as argument and generating

a set of goals, which are logical propositions to be proved by the user. Given an

annotated program e, the tactic Correctness applies the following steps:

1. It determines the type of computation κ of e by the typing algorithm.

2. The proposition κ̂ is computed and declared as a goal.

3. The partial proof term ê is computed following Definition 8 and is given to

the proof engine, using the Refine tactic developed on purpose, and each hole

in ê leads to a subgoal.

4. Once the proofs are completed, the program is added to the environment and

may be used in other programs.

It is also possible to only declare programs in the environment, so that one can

assume some procedures and use them before implementing them. The extraction

mechanism of Coq is extended in order to extract the imperative programs as such

in the target languages of extraction which have imperative features.

Our implementation leads to several improvements with respect to what has been

presented in this paper. First, the language includes arrays of purely functional

values. They can be seen as references on purely functional finite mappings. This

means that t[e] may be read as let n = e in (access !t n), and t[e1]:= e2 as

let n = e1 in let v = e2 in t := (store !t n v), where access and store are the

operations of the purely functional finite mappings. Of course, arrays are extracted
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as real arrays when the code is produced. Secondly, some features have been added

to simplify the specification of programs – mainly, the possibility of inserting labels

in the programs and referring in annotations to the value that a reference had at

the program points corresponding to those labels. This is easy to implement since

our interpretation defines several variables for the successive values of a reference.

Consequently, the auxiliary variables are no more useful, and the rewriting reasoning

they imply is avoided. In particular, a loop invariant may mention the values of the

references at some point before the loop using such a label.

5.2 Completeness issues

The completeness expresses the converse of Theorem 4, i.e. that the proof obligations

are provable as soon as the program satisfies the specification. Although the

correctness seems to be a much more important property, the completeness is

far from being a theoretical issue. We can illustrate it with a small example. Let us

consider the following piece of code:

1. begin

2. if x < y then m := x else m := y;

3. m := !m− 1

4. end

5. { m < x }

It obviously satisfies its specification. Let us look at the proof obligations generated

for this program. Its interpretation as a partial proof term is

let ({m = m1}, ) = let (b, q) = x̂ < y in
if b then ({m = x}, ()) else ({m = y}, ()) in

let ({m = m2}, v) = ({m = m1 − 1}, ()) in

({m = m2}, v, ?)

The second let is a redex, and hence can be eliminated. But the first one is not, and

consequently we get the following proof obligation:

m1 : Z

m1 − 1 < x

which cannot be proved, since we do not have enough information about the variable

m1. This variable stands for the value of m after the first assignment. The only way to

obtain a provable obligation is to get m1 together with a property about it. This can be

achieved by annotating the conditional with a post-condition, in the following way:

1. begin

2. (if x < y then m := x else m := y) { m � x };
3. m := !m− 1

4. end

5. { m < x }
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Then we will get, in addition to the two obligations establishing this new annotation,

the following provable obligation:

m1 : Z

q1 : m1 � x

m1 − 1 < x

The inserted annotation m � x may seem quite ad hoc. Actually, there was a general

solution, which consisted in inserting the weakest precondition computed from the

post-condition m < x and the assignment m := !m− 1, that is m− 1 < x.

More generally, we have shown (Filliâtre, 1999b) that, for a fragment of our

language, there exists a canonical way to annotate a program using weakest

preconditions that leads to provable obligations as soon as the program satisfies its

specification. This has been integrated in the implementation in order to release the

user from inserting too many annotations. Notice that it does not imply more proof

obligations. Indeed, if the program fragment e1 ; e2 {Q}, for instance, is given an

intermediate annotation computed as the weakest precondition of e2 and Q, i.e.

e1 {wp(e2)(Q)} ; e2 {Q}

then the second proof obligation will be automatically discharged, since it is an

immediate consequence of the proof of wp(e2)(Q) and of the substitutions introduced

in Q by e2.

Therefore, the only annotations that must be inserted into the programs are the

loop invariants and the functions’ pre- and post-conditions, as it has been confirmed

by all the case studies.

5.3 Case studies

Some nontrivial algorithms have been certified by the author using the tactic

Correctness:

• Three in place sorting algorithms: insertion sort, quicksort and heapsort.

