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ON A DIOPHANTINE EQUATION

FADWA S. ABU MURIEFAH AND S. AKHTAR ARIF

In this paper the equation z2 + 3%* = y™ where n > 3 is studied. For n = 3,it is

proved that it has a solution only if kK = 3K + 2 and then there is a unique solution
z =46 x 33% and y = 13 x 3>¥. For n > 3 theorems are proved which determine
a large number of values of & and n for which this equation has no solution. It is
proved that if this equation has a solution for n > 3, then n is odd and k = 2%.&’
where § > 1, (2,6) =1, k' =15 (mod 20) and all the primes divisors p of n are
congruent to 11 (mod 12).

1. INTRODUCTION

Many special cases of the equation 22 + C = y™ where z and y are positive
integers and n > 3 have been considered over the years, but recently Cohn has studied
this equation extensively. In [3] he has solved this equation completely for most values
of C less than 100. For C = 2%, Cohn [2] has proved that when k is odd there are
three families of solutions and recently Arif and Abu Muriefah [1] have studied the
same equation when k is even and they have put forward a conjecture and verified it
for most values of k less than 200.

In this paper we confine ourselves to the study of the equation z? + C = y™ for
C = 3%. The first result for general n is due to Lebesgue [4] who proved that when
k = 0 the equation has no solution, so we shall assume that £ > 1. We solve the
equation completely for n equal to 3 and for n even and greater than or equal to 4.
For the other values of n we prove some theorems giving necessary conditions for the
solvability of the equation. Our work suggests the following.

CONJECTURE. There are no solutions for the diophantine equation
(1) z? 4 3% =y, where n >3
unless k = 3K + 2 and n = 3 and then there is a unique solution z = 46 x 33X and
y =13 x 32K

We are able to prove this conjecture for a large class of values of k and have verified
it for all values of k less than or equal to 100 with eleven exceptions.

Our method of proof is similar to that of Cohn [3] and we use some of the results

proved in that paper. Without loss of generality we can assume that z is positive and
we consider two solutions of (1) different if they have different values of z.

Received 16th June, 1997

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 $A2.00+0.00.

189

https://doi.org/10.1017/50004972700031580 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700031580

190 F.S.Abu Muriefah and S.A. Arif (2]

2. We first deal with the case n even and we will use the following lemma to prove
the next theorem.

LEMMA 1. (Stormer [7).) The diophantine equation z%+1 = 2y™ has no solution
in integers £ > 1,y > 1 and n odd, n 2 3.

THEOREM 1. The diophantine equation z% + 3% = y™ has no solution if n is
even and greater than or equal to 4.

PRrOOF: If z is odd then 22+ 3%* =2 (mod 8), yielding no solution. So we assume
that z is even and y is odd. First assume that (3,z) = 1. Putting n = 2¢ with ¢ > 2
we obtain (y + z)(y* — z) = 3%*. Since (3,z) = 1, we get yt+z = 3% and yt -z =1.
By adding the last two equations we get 2y® = 1+ 3%, If ¢ is even this equation is
not true modulo 3 and if ¢ is odd then it follows from Lemma 1 that it has no solution.
Now if 3 | z then of course 3 | y. Suppose that £ = 3*X, y = 3'Y where u >0,v >0
and (3,X)=(3,Y)=1. Then

(2) 32ux2 + 32k — 32tuy2t'

If u < k, then by cancelling 3% in (2) we get X 2+32(k—%) = 32tv=2uy2t 5 considering
this equation modulo 3 we deduce that tv — u = 0, then X2 + 32(k-u) = y2t Byt
it is proved above that this equation has no solution. If k < u, we get 32(»~%)x2 4
1 = 32tv=2kY2t and considering this modulo 3 we get 2tv — 2k = 0, so (2) becomes
(3v—kXx )2 4+1=Y? and this equation is known to have no solution [4].

3. Now we consider the equation when n is an odd integer and suppose that p is
an odd prime that divides n. Then we can write (1) as z2 + 3% = (y™/?)". So it is
sufficient to_consider the equation z? 4 3% = y?.

In fact it is sufficient to consider the case (3,z) = 1. Because if 3 | z then using
the hypotheses in the proof of the last theorem, and by similar argument we get

(3) X2+ 3%k-%) — yP where 2u=pv,

with (3,X) = 1 and the equation is reduced to the same kind of equation (1) with a
smaller value of k. So we proceed to consider the equation

(4) z? +3% =yP,  where k >0, p an odd prime and (3,z) = 1.

THEOREM 2. If the diophantine equation (4) has a solution then either p = 3
and there is the unique solution k = 2, £ = 46, y = 13 or k is even and p = 11
(mod 12).

