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ON A DIOPHANTINE EQUATION

FADWA S. ABU MURIEFAH AND S. AKHTAR ARIF

In this paper the equation x2 + 32fc = yn where n ^ 3 is studied. For n = 3, it is
proved that it has a solution only if k — 3K + 2 and then there is a unique solution
x = 46 x 33K and y = 13 x 32K. For n > 3 theorems are proved which determine
a large number of values of k and n for which this equation has no solution. It is
proved that if this equation has a solution for n > 3, then n is odd and k = 25 .k'
where 5 ^ 1, (2,6) = 1, k' = 15 (mod 20) and all the primes divisors p of n are
congruent to 11 (mod 12).

1. INTRODUCTION

Many special cases of the equation x2 + C = yn where x and y are positive
integers and n ^ 3 have been considered over the years, but recently Cohn has studied
this equation extensively. In [3] he has solved this equation completely for most values
of C less than 100. For C = 2k, Cohn [2] has proved that when k is odd there are
three families of solutions and recently Arif and Abu Muriefah [1] have studied the
same equation when k is even and they have put forward a conjecture and verified it
for most values of k less than 200.

In this paper we confine ourselves to the study of the equation x2 + C = yn for
C = 32fc. The first result for general n is due to Lebesgue [4] who proved that when
k — 0 the equation has no solution, so we shall assume that k > 1. We solve the
equation completely for n equal to 3 and for n even and greater than or equal to 4.
For the other values of n we prove some theorems giving necessary conditions for the
solvability of the equation. Our work suggests the following.

CONJECTURE. There are no solutions for the diophantine equation

(1) x 2 + 32k=yn, w h e r e n ^ 3

unless k = ZK + 2 and n = 3 and then there is a unique solution x = 46 x 3 3 K and

y = l3x32K.
We are able to prove this conjecture for a large class of values of k and have verified

it for all values of k less than or equal to 100 with eleven exceptions.

Our method of proof is similar to that of Cohn [3] and we use some of the results

proved in that paper. Without loss of generality we can assume that x is positive and

we consider two solutions of (1) different if they have different values of x.
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2. We first deal with the case n even and we will use the following lemma to prove
the next theorem.

LEMMA 1 . (Stormer [7].) The diophantine equation x2 + l = 2yn has no solution
in integers x > 1, y ^ 1 and n odd, n ^ 3.

THEOREM 1 . The diophantine equation x2 + 32k = yn has no solution if n is

even and greater than or equal to 4.

P R O O F : If x is odd then x2 + 32k = 2 (mod 8), yielding no solution. So we assume
that x is even and y is odd. First assume that (3, x) — 1. Putting n = 2t with t ^ 2
we obtain (y* + x) (yt - x) — 32k. Since (3, x) = 1, we get yl + x — 32fc and y* - x = 1.
By adding the last two equations we get 2yl = 1 + 32fc. If t is even this equation is
not true modulo 3 and if t is odd then it follows from Lemma 1 that it has no solution.
Now if 3 | x then of course 3 | y. Suppose that x = 3UX, y = 3VY where u > 0, v > 0
and (3,X) = (3,Y) = 1. Then

(2) 32uX2 + 32fc = 32t"y2t.

If u < k, then by cancelling 32u in (2) we get X2+32(*~") = 32t"-2uF2t and considering
this equation modulo 3 we deduce that tv - u = 0, then X2 + 32(fc-«) - y2t. But
it is proved above that this equation has no solution. If k ^ u, we get 32(u~k)x2 +
1 = 32t«-2fcy2t a n d considering this modulo 3 we get 2tv -2k = 0, so (2) becomes
(3u~kX) +1 = Y2t and this equation is known to have no solution [4].

3. Now we consider the equation when n is an odd integer and suppose that p is
an odd prime that divides n. Then we can write (1) as x2 + 32k = (yn^p)P. So it is
sufficient to. consider the equation x2 + 32k = yp.

In fact it is sufficient to consider the case (3, x) = 1. Because if 3 | x then using
the hypotheses in the proof of the last theorem, and by similar argument we get

(3) X2 + 32<fc-u) = yP, where 2u = pv,

with (3, X) = 1 and the equation is reduced to the same kind of equation (1) with a
smaller value of k. So we proceed to consider the equation

(4) x2 + 32k = yp, where k > 0, p an odd prime and (3, x) = 1.

THEOREM 2 . If the diophantine equation (4) has a solution then either p = 3
and there is the unique solution k = 2, x = 46, y = 13 or k is even and p = 11
(mod 12).