• Knuth–Morris–Pratt fast string searching algorithm.

• The program Find which had been proved correct by Hoare (1971).

Those case studies are detailed in Filliâtre (1999b) and available on the Coq web

page (Coq, 2001). The proofs of correctness of the sorting algorithms are presented

in Filliâtre & Magaud (1999). Our formal proof of the program Find is presented

in Filliâtre (2001); in particular, we show that we obtain exactly the same proof

obligations as Hoare in his paper. We are not going to describe these case studies

here, since the interested reader may consult Filliâtre (1999b, 2001) and Filliâtre &

Magaud (1999) for fully detailed descriptions. However, it is interesting to have a look

at the characteristic metrics of these developments, which are summarized in Table 1.

For each development, we give some information about the relative sizes of the

code, the specification and the proof, the total development time and the time needed

to recheck the proof. First, we notice that the specification of a complex algorithm

is not so difficult: only a few lines of definitions are necessary and the number of
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Table 1. Metrics about the case studies

Find Quicksort KMP Heapsort

Specification

Lines of specification 29 13 17 23

Lines of code (# functions) 27 (1) 41 (4) 24 (2) 19 (2)

Annotations 9 18 8 7

Proof

Proof obligations 22 26 23 22

Lemmas (manually introduced) 39 11 11 28

Proof steps 619 468 377 626

Total development time — 2 days 1.5 days 3 days

Compilation timea 9 mn 02 s 8 mn 06 s 5 mn 45 s 12 mn 07 s

aCompilations were realized on a Pentium 200 Mhz 64 MB RAM running Linux.

annotations is always between the third and the half of the total number of code

lines. Secondly, the proof itself is not so big. The number of proof obligations is

similar to the number of code lines. The number of proof steps needed to discharge

the proof obligations may seem important to a reader not familiar with Coq’s

proofs, but the total amount of development time is speaking by itself: three days to

establish the correctness of an algorithm as complex as inplace heapsort is clearly

the sign of a sane and efficient methodology.

6 Discussion

We have proposed a method to certify programs combining functional and imper-

ative features in the context of type theory. This method benefits from the power

of type theory as a specification language and from the existing proof assistants as

proof tools. Our method is based on a logical interpretation of annotated programs

as partial proof terms of their specifications. One of the main interests is a direct

interpretation of functional features, usually painfully handled in other frameworks.

Our interpretation is based on a static analysis of the programs’ effects and on a

classic monadic call-by-value translation.

Future work

We expect our interpretation to be easily extended to other programming features

(exceptions, input-output and so forth) by an adequate extension of the notion

of effect and of the corresponding interpretation. The treatment of exceptions is

particularly important if we want to deal with realistic ML programs. Ultimately,

we would like to unify the work of Parent (1995) and ours on the functional fragment

of our language.

To allow the certification of large programs, our method should also provide

an appropriate notion of modularity. Although there is still a lot to do here, one
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can notice that our method is already modular: indeed, our notion of annotated

type, containing the traditional type, an effect and a specification, is exactly what is

required in using a program. (Actually, it is already possible to declare a program

and use it, without giving it any implementation.) For the same reason, it would be

possible to process by refinements, by allowing holes in programs whose types of

computation would be given and which would be refined later. We plan to implement

both modularity and refinement in the next version of our implementation.

Polymorphism

In this paper, we do not consider polymorphism, although it is directly available

in the Calculus of Inductive Constructions, because it would require an effect

polymorphism, that is, the possibility to generalize the type of a function with

respect to an effect. Effect inference is still possible in this case, as is done in The

Type and Effect Discipline (Talpin & Jouvelot, 1994), but we would not be able to

define the interpretations of types and programs anymore: if a function f has type

∀α.∀ε.α →ε α, the type of its interpretation depends on ε and is not computable

statically. It must be made explicit as a function over ε. Although it would be possible

to internalize the definitions of the interpretations τ̂ and κ̂, there is a practical

price to pay. Moreover, polymorphic functions in programming languages with

imperative features are really difficult to specify. Consider, for instance, the problem

of specifying the polymorphic function map such that (map f [v1; v2; . . . ; vn]) =

[(f v1); (f v2); . . . ; (f vn)]. In a purely functional framework, one can state properties

such as (map f (v :: l)) = (f v) :: (map f l) or (nth (map f l) i) = (f (nth l i)),

where the equality is the mathematical one. But when f may have arbitrary side

effects, this is no longer meaningful. In particular, the order in which the (f vi)’s are

computed is relevant.