ProOF: We factorise equation(4) in the field Q(z), to obtain

(z+ 3"1') (z - 3"1’) =P,
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where the factors in the left hand side are coprime. Thus
(5) T+ 3% = (a + bi)?,

where y = a2 + b% is odd, so a and b have opposite parity. On equating real and
imaginary parts in (5) we get

© e afarmt = (D)o 4 0
L.
_ p—2r—1(_32\7
(7) 3k=bp 2:3 <2r+1>a (-b%)".

From (6) we deduce that (3,a) = 1, and from (7) we deduce that a is even and b is odd.
If p = 3 then from (7) we get 3* = b(3a? — b2). If b = +1, then +3% = 3a® — 1, which
is impossible modulo 3. Similarly b = £3% can be easily eliminated. Hence b = 43¢,
1< c< k. Then £3k7¢~1 = g2 — 32¢-1, Since (3,a) = 1, we deduce that k=c+1,
whence 32¢~1 +1 = a%. By considering this equation modulo 4, we get 32~1 41 = qa2.
Then (a—1)(a+1) = 3%°"!, whence a~1 =1 or -3, and k = 2. Thus from (6)
we get £ = 46,50 y = 13. Now if p > 3, let b = £1. Then (7) considered modulo 3
implies

1+ —(1—9)"

21

which is a contradiction, so b # +1. Hence b = £3*, 1 < A < k. If A # k then again
considering (7) modulo 3, we get a contradiction. Hence b = +3%, and we arrive at

0

=+1 (mod 3),

(r-1)/2

p —2r— T
+1 = ; <2’I‘+—l>ap 2r=1(_g2k)",

This equation is exactly equation (1) in [3] and we can use Lemma 5 of [3] to deduce
that the upper sign cannot hold, so b = —3* and

(p—1)/2

r=0

This implies that k is even, p = 2 (mod 3), p = 3 (mod 4). Consequently p = 11
(mod 12). This completes the proof of Theorem 2. 0

COROLLARY 1. The diophantine equation (4) has no solution if k is odd.

We use Theorem 2 to solve equation (1) completely when p = 3. When 3 | z we
can deduce from equation (3) that (1) reduces to

X2 4 3%k-v) = Y3, where 2u= 3y,
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with (3,X) =1, and from Theorem 2 there is a unique solution when k¥ — u = 2. But
3|u,s0let u=3K,then k =3K +2,2=46x3% =46 x 3% and y =13 x 3" =
13 x 32K, Hence we get the following:

COROLLARY 2. The diophantine equation z2 + 3% = 3 has a solution only if
k = 3K + 2 and the unique solution is given by x = 46 x 3°X and y = 13 x 32K

Now we consider equation (8) and obtain conditions for the solvability of (4). We
need the following two lemmas to prove Theorem 3.

LEMMA 2. (Nagell [6].) Suppose that N = 2t.v where N,t and v are positive
integers, v odd. Suppose further that u and u; are odd integers u # uy. Then the
integer (uV —u{')/(v? — u?) is divisible exactly by 2¢~1.

LEMMA 3. The integer a defined in (8) is divisible by 4.

PROOF: We know that a is even and p = 3 (mod 4). Let a = 24’ where (2,a') =1
and p = 4H + 3. Then (8) implies

= (4H + 3)(2H + 1)4a'2.3%H _ 3k2+4H) (104 16)
= +4 — 3% (mod 16),

which is not true. This concludes the proof. a
THEOREM 3. In equation (8), if 25||a then S > 2 and 22573 k.
PROOF: Since 4 | a, let a = 25.a/, where S > 2 and (2,a’) = 1. Also k even
implies that k = 2%.k’, (2,k') =1 and & > 0. By rewriting (8) we obtain

(»—3)/2

gk(p-1) _ 1 — Z (2 Zl)ap—Zr—l(_:sZk)r.
T

r=0

The right hand side of this equation is exactly divisible by 225. For the left hand side,
we know that p =3 (mod 4), so using Lemma 2, where

1y b+ (P 1Y s
N=kp-1)=2 .k(—2 )_2 ,

and v is odd we find that this side is exactly divisible by 2°+3. Consequently §+3 = 2S5
and hence 22°-3||k. ]

CorROLLARY 3. The diophantine equation (4) has no solution if k = 22™.k',
where (2,k') =1 and m 2 0.
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EXAMPLES.