PROOF: We factorise equation(4) in the field Q(i), to obtain

(x + 3ki)(x-3ki)=yp,
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where the factors in the left hand side are coprime. Thus

(5) x + 3ki = (a + bi)p,

where y = a2 + b2 is odd, so a and b have opposite parity. On equating real and
imaginary parts in (5) we get

(6) x = a<ap~l- r!)a

(p-i)/

(7) 3k = b J2

From (6) we deduce that (3, a) — 1, and from (7) we deduce that o is even and 6 is odd.
If p = 3 then from (7) we get 3fc = 6(3a2 - b2). If b = ± 1 , then ±3fc = 3a2 - 1, which
is impossible modulo 3. Similarly b = ±3k can be easily eliminated. Hence b = ±3C,
1 ^ c < k. Then ±3k~c-1 = a2 - 32c-1. Since (3, a) = 1, we deduce that k = c + 1,
whence 32c~1 ± 1 = a2. By considering this equation modulo 4, we get 3 2 0 " 1 + 1 = a2.
Then (a - l ) ( a + 1) = 32"-1, whence a - 1 = 1 or - 3 , and jfc = 2. Thus from (6)
we get x = 46, so y = 13. Now if p > 3, let b = ±1. Then (7) considered modulo 3
implies

which is a contradiction, so b / ± 1 . Hence 6 = ± 3 A , 1 ^ A < A ; . I f A ^ f c then again

considering (7) modulo 3, we get a contradiction. Hence b = ±3k, and we arrive a t

U
This equation is exactly equation (1) in [3] and we can use Lemma 5 of [3] to deduce
that the upper sign cannot hold, so b — —3fc and

(8) - ! =
r=0

This implies that A; is even, p = 2 (mod 3), p = 3 (mod 4). Consequently p = 11
(mod 12). This completes the proof of Theorem 2. D

COROLLARY 1 . The diophantine equation (4) has no solution if k is odd.

We use Theorem 2 to solve equation (1) completely when p = 3. When 3 | x we
can deduce from equation (3) that (1) reduces to

X2 + 32(fc-u) =
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with (3, X) = 1, and from Theorem 2 there is a unique solution when k — u — 2. But
3 | u, so let u = 3K, then k = 3K + 2, x = 46 x 3" = 46 x 33K and y = 13 x 3" =
13 x 32K. Hence we get the following:

COROLLARY 2 . The diophantine equation x2 + 32fc = y3 has a solution only if
k = 3K + 2 and the unique solution is given by x = 46 x 33K and y = 13 x 32K.

Now we consider equation (8) and obtain conditions for the solvability of (4). We
need the following two lemmas to prove Theorem 3.

LEMMA 2 . (Nagell [6].) Suppose that N = 2l.v where N,t and v are positive
integers, v odd. Suppose further that u and u\ are odd integers u ^ u\. Then the
integer (uN - u^)/(u2 - u\) is divisible exactly by 2t~1.

LEMMA 3 . The integer a defined in (8) is divisible by 4.

PROOF: We know that a is even and p = 3 (mod 4). Let a — 2a! where (2, a') = 1
and p = 4H + 3. Then (8) implies

) _ 3 * ( P - D ( m o d 1 6 )

3){2H + l)4a'2.3ikH - 3fc(2+4"> (mod 16)

= ±4 - 32k (mod 16),

which is not true. This concludes the proof. D

THEOREM 3 . In equation (8), if 2s ||a then 5 ^ 2 and 22 S~3 | | k.

P R O O F : Since 4 | a, let a = 2 s .a ' , where 5 ^ 2 and (2,a') = 1. Also k even

implies that k — 26.k', (2, k') = 1 and 6^0. By rewriting (8) we obtain

(p-3)/2

r = 0
+ l7 ^ '

The right hand side of this equation is exactly divisible by 22 S. For the left hand side,
we know that p = 3 (mod 4), so using Lemma 2, where

= 2s+1.v,

and v is odd we find that this side is exactly divisible by 2S+3. Consequently 6+3 = 25
and hence 22S~3\\k. D

COROLLARY 3 . The diophantine equation (4) has no solution if k = 22m.k',
where (2, k') = 1 and m ^ 0.
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EXAMPLES.

1. The diophantine equation x2 + 9 = yn has no solution. This was first
shown by Ljunggren [5].

2. Consider the diophantine equation x2 + 3 4 0 = yn.

Here k = 2 (mod 3), so if 3 | n , then there is a unique solution x = 46.31 8, y = 13.39,
n = 3 and if n even then there is no solution. Finally if (6,n) = 1 then there is no
solution when (3,x) = 1 (Corollary 3), so let x = 2>UX, y = 3VY where u > 0, v > 0
and (3, X) = (3, Y) = 1. Then we have only the equation

y2 , o2(20—u) _ y n

where nv = 2u and 0 < u < 20. Corollary 3 can solve this equation except when

20 - u = 2, 6, 8, 10, 14, 18.