In Filliâtre (1999b), we consider a simple notion of polymorphism, where types

can be generalized with respect to type variables but not to effects.

Related work

The type and effect discipline has been introduced by Talpin & Jouvelot (1994),

and followed by several other systems (Wright, 1992; Jouvelot & Gifford, 1991); in

particular, effects systems for exceptions were derived from this work (Guzmán &

Suárez, 1994; Leroy & Pessaux, 2000), which could be adapted in our framework to

add exceptions to our language. Although we do not use typing systems as powerful

as the previous ones, our contribution is more in the use of typing to exclude aliases,

which is the key to a natural functional interpretation.

Our interpretation of imperative programs in a functional world is inspired by

the call-by-value translations introduced by Moggi (1991) and Wadler (1993). In

Filliâtre (1999b), we proposed a notion of monads parameterized with effects which

generalizes what is presented in this paper. Similar combinations of effects and

monads, in the context of more powerful effects systems, have been studied by Wadler

(1998), Tolmach (1998), Semmelroth & Sabry (1999) and Moggi & Palumbo (1999).
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Semantics for reasoning about LISP-like programs with side effects have been

proposed by Mason, Talcott and others (Mason & Talcott, 1989; Honsell et al.,

1992) but the focus is mainly on operational equivalence. Our purpose was rather

to advocate in favor of Hoare triples where mathematical variables stand directly

for the values contained in references.

Comparison with other methods

We can compare our method to some other formal methods, on the different

point of view of the specification, the programs one can write and the proofs.

Among the existing formal methods, we can compare our work to VDM (the Vienna

Development Method) (Jones, 1980, 1989), Abrial’s B method (Abrial, 1996) and

the system KIV (Karlsruhe Interactive Verifier) (Reif, 1995), which are three very

different approaches to formal verification.

From the point of view of specification, the VDM and B methods are based on

an axiomatization of first-order set theory. Those are heavy formalizations, with

numerous axioms, and whose expressivity is difficult to figure out. A set-theoretical

approach implies additional difficulties, such as the definition of new data types or

proof obligations of the kind n ∈ NAT . In our case, the choice of the Calculus of

Inductive Constructions is a satisfactory solution on both theoretical and practical

grounds. Independently of the logical framework, our approach to specification is

close to VDM’s: programs are specified using pre- and postconditions, and programs’

effects must be explicitly declared as sets of read and written variables. With the B

method, on the other hand, the operations of an abstract machine are specified using

generalized substitutions, which can be seen as an extension of Dijkstra’s guarded

commands. It is a rather different approach to the specification problem, but it has

been proved that it is equivalent to the use of pre- and postconditions (see Abrial

(1996, pp, 292–295)). In the system KIV, programs are given algebraic specifications,

that are composed of signatures and sets of equational axioms. Those specifications

mention only purely functional objects, which are explicitly related later to the

implementations. In some sense, there is a similarity between the purely functional

interfaces of the system KIV and our functional interpretations of programs.

Regarding specifications, our programming experience leads us to think that pre-

and postconditions are the most natural way to specify programs, whether functional

or imperative. Then the choice of the Calculus of Inductive Constructions affords

mathematical simplicity and expressivity, which is needed for complex programs.

For instance, when doing the correctness proof of the heapsort algorithm, we easily

defined a heap predicate as an inductive property and reasoned by induction over

this predicate in most lemmas. This would have been much more complicated within

a first-order set-theoretical framework.

From the point of view of the programming language, formal methods provide

only a small set of semantically well understood constructs. Those are usually

local variables, assignments, sequences, conditionals, loops, and nothing else. In the

methods VDM, B and KIV, procedures, functions and recursive functions are not

first-class values, but top-level objects. Our ML background naturally led us to

consider a larger set of program constructs. References are really first-class values,
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which can be dynamically created and returned as results of functions. Functions

are also first-class values, which can be passed as arguments and returned as results.