1. The diophantine equation z2 + 9 = y™ has no solution. This was first
shown by Ljunggren [5].
2. Consider the diophantine equation z2 + 340 = y",
Here k = 2 (mod 3), so if 3 | n, then there is a unique solution z = 46.3'8, y = 13.39,
n = 3 and if n even then there is no solution. Finally if (6,n) = 1 then there is no
solution when (3,z) =1 (Corollary 3), so let z = 3*X, y = 3"Y where u >0, v >0
and (3, X) = (3,Y) = 1. Then we have only the equation

X2 + 32(20—-1‘.) =YY"
where nv = 2u and 0 < u < 20. Corollary 3 can soive this equation except when

20 - u =2, 6, 8, 10, 14, 18.

1. If 20— u = 2, then u = 18, so nv = 36 which is impossible since
(6,n)=1.

2. If20—u =6, then u= 14,50 nv =48, thus n = 7,s0 X2+ 312 =Y7
with (3, X) =1 which has no solution (Theorem 2).

3. If 20 — v = 8 then nv = 24 which is impossible since (6,7) =1.

4. If 20 — u = 10, then we get n = 5, so X2 + 320 = Y5 with (3,X) =1
which has no solution (Theorem 2).

5. If 20 — u = 14, then nv = 12 which is impossible since (6,n) = 1.

6. If 20 — v = 18, then nv = 4 which is impossible since (6,n) = 1.

Corollary 3 does not solve equation (4) if an odd power of 2 exactly divides k,
for example, kK = 2, 8, 10, ... . In the following we give a theorem which can solve
some of these values of k, that is when an odd power of 2 exactly divides & and when
{(5,k) = 1. From Corollary 1 it is sufficient to consider k£ even.

THEOREM 4. The diophantine equation (4) where p > 3 has no solution if
(5,k)=1.

PROOF: Since k is even, 3%% = 1 (mod 5). Considering equation (8) modulo 5,
remembering p = 3 (mod 4), we get

1= @+’ —(a—4)° _ (a+i)-(1-13)? _

z- d5
% % 3a° -1 (mod 5),

which implies 5 | a. Then [3, Lemma 3] implies that 3% = 1 (mod 25). But 3 isa
primitive root of 25, hence 5 | &, so if (5, k) = 1, then equation (4) as no solution. []
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EXAMPLES.
1. The diophantine equation z2 + 3* = y™ has the unique solution z = 46,
y = 13, n = 3. This result is also in [3].
2. The diophantine equation z2 + 348 = y™ has no solution.
Now if an odd power of 2 exactly divides k£ and 5 | k, then none of the above
theorems solve (4). The following theorem can solve this problem partially.
THEOREM 5. The diophantine equation (4) where p > 3 has no solution if k =
20 k' where k' =1 (mod 4), 6 > 1.

PROOF: Let us define the sequences of rational integers {u,,} and {v,,} by setting

(9) (a = 3%)" = upm + 3*vmi, m > 0.
Obviously

ur=a, v = —1, ug = a? - 3%, v, = —2a.
From equation (5) where b = —3* we get
(10) z+ 3% = (a — 3%9)7,

where a = 25.0/, S > 2, (2,a’) =1 and p =3 (mod 4). From (9) and (10) we get
(11) z + 3% = (a — 3%)" = up + 3Fuyi.
So a solution of (4) exists if vp, = 1, for some p. Now

Upt1 + 3Fvp 410 = (a — 3%)" (a — 3*1)

= (up + 3¥vpi) (a — 3%).
By eduating the imaginary parts in this relation we get
(12) Up41 = QUp — Up.
Also from (11) we get

Upi2 + Fpyai = (a — 3%i)" (a ~ 3%3)
= (up + 3%vpi) (a® — 2a.3%i — 3%F).

Again by equating the imaginary parts in this relation and using (12) we deduce

vpts = (a® - 32")1),, ~ 2upa
= (a2 - 32’°)vp + 2a(vp41 — avp)

(13) = 2avp41 — (a2 + 32”)1),,.
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Since 4| a, then from (13) we can deduce that
v3 = 2avz — (a? + 3%)y,
= —25+2,'2 | ;2 | g2k
=925,'2 + 3% (mod 2zs+2)
= 225 + 3% (mod 275+2)
and
vpt2 + (a® — 3%%)v, = 2av,41

= 2a[2avp, — (a® + 3%%)up_1]
= —2a(2%5 + 3%*)vp_; (mod 225+2).

Continuing, we get
vpt2 + (a? — 3%%)v, = £2a(2%5 + 3%)v, =0 (mod 225+2).

This implies that

vpr2 = —(2%° + 3%)y, (mod 2%5+2).
So we deduce that when p = 3 (mod 4)

v, = —(a® + 32’°)'U,,_2 (mod 225"'2),

= (a® + 32")211,,_4 (mod 2%5+2),

275 4+ 32’“)(p_3)/2v3 (mod 225+2),

(
= (225 +3%)"7V/% (mod 225+2).