1. If 20 — u — 2, then u — 18, so nv = 36 which is impossible since
(6,n) = l .

2. If 20 - u = 6, then u - 14, so nv = 48, thus n = 7, so X2 + 31 2 = Y7

with (3, X) — 1 which has no solution (Theorem 2).
3. If 20 — u — 8 then nv — 24 which is impossible since (6, n) = 1.
4. If 20 - u = 10, then we get n = 5, so X2 + 32 0 = Y5 with (3,X) = 1

which has no solution (Theorem 2).
5. If 20 — u = 14, then nv = 12 which is impossible since (6, n) = 1.
6. If 20 — u = 18, then nv — 4 which is impossible since (6,n) = 1.

Corollary 3 does not solve equation (4) if an odd power of 2 exactly divides k,
for example, k — 2, 8, 10, . . . . In the following we give a theorem which can solve
some of these values of k, that is when an odd power of 2 exactly divides k and when
(5, k) = 1. From Corollary 1 it is sufficient to consider k even.

THEOREM 4 . The diophantine equation (4) where p > 3 has no solution if

(5,fc) = l .

PROOF: Since k is even, 32* = 1 (mod 5). Considering equation (8) modulo 5,

remembering p = 3 (mod 4), we get

which implies 5 | a. Then [3, Lemma 3] implies that 38fc = 1 (mod 25). But 3 is a

primitive root of 25, hence 5 | k, so if (5, k) = 1, then equation (4) as no solution. D
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E X A M P L E S .

1. The diophantine equation x2 + 34 = yn has the unique solution x — 46,
y = 13, n — 3 . This result is also in [3].

2. The diophantine equation x2 + 3 4 8 = yn has no solution.

Now if an odd power of 2 exactly divides k and 5 | k, then none of the above
theorems solve (4). The following theorem can solve this problem partially.

THEOREM 5 . The diophantine equation (4) where p > 3 has no solution if k =
2s.k' where k' = 1 (mod 4), d > 1.

PROOF: Let us define the sequences of rational integers {um} and {vm} by setting

(9) {a-3ki)m = um + 3kvmi, m>0.

Obviously
ui — a, vi = —1, u2 = a2 - 32fc, t;2 = -2a .

From equation (5) where b — —3fc we get

(10) x + 3ki = (a - 3ki)P,

where a = 2s.a', 5 ^ 2 , (2,a') = 1 and p = 3 (mod 4). From (9) and (10) we get

(11) x + 3ki = (a - Zki)P = up + 3kvpi.

So a solution of (4) exists if vp — 1, for some p. Now

u p + i + 3kvp+xi = (a - 3fei)P(a - 3ki)

= (up + 3kvpi)(a-3ki).

By equating the imaginary parts in this relation we get

(12) vp+i = avp - up.

Also from (11) we get

up +2 + 3kvp+2i = (a- 3ki)P(a - 3ki)2

= (tip + 3 * V ) (a2 - 2a.3fci - 32fc).

Again by equating the imaginary parts in this relation and using (12) we deduce

vp+2 = (a2 - 32k)vp - 2upa

= (a2 - 32k)vp + 2a(vp+i - avp)

(13) = 2avp+i - (a2 + 32k)vp.
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Since 4 | a, then from (13) we can deduce that

v3 = 2av2- (a2 + 32k)v1

= 22Sa'2+32k (mod22S+2)

= 22S + 32fc (mod 2 2 S + 2 )

and

vp+2 + (a2 - 32k)vp = 2avp +i

= 2a[2avp - (a2 + 32 />p_i]

= -2a(22 S + 32A>P_! (mod 22S+2).

Continuing, we get

vp+2 + (a2 - 32fc) vp = ±2a(22S + 32k)v2 = 0 (mod 2 2 S + 2 ) .

This implies that

*,p+2 = - ( 2 2 S + 3 2 > p ( m o d 2 2 S + 2 ) .

So we deduce that when p = 3 (mod 4)

vp = - ( a 2 + 3 2 A > P _ 2 (mod 2 2 5 + 2 ) ,

= (a2+32 f c)2 t ; p_4 ( m o d 2 2 5 + 2 ) ,

= (2 2 S + 3 2 f c ) ( p " 3 ) / % 3 ( m o d 2 2 5 + 2 ) ,

= (22 S + 32 f c ) ( p"1 ) / 2 (mod2 2 S + 2 ) .