This was possible because type theory naturally handles functional objects. Finally,

our approach does not set the data types once and for all, but rather assumes them

to be defined in the underlying type theory. This is an easy solution in practice, but

this is not adapted to real world programs where, for instance, one has to cope with

overflows when using machine integers.

The last point of comparison is the proof tool. A formal method is incomplete

without a good proof tool to establish the validity of the proof obligations. Regarding

VDM, the attempts to define a proof tool were not very successful, and VDM is

therefore a development methodology rather than a certification tool. The B method,

which also relies on a set-theoretic framework, is equipped with several good provers,

whose automation is impressive (more than 80% of proof obligations automatically

discharged for real code). The system KIV also provides impressive figures regarding

automatic proofs, although there is no description of the prover and its theoretical

foundations. On the contrary, the Coq proof assistant is not equipped with powerful

automatic tactics but focuses rather on interactive proofs. Above all, the Coq system

provides a really safe proof assistant, being based on a small set of logical rules. (The

consistency of the Calculus of Inductive Constructions has been formally proved by

Barras (1999).)

Nevertheless, our method has not yet reached the maturity of methods like B or

KIV. Indeed, such methods provide modular development mechanisms. Moreover,

the B method also provides a stepwise refinement mechanism, which allows programs

and specifications to be built step by step, proof obligations being generated at each

step. These features are still only prospectives of our work.

Appendix: typing rules for CiC

Sorts and terms of the Calculus of Constructions are given by the following grammar:

sorts s ::= Set | Prop | Type(i)

terms t ::= s | c | x | ∀x : t. t | λx : t. t | (t t)

In the following typing rules, the typing judgment �Cic is simply written as �. The

conversion
cic
= is the reflexive transitive congruent closure of the reduction � defined

below.

Basic rules for the Calculus of Constructions

s ∈ {Set,Prop}
Γ � s : Type(i)

i < j

Γ � Type(i) : Type(j)

x : t ∈ Γ

Γ � x : t

c : t ∈ Γ

Γ � c : t

Γ � t1 : s1 Γ, x : t1 � t2 : s2 s1, s2 ∈ {Set,Prop}
Γ � ∀x : t1. t2 : s2
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Γ � t1 : Type(i) Γ, x : t1 � t2 : Type(j) i, j � k

Γ � ∀x : t1. t2 : Type(k)

Γ � ∀x : t1. t2 : s Γ, x : t1 � u2 : t2

Γ � λx : t1. u2 : ∀x : t1. t2

Γ � u2 : ∀x : t1. t2 Γ � u1 : t1

Γ � (u2 u1) : t2[x← u1]

(λx : t.u1 u2) � u1[x← u2]
Γ � t2 : s Γ � u : t1 t1

cic
= t2

Γ � u : t2

Existential quantification and records can be defined in the Calculus of Inductive

Constructions as inductive types – as done for instance in the Coq proof assist-

ant (Coq, 2001). However, it is simpler here to consider them as primitive notions,

avoiding the complex rules for inductive types and their eliminations.

Existential quantification

t ::= . . . | ∃x : t. t | (t, t) | let (x, x) = t in t

Γ � t1 : Set Γ, x : t1 � t2 : s s ∈ {Set,Prop}
Γ � ∃x : t1. t2 : Set

Γ � ∃x : t1. t2 : Set Γ � u1 : t1 Γ � u2 : t2[x← u1]

Γ � (u1, u2) : ∃x : t1. t2

Γ � u1 : ∃x : t1. t2 Γ, x : t1, x1 : t2 � u2 : t3 x, x1 �∈ FV (t3)

Γ � let (x, x1) = u1 in u2 : t3

let (x1, x2) = (u1, u2) in u3 � u3[x1 ← u1; x2 ← u2]

Non-dependent records

t ::= . . . | {x : t; . . . ; x : t} | {x = t; . . . ; x = t} | t.x

Γ � ti : Set

Γ � {xi : ti} : Set

Γ � ti : Set Γ � ui : ti

Γ � {xi = ui} : {xi : ti}
Γ � t : {xi : ti}

Γ � t.xi : ti

{xi = ui}.xj � uj
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Filliâtre, J.-C. (2001) Formal Proof of a program: Find. Sci. Comput. Program. To appear.
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