By using the Binomial Theorem we get
-1
(14) vp = {(1’_2_)223‘3k(p—3) + 3k(p—1)} (mod 225+2).

From Theorem 3 we have k = 225-3k’. Suppose &’ = 4r + 1. Since p = 3 (mod 4) we
have two cases:

CASE 1. p=8H + 7. Then from (14) we get, since 32° =1 (mod 225+2)

vy = {(4H + 3)225'3225_3(8H+4)(4r+1) + 3225—3(8H+6)(4r+1)} (mod 2zs+2)

(15) = {225.3.32"°7" 4 337°°7°} (mod 225+2).
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But 32°°7* =14 228 (mod 225+2) and 32°7 =1 (mod 8). On substituting in (13)
we get
vp = {3.225 +(1+ 223)3} (mod 225+2)

=1+ 225! (mod 225+2).
CASE 2. p=8H + 3. Then from (14) we get

v = {(4H + 1)225.3223_3.8H(4r+1) + 3225“3(8H+2)(4r+1)} (mod 2zs+2)
= {225 + 3225_2} (mod 225+2)

=1+ 225 422 (mod 22s+2)

=14 225+1 (mod 225'*2).

In both cases v, # 1, hence the diophantine equation (4) has no solution. 0

EXAMPLES. The diophantine equation z2 + 3%° = y™ and z2 + 38%¢ = y™ have no
solutions.

THEOREM 6. If 3 | k and (7,k) = 1, then the diophantine equation (4) where
p > 3 may have a solution only if p =11 (mod 24).

PROOF: Since 3 | k, therefore 32 =1 (mod 7). From (8) we get

1= (a+i)P - (a—13)

(16) 2

(mod 7)

From Theorem 1 we have only the following two cases for p:

CASE 1: p=8H + 3. Since (a+14)® =a?+1 (mod 7) therefore (16) becomes
-1=(a®+ 1)1{(3a2 ~-1) (mod 7).

We consider the different values of a:

1. a% =0 (mod 7), then from Lemma 3 of [3] we get 3'%* = 1 (mod 49).
But the order of 3 modulo 49 equals to 7, hence 7 | k, which is not true.

2. a?=1 (mod 7), then 27+ = —~1 (mod 7), which is not true.

3. a2=2 (mod 7), then 5.3¥ = —1 (mod 7),s0 H =4 (mod 6) and p = 2
(mod 3).

4. a?=4 (mod 7), then 4.5 = —1 (mod 7),s0 H =1 (mod 6) and p = 2
(mod 3). Thus when p =3 (mod 8), we deduce p = 2 (mod 3), that is
p =11 (mod 24).
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CASE 2: p=8H + 7. From (16) we get

1= (a+ l)H (mod 7).

We consider the different values of a:

1. a? =0 (mod 7), as above, this is not possible.
2. a®> =1 (mod7), then 2¥ =1 (mod 7) so H = 0 (mod 3) and p =1

(mod 3).
3. a?=2 (mod 7), then 37 =1 (mod 7), so H = 0 (mod 6) and p = 1
(mod 3).
4. a? =4 (mod 7), then 57 =1 (mod 7), so H = 0 (mod 6) and p = 1
(mod 3).
Thus when p = 7 (mod 8), we deduce p = 1 (mod 3), which is not true (Theorem
1). 0

From Theorems 2, 3, 4, and 5 we are able to solve the equation z2 + 3%% = y»,
where (3,z) =1 for all k¥ < 100 except when k = 30,70. And if 3 | z, then we examine
the following equation

XZ + 32(k~u) — Yn’

where (3,X) =1, nv=2u, 0 <u < k for a given k¥ < 100. The problem arises when
k —u =30 or 70 and n has a prime divisor p = 11 {mod 12) but Theorem 6 can solve
this problem for some values of k. As an example we take k = 53.

ExaMpLE. Consider the diophantine equation z2 4 3196 = ™. As before it is sufficient

to consider the equation
X2 + 32(53-15) =Yy"

with (6,n) =1,(3,X) =1, nv = 2u and 0 < u < 53. For all values of u, this equation
has no solution except when 53 — v = 30, thennv = 46, that is n = 23, hence

X?+3% =y%,

From Theorem 6 this equation has no solution. So the given equation has no solution.

By using the above method we are able to verify the conjecture for & < 100 except
possibly for the values k& = 30, 41, 52, 63, 70, 81, 85, 89, 92, 93, 96.
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