By using the Binomial Theorem we get

(14) Vp = | ( P Z l J22S 3fc(P-3) + 3*(p-l) J ( m o d 22S+2)

Prom Theorem 3 we have k = 22S~3k'. Suppose fe' = 4r + 1. Since p = 3 (mod 4) we
have two cases:

C A S E 1. p = 8H + 7. Then from (14) we get, since 3 2 S = 1 (mod 2 2 5 + 2 )

Vp = {{AH + 3)22S.322S-3(8H+4)(4r+l) + 3 2 2 S -

(15) = {2 2 S .3 .3 2 2 5 ~ l + 3 3 2 2 S " 3 } (mod 2 2 S + 2 ) .
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2 2 5 " 2But 3 2 2 5 " 2 = 1 + 22S (mod 22S+2) and S2""1 = 1 (mod 8). On substituting in (13)
we get

vp = {3.225 + (l + 22 S)3} (mod 22S+2)

= 1 + 2 2 S + 1 ( m o d 2 2 S + 2 ) .

C A S E 2. p = 8H + 3 . Then from (14) we get

Vp = j
= {22S+322S"2} (mod22S+2)

= 1 + 22S + 22S (mod 225+2)

= l + 2 2 5 + 1 (mod22 S + 2).

In both cases vp ^ 1, hence the diophantine equation (4) has no solution. D

EXAMPLES. The diophantine equation x2 + 320 = yn and x2 + 380 = yn have no
solutions.

THEOREM 6 . If 3 | k and (7, fc) = 1, then the diophantine equation (4) where
p > 3 may have a solution only if p = 11 (mod 24).

PROOF: Since 3 | k, therefore 32fc = 1 (mod 7). From (8) we get

(.6, - l - f + y - ' - y (mod7)

From Theorem 1 we have only the following two cases for p:

CASE 1: p = 8H + 3. Since (a ± i)& = a2 + 1 (mod 7) therefore (16) becomes

- 1 = (a2 + l ) " ( 3 a 2 - l ) (mod 7).

We consider the different values of a:

1. a2 = 0 (mod 7), then from Lemma 3 of [3] we get 312fc = 1 (mod 49).
But the order of 3 modulo 49 equals to 7, hence 7 | k, which is not true.

2. a2 = 1 (mod 7), then 2H+1 = - 1 (mod 7), which is not true.
3. a2 = 2 (mod 7), then 5.3H = - 1 (mod 7), so H = 4 (mod 6) and p = 2

(mod 3).
4. a2 = 4 (mod 7), then 4.5^ = - 1 (mod 7), so H = 1 (mod 6) and p = 2

(mod 3). Thus when p = 3 (mod 8), we deduce p = 2 (mod 3), that is
p= 11 (mod 24).
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C A S E 2: p = SH + 7. Prom (16) we get

1 = (a2 4- 1 ) H (mod 7).

We consider the different values of a:

1. a2 = 0 (mod 7) , as above, this is not possible.
2. a2 = 1 (mod 7), then 2H = 1 (mod 7) so H = 0 (mod 3) and p = 1

(mod 3) .

3. a2 = 2 (mod 7), then 3 ^ = 1 (mod 7), so H = 0 (mod 6) and p = 1
(mod 3) .

4. a2 = 4 (mod 7) , then 5H = 1 (mod 7), so H = 0 (mod 6) and p = 1
(mod 3) .

Thus when p = 7 (mod 8) , we deduce p = 1 (mod 3) , which is not true (Theorem

i). D

From Theorems 2, 3, 4, and 5 we are able to solve the equation x2 + 32k = yn,
where (3, x) = 1 for all k < 100 except when k = 30,70. And if 3 | x, then we examine
the following equation

where (3 ,X) = 1, nv = 2u, 0 < u < k for a given k ^ 100. The problem arises when
k - u = 30 or 70 and n has a prime divisor p = 11 (mod 12) but Theorem 6 can solve
this problem for some values of k. As an example we take fc = 53.

E X A M P L E . Consider the diophantine equation x2 + 3 1 0 6 = yn. As before it is sufficient
to consider the equation

X2 -if 32(53-«) — Yn

with (6, n) = 1, (3, X) — 1, nv — 2u and 0 < u < 53. For all values of u, this equation
has no solution except when 53 — u = 30, thennv = 46, that is n — 23, hence

From Theorem 6 this equation has no solution. So the given equation has no solution.

By using the above method we are able to verify the conjecture for k ^ 100 except

possibly for the values k - 30, 41, 52, 63, 70, 81, 85, 89, 92, 93, 96.
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